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Why Use Hadrons?

• We focus on low-energy, long-range physics, and all observables

are colorless.

• Hadrons (baryons and mesons) are the actual particles observed in

experiments.

• Colored quarks and gluons participate only in intermediate states,

and such “off-shell” behavior is unobservable.

• So pick the most efficient degrees of freedom! We have to

parametrize the hamiltonian anyway, since we don’t know its true

form.

• We are interested primarily in the nuclear many-body problem, so

include “collective” degrees of freedom like scalar and vector fields.

• Only nucleons and pions are “real” (stable) particles; other fields are

always virtual and just parameterize the NN interaction (or EM form

factors).



Why Impose Lorentz Covariance?

• The scalar and vector mean fields in nuclei are large (several

hundred MeV). This is a new energy scale. The scalar and vector

fields cancel to produce a small binding energy.

∗ Consistent with QCD sum-rule results (size and density

dependence).

∗ Consistent with chiral power counting (two-body energy/nucleon

is of order ρ0/f2
π ).

• Large mean fields produce important relativistic interaction effects.

∗ Velocity-dependent NN interaction provides a new saturation

mechanism.

∗ Scalar and vector mean fields add to produce correct spin-orbit

force. (Compare “fine” structure in atoms and nuclei.)

∗ Successful prediction of nucleon–nucleus spin observables in

the RIA and energy dependence of the optical potential.

∗ Explains pseudospin symmetry in nuclei.

There really is relativity in nuclei!



Why Use Effective Field Theory?

Lorentz-covariant hadronic field theories≡ Quantum HadroDynamics

• Interpret QHD lagrangians as nonrenormalizable LEFT’s

∗ known long-range interactions constrained by symmetries;

∗ a complete set of generic short-range interactions;

∗ the borderline is characterized by breakdown scale Λ of EFT.

For QHD, Λ ≈ 600 MeV (empirically).

• When based on a local, Lorentz-invariant lagrangian density, EFT is

the most general way to parameterize observables consistent with

the principles of quantum mechanics, special relativity, unitarity,

cluster decomposition, microscopic causality, and the desired

internal symmetries.

• It’s not necessary to derive L from QCD

∗ Use a general L that respects the symmetries.

∗ By construction, this provides a general parametrization for

energies <∼ Λ (remove redundancies).

• The freedom to redefine and transform the fields

=⇒ infinitely many representations of low-energy QCD physics



Advantages for Electroweak Interactions in Nuclei

• We use the same degrees of freedom to describe the nuclear

interactions and nuclear currents.

• The QHD/EFT lagrangian exhibits the symmetries of QCD.

∗ Chiral SU(2)L × SU(2)R symmetry is nonlinear.

∗ Unbroken isovector subgroup SU(2)V symmetry is linear.

∗ These are global symmetries.

∗ Electromagnetic interactions [local U(1)Q gauge symmetry] is

straightforward to include.

• At momenta small compared to Λ, short-distance physics (like

nucleon substructure) is only partially resolved and can be

described with a derivative expansion.

• The lagrangian parameters can be calibrated to

∗ properties of isolated hadrons,

∗ πN scattering,

∗ bulk and single-particle properties of nuclei,

∗ NN scattering.



Strategy

• Assign an index to each term in the lagrangian: ν = d + n/2 + b.

∗ d = number of derivatives (except on nucleons).

∗ n = number of nucleon fields.

∗ b = number of non-Goldstone bosons.

• Organize L in powers of ν and truncate; this gives a reliable

expansion in inverse powers of a “heavy” mass scale Λ ≈ M . For

heavy nuclei, essentially an expansion in kF/M .

Fields

• Nucleon (N ), Lorentz scalar (φ = “sigma”) [chiral scalar]

• Lorentz vector (Vµ = “omega” ; Vµν ≡ ∂µVν − ∂νVµ) [ " ]

• Pion: U ≡ exp(iτ ·π/fπ) , ξ ≡ exp(iτ ·π /2fπ) ,

together with aµ ≡ − i
2

(
ξ†∂µξ − ξ∂µξ†

)
,

vµ ≡ − i
2

(
ξ†∂µξ + ξ∂µξ†

)
, vµν ≡ −i[aµ, aν ] .

• Rho: ρµ ≡ 1
2 τ ·ρµ , Dµρν ≡ ∂µρν + i[vµ, ρν ] ,

ρµν = Dµρν −Dνρµ + i gρ[ρµ, ρν ] .



