How low-momentum interactions can constrain the nuclear density functional

Achim Schwenk

University of Washington

Nuclear structure near the limits, INT, Oct. 3, 2005

Collaborators: Scott Bogner, Dick Furnstahl, Andreas Nogga, Gerry Brown, Tom Kuo and Andres Zuker

Supported by DOE

Outline

- 1) Motivation Progress in nuclear interactions, exact many-body methods, constructing density functionals
- 2) RG applied to nuclear interactions
- 3) Results for nuclei and nuclear matter
- 4) Strategies for density-functional calculations from nuclear interactions
- 5) Summary

1) Motivation

Simple density functionals work: $\Delta E_{rms} \sim 1$ MeV, excitations,... But extensions need guidance (many new parameters in general ∇^2 DF)

Advances in nuclear interactions relevant to heavy nuclei Constraints for DF

from microscopic interactions?

Immense progress in many-body methods nuclei accessible with CC overlap with DFT

adapted from A. Richter @ INPC2004

Microscopic foundation of density functional theory

For ground state densities couple source $K_{\sigma,\sigma'}(x)$ to density $\psi^{\dagger}_{\sigma}(x) \psi_{\sigma'}(x)$ see e.g., talks by Negele and Furnstahl

$$e^{W[K]} = \int \mathcal{D}[\psi^{\dagger}] \mathcal{D}[\psi] \ e^{-S[\psi^{\dagger},\psi] + \sum_{\sigma,\sigma'} \int dx \ \psi^{\dagger}_{\sigma}(x) \psi_{\sigma'}(x) \ K_{\sigma,\sigma'}(x)}$$

S contains nuclear forces (e.g., V_{low k} + V_{3N})

Path integral leads to generating functional W[K]

Microscopic foundation of density functional theory

For ground state densities couple source $K_{\sigma,\sigma'}(x)$ to density $\psi^{\dagger}_{\sigma}(x) \psi_{\sigma'}(x)$ see e.g., talks by Negele and Furnstahl

$$e^{W[K]} = \int \mathcal{D}[\psi^{\dagger}] \mathcal{D}[\psi] \; e^{-S[\psi^{\dagger},\psi] + \sum_{\sigma,\sigma'} \int dx \, \psi^{\dagger}_{\sigma}(x) \psi_{\sigma'}(x) \, K_{\sigma,\sigma'}(x)}$$

S contains nuclear forces (e.g., V_{low k} + V_{3N})

Path integral leads to generating functional W[K]

Densities given by (with K=0 in the ground state)

$$\rho_{\sigma,\sigma'}(x) \equiv \langle \psi_{\sigma}^{\dagger}(x) \psi_{\sigma'}(x) \rangle = \frac{\delta W[K]}{\delta K_{\sigma,\sigma'}(x)} \quad \text{and by inversion } K[\rho]$$

Construct effective action $\Gamma[\rho] = -W[K] + K \cdot \rho$ by Legendre trafo.

Microscopic foundation of density functional theory

For ground state densities couple source $K_{\sigma,\sigma'}(x)$ to density $\psi^{\dagger}_{\sigma}(x) \psi_{\sigma'}(x)$ see e.g., talks by Negele and Furnstahl

$$e^{W[K]} = \int \mathcal{D}[\psi^{\dagger}] \mathcal{D}[\psi] \; e^{-S[\psi^{\dagger},\psi] + \sum_{\sigma,\sigma'} \int dx \, \psi^{\dagger}_{\sigma}(x) \psi_{\sigma'}(x) \, K_{\sigma,\sigma'}(x)}$$

S contains nuclear forces (e.g., V_{low k} + V_{3N})

Path integral leads to generating functional W[K]

Densities given by (with K=0 in the ground state)

$$\rho_{\sigma,\sigma'}(x) \equiv \langle \psi_{\sigma}^{\dagger}(x) \psi_{\sigma'}(x) \rangle = \frac{\delta W[K]}{\delta K_{\sigma,\sigma'}(x)} \quad \text{and by inversion } K[\rho]$$

Construct effective action $\Gamma[\rho] = -W[K] + K \cdot \rho$ by Legendre trafo.