EFT Lagrangian

LQHD = LN + L(4)
πN + LM

= N (iγµ [Dµ + igρρµ + igvVµ] + gA γµγ5aµ −M + gsφ)N

−fρgρ

4M
N ρµνσµνN − fvgv

4M
N VµνσµνN − κπ

M
N vµνσµνN

+
4βπ

M
N N Tr (aµaµ) + L(4)

πN

+ 1
2 ∂µφ ∂µφ + 1

4f2
π Tr

(
∂µU∂µU†)

− 1
2 Tr (ρµνρµν)− 1

4 VµνV µν

−gρππ
2f2

π

m2
ρ

Tr (ρµνvµν)+ 1
2

(
1 + η1

gsφ

M
+

η2

2
g2

sφ2

M2

)
m2

vVµV µ

+ 1
4! ζ0g

2
v(VµV µ)2 +

(
1 + ηρ

gsφ

M

)
m2

ρ Tr (ρµρµ)

−m2
sφ

2

(
1
2

+
κ3

3!
gsφ

M
+

κ4

4!
g2

sφ2

M2

)
.

• LQHD contains all nonredundant terms through order ν = 4.

• We see standard noninteracting hadron terms⊕ Yukawa

nucleon–meson couplings⊕ anomalous-moment interactions⊕
pion–nucleon and meson nonlinearities: nontrivial dynamics.



Transformation Laws

In our EFT (QHD) lagrangian:

• Chiral SU(2)L × SU(2)R symmetry is nonlinear.

• Isovector subgroup SU(2)V symmetry is linear.

• These are global symmetries.

• Vector transformations: L = exp(iβ · τ/2) = R

• Axial-vector transformations:

L = exp(iα · τ/2) , R = exp(−iα · τ/2)

• Field transformations: (all objects are matrices)

U(x) → LU(x)R† ,

ξ(x) → Lξ(x)h†(x) = h(x)ξ(x)R† [defines h(x)]

N(x) → h(x)N(x) [generally, h(x) is local]

ρµ(x) → h(x)ρµ(x)h†(x) .

• Chirally covariant derivatives:

DµN ≡ (∂µ + ivµ)N : DµN → h(x)(DµN) ,

Dµρν ≡ ∂µρν + i[vµ, ρν ] : Dµρν → h(x)(Dµρν)h†(x)



Discussion

• To realize the nonlinear SU(2)L × SU(2)R symmetry, the

lagrangian must include pions explicitly.

• Note that U , ξ, and ρµ are 2× 2 matrices.

• For isospin transformations, L = R = h (constants); the

transformations are linear.

• For general transformations: L 6= R. [Axial transformations have

L = R†.]

∗ Now h(x) is nontrivial and contains pion fields.

∗ So h(x)N(x) mixes nucleons with any number of pions: the

transformation is nonlinear.

• The only field or tensor that transforms inhomogeneously is

vµ → hvµh† − ih∂µh†. This allows for the construction of

chirally covariant derivatives.

• This is NOT the linear sigma model; the scalar field φ is a chiral

scalar. It is NOT the chiral partner of the pion.



Important Things to Remember

• Off-shell behavior is not observable. Choose the dynamical

variables that are most efficient (still unknown).

• Vacuum dynamics involves short-range physics. Don’t calculate it,

but parametrize it in a few fitted constants. (Computation of hadronic

loops =⇒ unnatural coefficients.) Use valence nucleons only.

• Although fields and couplings are local, nucleon substructure is also

included:

∗ Example: NNσ → g(σ)NNσ

∗ But define: φ ≡ g(σ)σ , [g(0) = 1]; then invert for σ(φ).

∗ Then: g(σ)NNσ + p(σ) = NNφ + aφ2 + bφ3 + cφ4 + · · ·
• Nucleon EM structure included in a derivative expansion:

LEM = − e

2
NAµγµ(1 + τ3)N − e

4M
F µνN{λ(0)+λ(1)τ3}σµνN

+ · · · − e

2M2
∂νF µνN({β(0)+β(1)τ3}γµ)N

− e

M4
∂2∂νF µνN({δ(0) + δ(1)τ3}γµ)N + · · · + VMD ,

which generates e, λ, rs,v
rms, . . .

This works at long distances (low momenta).



• This Electromagnetic lagrangian is valid to lowest order in the

electric charge and the pion fields. When combined with the VMD

terms, we find the following results for the nucleon EM form factors

(Q ≡ four-momentum transfer):

F
(0)
1 (Q2) =

1
2
− β(0)

2
Q2

M2
− gv

3gγ

Q2

Q2 + m2
v

+ · · ·

F
(1)
1 (Q2) =

1
2
− β(1)

2
Q2

M2
− gρ

2gγ

Q2

Q2 + m2
ρ

+ · · ·

F
(0)
2 (Q2) =

λp + λn

2
− fvgv

3gγ

Q2

Q2 + m2
v

+ · · ·

F
(1)
2 (Q2) =

λp − λn

2
− fρgρ

2gγ

Q2

Q2 + m2
ρ

+ · · ·

• Using the single-nucleon charge and anomalous rms radii allows

one to determine the β(t) and fi parameters. (The constants gv

and gρ are determined from nuclear properties, and gγ is fit to the

leptonic ρ → e+e− decay.)

• These expressions allow one to describe the contributions of

nucleon EM structure to nuclear charge form factors without

introducing ad hoc form factors at the NNγ vertex.



(Naive) Dimensional Analysis: NDA

[Georgi & Manohar, 1984]

• Low-energy QCD is expected to contain two mass scales:

fπ ≈ 93 MeV , Λ ≈ 500 to 800 MeV.

The first is related to chiral symmetry and resulting Goldstone

bosons (pions); the second signals non-Goldstone-boson (“heavy”)

physics.

• NDA rules for a generic term in the energy functional:

C [f2
πΛ2]

" 
NN

f2
πΛ

!`
1

m!

 
Φ

Λ

!m
1

n!

 
W

Λ

!n 
∂

Λ

!p #
• “Naturalness” =⇒ dimensionless C is of order unity.

• Provides expansion parameters at finite density:

Φ
Λ
≈ W

Λ
≈ 1/2 ,

ρs

f2
πΛ

≈ ρB

f2
πΛ

≈ 1/5 at ρ0
B

• Allows truncation and calibration with quantitatively accurate fits to

bulk and single-particle nuclear observables (binding energies,

charge densities, single-particle spectra near the Fermi surface).



Density Functional Theory

• Construct the ground-state energy functional from the lagrangian

using a mean-field (”factorized”) approximation:

∗ A functional of scalar (ρs) and baryon (ρB) densities.

∗ Lorentz scalar and vector fields are interpreted as Kohn–Sham

single-particle potentials. Dirac (quasi)nucleons move in these

local potentials.

• Kohn–Sham theorem [1965]: The exact ground-state scalar and

vector densities, energy, and chemical potential for the fully

interacting many-fermion system can be reproduced by a collection

of (quasi)fermions moving in appropriately defined, self-consistent,

local, classical fields.

• Mean-field energy functional provides a parametrization of the exact

energy functional. Fit the parameters [define a χ2] to (29) nuclear

observables from 16O, 40Ca, 48Ca, 88Sr, and 208Pb. There are

more than enough parameters at the typical level of truncation.

Parameters encode both short-range (vacuum, QCD) effects and

long-range (many-body) effects.



• Kohn–Sham quasi-particle orbitals are tailored to the generation of

the ground-state density, so they include exchange, correlation, and

short-range effects (approximately).

• Verify naturalness by examining the convergence of the truncation

(and make predictions).

• Note the large scalar and vector fields! The scale of the

lowest-order term in the energy/particle is given by

ρeq/f2
π ≈ 130MeV

and is independent of Λ. This is a general result!



Table 1: Parameter sets from fits to finite nuclei. The parameters in the
lower portion of the table are fitted to the (free) nucleon charge and mag-
netic form factors.

ν W1 C1 Q1 Q2 G1 G2

ms/M 2 0.60305 0.53874 0.53735 0.54268 0.53963 0.55410

gs/4π 2 0.93797 0.77756 0.81024 0.78661 0.78532 0.83522

gv/4π 2 1.13652 0.98486 1.02125 0.97202 0.96512 1.01560

gρ/4π 2 0.77787 0.65053 0.70261 0.68096 0.69844 0.75467

η1 3 0.29577 0.07060 0.64992

κ3 3 1.6698 1.6582 1.7424 2.2067 3.2467

ηρ 3 −0.2722 0.3901

η2 4 −0.96161 0.10975

κ4 4 −6.6045 −8.4836 −10.090 0.63152

ζ0 4 −1.7750 3.5249 2.6416

α1 5 1.8549 1.7234

α2 5 1.7880 −1.5798

fv/4 3 0.1079 0.1734

fρ/4 3 0.9332 1.1159 1.0332 1.0660 1.0393 0.9619

β(0) 4 −0.38482 −0.01915 −0.10689 0.01181 0.02844 −0.09328

β(1) 4 −0.54618 −0.07120 −0.26545 −0.18470 −0.24992 −0.45964
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Electroweak Currents

A desirable theory of the vector and axial-vector currents should satisfy:

• The same degrees of freedom describe both currents and

strong-interaction phenomena (πN and NN scattering; nuclear

structure).