Effective action is minimal at the physical (K=0) ground state density

$$\frac{\delta\Gamma[\rho]}{\delta\rho}\Big|_{\rho=\rho_{\rm gs}} = 0 \quad \text{with gs energy } E_{\rm gs} = E[\rho_{\rm gs}] = \lim_{\beta\to\infty} \frac{1}{\beta}\,\Gamma[\rho_{\rm gs}]$$

DF = effective action, degrees-of-freedom are one-body densities microscopic DF for dilute systems beyond LDA, Furnstahl, discussion by Engel

NN interactions well-constrained by NN scattering

Many different NN potentials fit to data below $E_{\text{lab}} \lesssim 350 \,\text{MeV}$ (corresponding relative k < 2.1 fm⁻¹)

N3LO: Entem, Machleidt, PR C68 (2003) 041001

Exact GFMC results with only NN force miss A ≤ 10 spectra

Size of 3N depends on V_{NN} no "true" 3N force

Pieper, Wiringa, Ann. Rev. Nucl. Part. Sci. 51 (2001) 53.

Many-body applications with large-cutoff NN interactions

require resummations due to slow convergence with HO basis size

chiral N3LO interaction with lower cutoff ($\Lambda \approx 600$ MeV) leads to faster convergence

Desire **low-momentum interaction for many-body applications** where resolution is low and no need for model-dep. high-mom. parts

2) RG applied to NN interactions

In momentum space, scattering amplitude (T matrix) given by

$$T(k',k;k^2) = V_{NN}(k',k) + \frac{2}{\pi} \mathcal{P} \int_0^\infty \frac{V_{NN}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dp$$

Integrating out high-momentum modes leads to effective interaction $V_{\text{low }k}$ (which reproduces the low-momentum T matrix - phase shifts, E_d)

$$T(k',k;k^2) = V_{\text{low k}}(k',k) + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 -$$

Changes of effective interaction with cutoff Λ are given by RG equation

$$\frac{d}{d\Lambda} V_{\text{low k}}(k',k) = \frac{2}{\pi} \frac{V_{\text{low k}}(k',\Lambda) T(\Lambda,k;\Lambda^2)}{1 - (k/\Lambda)^2}$$

in matrix form

k

2) RG applied to NN interactions

In momentum space, scattering amplitude (T matrix) given by

$$T(k',k;k^2) = V_{NN}(k',k) + \frac{2}{\pi} \mathcal{P} \int_0^\infty \frac{V_{NN}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dp$$

Integrating out high-momentum modes leads to effective interaction $V_{\text{low }k}$ (which reproduces the low-momentum T matrix - phase shifts, E_d)

$$T(k',k;k^2) = V_{\text{low k}}(k',k) + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk' dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int_0^{\Lambda} \frac{V_{\text{low k}}(k',p) T(p,k;k^2)}{k^2 - p^2} p^2 dk'' + \frac{2}{\pi} \mathcal{P} \int$$

Changes of effective interaction with cutoff Λ are given by RG equation

$$\frac{d}{d\Lambda} V_{\text{low k}}(k',k) = \frac{2}{\pi} \frac{V_{\text{low k}}(k',\Lambda) T(\Lambda,k;\Lambda^2)}{1 - (k/\Lambda)^2}$$

Technically equivalent to Lee-Suzuki in mom. space, with Q-block≡0

in matrix form

V_{NN}(k',k)

k′

k

Starting from any NN interaction: Solutions to the RG eqn. evolve to a "universal" interaction $V_{\text{low }k}$ for cutoffs below $\Lambda \leq 2.1 \,\text{fm}^{-1}$

Bogner, Kuo, AS, Phys. Rep. <u>386</u> (2003) 1.

 $V_{low k}(\Lambda)$ defines a class of energy-indep. NN interactions

Collapse in all partial waves

due to same long-distance (π) physics and phase shift equivalence

small differences related to spread in phase shift fit (Idaho misses ³F₂)

Collapse of off-shell matrix elements as well

"Universal" result indicates that $V_{low k}$ effectively parameterizes a chiral EFT interaction with higher-order contacts

has same effect for low momenta as
$$\nabla^{2n}$$

Advantages of lower cutoffs

Low-momentum interactions are tractable in a HO basis

V_{low k} similar to successful G matrix pseudopotential (without drawbacks of G)

Plot of two-body $V_{low k}$ vs. G matrix elements in MeV (4 shells) AS, Zuker, nucl-th/0501038.

What about ladders in $V_{low k}$?

3) Results for nuclei and nuclear matter

Many-body calculations with $V_{\text{low }k}$ make model-independent predictions, with cutoff-independent NN observables ($\chi^2 \approx 1$)

But incomplete, because 3N, 4N,... interactions are not included

If one omits the many-body forces, calculations of low-energy 3N, 4N,... observables will be cutoff-dependent

This is a feature

Varying the cutoff estimates the effects of omitted many-body interactions Nogga, Bogner, AS, PR <u>C70</u> (2004) 061002(R).