• The EFT has the same internal symmetries as the underlying QCD.

(Both discrete and continuous; the latter ensure CVC and PCAC.)

• The parameters can be calibrated from strong-interaction

phenomena (e.g., hadron scattering and the properties of finite

nuclei). This is especially important in EFT, since all allowed

(nonredundant) interaction terms appear.



Leading-Order Terms

• These have ν = 2 and produce Noether currents that include the

pion field to all orders:

V aµ
2 = −i

f2
π

4
Tr

{
τa

(
U∂µU† + U†∂µU

)}

+ 1
4 N γµ

[
ξτaξ† + ξ†τaξ

]
N

+ 1
4 gAN γµγ5

[
ξτaξ† − ξ†τaξ

]
N ,

Aaµ
2 = −i

f2
π

4
Tr

{
τa

(
U∂µU† − U†∂µU

)}

− 1
4 N γµ

[
ξτaξ† − ξ†τaξ

]
N

− 1
4 gAN γµγ5

[
ξτaξ† + ξ†τaξ

]
N .

• In the presence of an external axial-vector source, the scattering

amplitudes satisfy CVC, PCAC (when mπ 6= 0), and the

Goldberger–Treiman relation (with gA 6= 1) automatically.

• The chiral charges Qa and Qa
5 also satisfy the familiar charge

algebra to all orders in the pion fields. (a is the isospin index.)



Chiral Charge Algebra

h
Qa, Qb

i
= iεabc Qc ,h

Qa, Qb
5

i
= iεabc Qc

5 ,h
Qa

5 , Qb
5

i
= iεabc Qc .



One-Body Axial-Vector Current

• Vertices to leading order in π fields: [dots = pions]

b a

q k

a

q

• The axial current to leading order in π is

Aaµ
2 = − 1

fπ
εabcπb N γµ τ c

2
N−gA N γµγ5

τa

2
N−fπ ∂µπa .

• These lead to a one-body, axial-vector current amplitude (circle with

cross denotes the external axial-vector source Sext
aµ ):

a +

p p

p’ p’

k

a
k



Leading-Order Scattering Amplitudes

• Axial-vector pion production:

a

a a

a

a

a

b

q

k

k

p’

p

b

q

b

q

b

q

b

q

b q
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q

b
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a

• Two-body, axial-vector current amplitude:

p’ p  ’

p p

2

2

q

a
k

M( ) b

+ (direct)2 + exchange.



Next-to-Leading-Order Contributions

• One can extend the preceding analysis to include πN terms with

ν = 3. There are more Feynman diagrams and amplitudes, but

∗ CVC, PCAC,

∗ the Goldberger–Treiman relation, and

∗ the chiral charge algebra (to all orders in π)

remain correct.

• The two-body, axial-vector current amplitudes at this order look like

p
1

p  ’
1

p

p  ’2

2

q

p

k

aa

p

p  ’2

21

p  ’
1

q
+b b

with additional direct and exchange diagrams (as required), and

different factors at the vertices coming from the ν = 3 terms in the

lagrangian.



Rho-Meson Contributions

• Keep terms in the lagrangian through order ν = 4, but expand

currents to leading order in ρ and π for brevity. Retain the ρππ

coupling term (ν = 4), since lower-order terms go away.

• Desired CVC, PCAC, G–T, and chiral algebra are still valid!

• We have the additional vertices: [cycloids = rhos]

q

c
c

a

b

q

k

p

• The additional axial-vector current is:

δAλ
a = gρππ

2fπ

m2
ρ

εabc ∂νπb
(
∂λρν − ∂νρλ

)c

+O(ρ2π, ρπ3) ,

which depends on the rho–pi–pi coupling.



• The additional two-body, axial-vector amplitudes look like:

a

a

q

b

a

c

+

+

+

+ +

q

c

a

b

p p

p  ’

1 2

1 2p  ’

q

q

r r

k

k

+ (direct)2 + exchange.

• The first two diagrams show that the axial-vector current can couple

to the nucleon line in two different ways (pion-pole dominance).

• The first two diagrams can also have σ and ω exchange substituted

for the ρ exchange.



Complete Isovector Currents

V µ
a = −i

f2
π

4
Tr[τa(U∂µU† + U†∂µU)]

+
1
2

N γµ
(
ξ
τa

2
ξ† + ξ†

τa

2
ξ
)

N

+
1
2

gAN γµγ5

(
ξ
τa

2
ξ† − ξ†

τa

2
ξ
)

N

+ i
κπ

M
N

[(
ξ
τa

2
ξ† − ξ†

τa

2
ξ
)

, aν

]
σµνN

+
4βπ

M
N N Tr

[(
ξ
τa

2
ξ† − ξ†

τa

2
ξ
)

aµ
]

+ i
fρgρ

4M
N

[(
ξ
τa

2
ξ† + ξ†

τa

2
ξ
)

, ρν

]
σµνN

+ 2igρππ
f2

π

m2
ρ

Tr
{

ρµν
[(

ξ
τa

2
ξ† − ξ†

τa

2
ξ
)

, aν

]

+ vµν
[(

ξ
τa

2
ξ† + ξ†

τa

2
ξ
)

, ρν

]}

+ i Tr
{[(

ξ
τa

2
ξ† + ξ†

τa

2
ξ
)

, ρν

]
ρµν

}



Aµ
a = −i

f2
π

4
Tr[τa(U∂µU† − U†∂µU)]

− 1
2

N γµ
(
ξ
τa

2
ξ† − ξ†

τa

2
ξ
)

N

− 1
2

gAN γµγ5

(
ξ
τa

2
ξ† + ξ†

τa

2
ξ
)

N

− i
κπ

M
N

[(
ξ
τa

2
ξ† + ξ†

τa

2
ξ
)

, aν

]
σµνN

− 4βπ

M
N N Tr

[(
ξ
τa

2
ξ† + ξ†

τa

2
ξ
)

aµ
]

− i
fρgρ

4M
N

[(
ξ
τa

2
ξ† − ξ†

τa

2
ξ
)

, ρν

]
σµνN

− 2igρππ
f2

π

m2
ρ

Tr
{

ρµν
[(

ξ
τa

2
ξ† + ξ†

τa

2
ξ
)

, aν

]

+ vµν
[(

ξ
τa

2
ξ† − ξ†

τa

2
ξ
)

, ρν

]}

− i Tr
{[(

ξ
τa

2
ξ† − ξ†

τa

2
ξ
)

, ρν

]
ρµν

}



Review: QCD + QED Lagrangian

Consider massless, two-flavor QCD: ψ =
(

u

d

)
.

LQCD = ψ[iγµ(∂µ +
i

2
gλaAa

µ)]ψ − 1
4
Ga

µνGaµν

= ψiγµ∂µψ + · · · ,

which has a global, linear SU(2)L × SU(2)R symmetry.

Now add Electrodynamics:

L = −1
4
FµνFµν + ψiγµ∂µψ − eAµψγµQψ + · · ·

= −1
4
FµνFµν + ψLiγµ(∂µ + ieQAµ)ψL

+ ψRiγµ(∂µ + ieQAµ)ψR + · · · ,

where ψR,L ≡ 1
2 (1± γ5)ψ , Q = 1

2 ( 1
3 + τ3).

Under chiral transformations: ψL → LψL and ψR → RψR.

So the lagrangian possesses a residual global symmetry:

U(1)L3 × U(1)R3 × U(1)B ,

which must also be present in the low-energy EFT.



Electromagnetic Interactions in QHD

LEM = Lmin
EM + Lhad

EM + Lvmd
EM + Lanom

EM .

The four contributions describe, respectively,

• Lmin
EM : terms arising from minimal substitution, obtained by

replacing ordinary derivatives in LEFT with EM gauge-covariant

derivatives (these terms are necessary);

• Lhad
EM : non-minimal terms in a derivative expansion, which will serve

to describe some of the hadronic EM structure;

• Lvmd
EM : VMD terms that contain the coupling of the photon to neutral

vector mesons (and pions);

• Lanom
EM : EM terms associated with chiral anomalies, which

describe, among other things, mesonic decays like π0 → γγ.



To include EM interactions, elevate a subgroup of the full symmetry to

the status of a local symmetry. The local U(1)Q symmetry has the

generator (“electric charge”) Q = 1
2B + T3.

Under U(1)Q, the EM field Aµ transforms in the familiar way

Aµ → Aµ − 1
e

∂µα(x) .

The nucleon, pion and rho fields transform as N → qN , ξ → qξq†,
ρµ → qρµq†, with

q(x) ≡ exp
[
iα(x)

(
B + τ3

2

)]
,

To enforce the local symmetry, we define the gauge-covariant

derivatives (denoted with a tilde)

∂̃µN ≡
[
∂µ +

i

2
eAµ(1 + τ3)

]
N ,

∂̃µU ≡ ∂µU + ieAµ

[τ3

2
, U

]
,

∂̃µξ ≡ ∂µξ + ieAµ

[τ3

2
, ξ

]
,

∂̃µρν ≡ ∂µρν + ieAµ

[τ3

2
, ρν

]
.



Lmin
EM = −1

4
FµνFµν − eAµJµ

min + Lmin
e2

Jµ
min = −i

f2
π

4
Tr[τ3(U∂µU† + U†∂µU)]

+
1
2

N γµ
(
1 + ξ

τ3

2
ξ† + ξ†

τ3

2
ξ
)

N

+
1
2

gAN γµγ5

(
ξ
τ3

2
ξ† − ξ†

τ3

2
ξ
)

N

+ i
κπ

M
N

[(
ξ
τ3

2
ξ† − ξ†

τ3

2
ξ
)

, aν

]
σµνN

+
4βπ

M
N N Tr

[(
ξ
τ3

2
ξ† − ξ†

τ3

2
ξ
)

aµ
]

+ i
fρgρ

4M
N

[(
ξ
τ3

2
ξ† + ξ†

τ3

2
ξ
)

, ρν

]
σµνN

+ i Tr
{[(

ξ
τ3

2
ξ† + ξ†

τ3

2
ξ
)

, ρν

]
ρµν

}

+ 2igρππ
f2

π

m2
ρ

Tr
(
ρµν

[(
ξ
τ3

2
ξ† − ξ†

τ3

2
ξ
)

, aν

]

+ vµν
[(

ξ
τ3

2
ξ† + ξ†

τ3

2
ξ
)

, ρν

])



Q =
∫

d3x

[
1
2

N†(1 + τ3)N + (π × Pπ)3 + (ρν × P ν
ρ )3

]

Lmin
e2 = e2AµAµ f2

π

4

(
1 +

4βπ

f2
πM

N N

)

×Tr
[(

ξ
τ3

2
ξ† − ξ†

τ3

2
ξ
)(

ξ
τ3

2
ξ† − ξ†

τ3

2
ξ
)]

+
e2

4

{
AµAµ Tr

([(
ξ
τ3

2
ξ† + ξ†

τ3

2
ξ
)

, ρν

]

×
[(

ξ
τ3

2
ξ† + ξ†

τ3

2
ξ
)

, ρν
])

−AµAν Tr
([(

ξ
τ3

2
ξ† + ξ†

τ3

2
ξ
)

, ρν

]

×
[(

ξ
τ3

2
ξ† + ξ†

τ3

2
ξ
)

, ρµ
])}

+ e2gρππ
f2

π

m2
ρ

{
AµAµ Tr

([(
ξ
τ3

2
ξ† + ξ†

τ3

2
ξ
)

, ρν

]

×
[(

ξ
τ3

2
ξ† − ξ†

τ3

2
ξ
)

, aν
])

−AµAν Tr
([(

ξ
τ3

2
ξ† + ξ†

τ3

2
ξ
)

, ρν

]

×
[(

ξ
τ3

2
ξ† − ξ†

τ3

2
ξ
)

, aµ
])}



Discussion

• The individual parts of the lagrangian are not EM gauge invariant by

themselves; only L̃EFT ≡ LEFT + Lmin
EM is. The O(e2) “seagull”

terms involving mesons and two photons are crucial for maintaining

EM gauge invariance.

• The current Jµ
min = 1

2Bµ + V µ
3 ; thus, Jµ

min is conserved through

O(e0). The baryon current obeys ∂µBµ = 0.

• The current Jµ
min, however, is not exactly conserved due to the EM

interactions: ∂µJµ
min = ∂µV µ

3 = O(e) 6= 0. Thus we cannot

identify Jµ
min as the EM current.

• We can find the unique, conserved, minimal EM current using

Maxwell’s equations:

∂νF νµ = e

(
Jµ

min −
1
e

∂Lmin
e2

∂Aµ

)
= e J̃µ

min ,

where the final equality follows from algebra!

• Evidently, ∂µJ̃µ
min = 0, consistent with its identification as the EM

current.



Residual Chiral Symmetry

• For global left- and right-handed rotations about the third axis in

isospin space (L3, R3), the original field transformations reduce to

ξ(x) → ξ′(x) = L3ξ(x)h̃†(x) = h̃(x)ξ(x)R†3 ,

N(x) → N ′(x) = h̃(x)N(x) ,

ρµ(x) → ρ′µ(x) = h̃(x)ρµ(x)h̃†(x) .

Note that h̃(x) generally involves isospin rotations in all directions.

• The vector field vµ does not appear explicitly in Lmin
EM . All the

remaining meson tensors: aµ, ρµ, ρµν , and vµν transform

homogeneously. For example,

ρµν → ρ′µν = h̃ρµν h̃† , etc.

• So do the pion fields Q± ≡ 1
2

(
ξτ3ξ

† ± ξ†τ3ξ
)

, since

ξ†τ3ξ → ξ′†τ3ξ
′ = (h̃ξ†L†3)τ3(L3ξh̃

†) = h̃(ξ†τ3ξ)h̃† ,

ξτ3ξ
† → ξ′τ3ξ

′† = (h̃ξR†3)τ3(R3ξ
†h̃†) = h̃(ξτ3ξ

†)h̃† .

• The residual invariance of L̃EFT now follows by inspection.



Conserved Currents

• What has become of the isovector currents Vµ and Aµ?

• With the addition of the EM interactions, the gauged currents Ṽµ

and Ãµ are no longer isovectors. Nevertheless, . . .

• The gauged lagrangian L̃EFT admits three conserved currents,

one of which is Bµ. The other two conserved currents are the

gauged neutral currents Ṽ µ
3 and Ãµ

3 . The corresponding charged

currents Ṽ µ
± and Ãµ

± are not exactly conserved.

• In fact, the Adler–Coleman theorem (1965) implies

∂µṼ µ
a = εa3b eAµṼ µ

b , ∂µÃµ
a = εa3b eAµÃµ

b .

The divergence of the axial-vector current Ãµ omits contributions

from chiral anomalies and from the explicit breaking of chiral

symmetry. If the latter were included, we would have the PCAC

relation

∂µÃµ
a ∝ m2

ππa + O(e) .

• Only the neutral charges are constants of the motion, and

[B, Q3] = [B, (Q5)3] = [Q3, (Q5)3] = [Q, (Q5)3] = 0.



Non-Minimal EM Couplings

• These involve the EM field tensor Fµν and its derivatives.

• Recall our derivative expansion:

Lold = − e

4M
FµνN λσµνN− e

2M2
(∂νFµν)N βγµN + · · ·

where λ = λp
1
2 (1 + τ3) + λn

1
2 (1− τ3) ≡ λ(0) + λ(1)τ3, and

similarly for β.

• This Lold is EM gauge invariant, but it does not respect the residual

chiral symmetry. So we must take instead

Lhad
EM = − e

4M
FµνN λ̃σµνN − e

2M2
(∂νFµν)N β̃γµN ,

λ̃ ≡ λ(0) + λ(1)
(
ξ
τ3

2
ξ† + ξ†

τ3

2
ξ
)

= λ(0) + λ(1)Q+ ,

and similarly for β̃. Pion fields must be included.

• These new couplings do not modify the tree-level expressions for

the nucleon EM form factors.



• Partial integration allows us to write

Lhad
EM = −eAµJ̃µ

had ,

J̃µ
had =

1
2M

∂ν(N λ̃σµνN)− 1
2M2

(
gµν∂2−∂µ∂ν

)
(N β̃γνN).

• Note that ∂µJ̃µ
had = 0 follows by inspection.

• The EM current determined thus far is given by

J̃µ
min + J̃µ

had =
1
2
Bµ + Ṽ µ

3 + J̃µ
had .

• Here J̃µ
min and J̃µ

had are independently conserved, the latter

identically and the former by virtue of the Euler–Lagrange equations.

• The freedom to add J̃µ
had, which generally contains both isoscalar

and isovector parts, reflects the non-uniqueness of the EM current

in the effective theory. (Recall that in QCD with u and d quarks, the

EM current is simply 1
2Bµ + V µ

3 .) The EM charge operator Q,

however, is still given by the previous expression.

• There are also non-minimal terms with only pions (not shown).

These require EM gauge-covariant derivatives ∂̃µ.



• The lowest-order (ν = 4), non-minimal pion–photon couplings are

Lhad
EM(π) = e ω1 Tr

[(
ξ
τ3

2
ξ† + ξ†

τ3

2
ξ
)

ṽµν
]
Fµν

+ e ω2 Tr
[(

ξ
τ3

2
ξ† − ξ†

τ3

2
ξ
)

ãµ
]
∂νFµν .



Vector Meson Dominance

• Photon interactions with hadrons are mediated primarily by the

exchange of low-mass, neutral vector mesons [ρ0, ω, φ(1020).]

• One can describe processes invoving spacelike photons and vector

mesons using photon–meson couplings determined from hadronic

decay widths, where the meson four-momentum is timelike.

• The direct γρ0 coupling that respects gauge invariance and the

residual chiral symmetry is

Lvmd
ρ = − e

2gγ
Tr

[(
ξ
τ3

2
ξ† + ξ†

τ3

2
ξ
)

ρµν
]
Fµν .

• For the omega, we allow for SU(3)f symmetry breaking and write

Lω = −e

2

(
sin θY

2gY

)
V µνFµν .

• Under the assumption of ideal mixing, so that the ω contains only u

and d valence quarks, sin θY = 1/
√

3. The remaining coupling

can be evaluated in the SU(3)f limit (gY =
√

3 gγ/2), so that

Lω = − e

2gγ

(
1
3

)
V µνFµν .



• The additional pionic interactions required by the residual chiral

symmetry do not affect the tree-level EM form factors shown earlier.

They do, however, lead to new two-nucleon exchange currents (e.g.,

from a ρππγ coupling), in which all the coupling parameters are

known from other processes.

• With ideal mixing, the φ(1020) is composed of valence strange

quarks only, and its mass is 30% larger than mρ and mω . So we

“integrate it out”. This yields a contribution to the non-minimal β(0)

parameter equal to

−√2M2gφ

3gγm2
φ

.

• It is possible to augment the preceding VMD couplings by

multiplying the interactions by chiral scalar combinations like φ, φ2,

VµV µ, etc. (Here φ represents the sigma field.) These terms all

have ν ≥ 5, but they allow for the possiblity of isoscalar EM

exchange currents in nuclei.



Anomalous EM Interactions

• These terms arise from “gauging” the Wess–Zumino–Witten

anomalous action and are all well known.

• Although the anomalous action is not manifestly chirally invariant, a

chiral transformation produces a variation that is a spacetime

derivative, preserving the chiral invariance of the action.

• Parity invariance is maintained by the presence of εµναβ .

• Since the anomalies are perturbative, they can be determined

exactly from the underlying QCD.

• The anomalous EM terms contain only bosons, so they enter in EM

interactions with nuclei only through meson-exchange currents.

Moreover, the anomalous EM couplings

∗ are of O(e2), like π0 → γγ;

∗ contain (at least) three pions (γ∗ → πππ, as in ω → γ∗ →
πππ);

∗ involve a heavy boson (ω → π0γ, ρ → πγ).

• The resulting abnormal-parity exchange currents are unlikely to be

very important in EM interactions in the nuclear many-body problem.



Three examples of anomalous EM couplings:

• π0 → γγ:

Nce
2

96π2fπ
π0εµναβFµνFαβ .

• ω → π0γ:
Ncegv

96π2fπ
π0εµναβFµνVαβ .

• γ∗ → πππ:

−i
Nce

12π2f3
π

εµναβAµ∂νπ+∂απ−∂βπ0 .

Here Nc = 3 is the number of colors in QCD.



Summary

• Quantum hadrodynamics (QHD) describes strong-coupling,

relativistic quantum field thoeries for nuclei based on hadrons, in

which the representation is manifestly Lorentz covariant.

• The primary focus is on the nuclear many-body problem.

• Desirable features for electroweak processes in nuclei:

∗ Nuclear currents and nuclear structure are both described by the

same lagrangian;

∗ The EFT has the same internal symmetries as QCD.

∗ Parameters can be calibrated using strong-interaction

phenomena.

• One can systematically expand and truncate the QHD lagrangian in

powers of meson fields and their derivatives.

• EM interactions and VMD can be included straightforwardly, and the

residual chiral symmetry of QCD + QED can be maintained.

• The QHD/EFT/DFT/KS formalism provides a true representation of

QCD in the low-energy nuclear domain.



Future Work

• Derive two-body scattering amplitudes for electron scattering and

pion photoproduction.

• Extract and determine two-body current operators for use with

nuclear wave functions (relativistic MFT and nonrelativistic shell

model or Skyrme).

• Include the ∆ resonance in the currents.

• Assess the usefulness of single-(quasi)particle wave functions in the

computation of electroweak exchange-current matrix elements.