Important to assess theoretical errors for predictions to extreme compositions and astrophysical densities/temperatures

Cutoff dependence due to omitted 3N forces

Cutoff dependence shows that three-body forces are inevitable Cutoff dependence is almost linear (explains Tjon line), with 3N contributions smaller for low-momentum interactions

Low-momentum 3N forces with only pion exchanges

organized by chiral Effective Field Theory van Kolck, PR <u>C49</u> (1994) 2932; Epelbaum et al., PR <u>C66</u> (2002) 064001.

operator structure of any 3N force collapses at low energies to

 c_i from NN PWA with chiral 2π exchange (c_3 , c_4 important for nuclear structure)

approximate 3N evolution by fitting low-energy D,E constants of leading-order chiral 3N interaction to $V_{low k}$ over a range of cutoffs

Two couplings fit to ³H and ⁴He

Linear dependences in fits, consistent with perturbative 3N contributions

$$E(^{3}H) = \langle T + V_{\text{low }k} + V_{c} \rangle + c_{D} \langle O_{D} \rangle + c_{E} \langle O_{E} \rangle$$

3N forces become perturbative for cutoffs $\Lambda \lesssim 2 \, {\rm fm}^{-1}$

 $\approx m_{\pi}$

nonperturbative at larger cutoffs (also for chiral EFT with $\Lambda \approx 3 \text{ fm}^{-1}$), with expectation values beyond expected $(Q/\Lambda)^3 \sim (m_{\pi}/\Lambda)^3 \approx 0.1 \text{ of NN}$

			$^{3}\mathrm{H}$					${}^{4}\mathrm{He}$			max	$^{4}\mathrm{He}$
Λ	T	$V_{\mathrm{low}k}$	c-terms	D-term	E-term	T	$V_{\mathrm{low}k}$	c-terms	D-term	E-term	$ V_{ m 3N}/V_{ m low k} $	$k_{\rm rms}$
1.0	21.06	-28.62	0.02	0.11	-1.06	38.11	-62.18	0.10	0.54	-4.87	0.08	0.55
1.3	25.71	-34.14	0.01	1.39	-1.46	50.14	-78.86	0.19	8.08	-7.83	0.10	0.63
1.6	28.45	-37.04	-0.11	0.55	-0.32	57.01	-86.82	-0.14	3.61	-1.94	0.04	0.67
1.9	30.25	-38.66	-0.48	-0.50	0.90	60.84	-89.50	-1.83	-3.48	5.68	0.06	0.70
2.5(a)	33.30	-40.94	-2.22	-0.11	1.49	67.56	-90.97	-11.06	-0.41	6.62	0.12	0.74
2.5(b)	33.51	-41.29	-2.26	-1.42	2.97	68.03	-92.86	-11.22	-8.67	16.45	0.18	0.74
3.0(*)	36.98	-43.91	-4.49	-0.73	3.67	78.77	-99.03	-22.82	-2.63	16.95	0.23	0.80

V_{low k} + leading chiral 3N interaction, **no further adjustments**

3N interaction and mass models

Bender et al., PRL <u>94</u> (2005) 102503.

Sources of nonperturbative behavior:

1. Iterated interactions at low momenta are nonperturbative due to near bound states $a_{1S_0} = -23.7 \text{ fm}$ $a_{3S_1} = 5.4 \text{ fm}$

2. Cores scatter strongly to high-momentum states (overwhelms 1.)

Sources of nonperturbative behavior:

1. Iterated interactions at low momenta are nonperturbative due to near bound states $a_{1S_0} = -23.7 \text{ fm}$ $a_{3S_1} = 5.4 \text{ fm}$

2. Cores scatter strongly to high-momentum states (overwhelms 1.)

Weinberg eigenvalues

rigorously show that in-medium Born series is perturbative for $V_{low k}$ at sufficient densities Bogner, AS, Furnstahl, Nogga, nucl-th/0504043.

study spectrum of $G_0(z)V |\Psi_{\nu}(z)\rangle = \eta_{\nu}(z) |\Psi_{\nu}(z)\rangle$ i.e., convergence of $T(z) |\Psi_{\nu}(z)\rangle = (1 + \eta_{\nu}(z) + \eta_{\nu}(z)^2 + ...) V |\Psi_{\nu}(z)\rangle$ write as Schroedinger eqn. $\left(H_0 + \frac{1}{\eta_{\nu}(z)}V\right) |\Psi_{\nu}(z)\rangle = z |\Psi_{\nu}(z)\rangle$ large-cutoff interactions have at least one large $\eta_{\nu} < 0$

Weinberg eigenvalues

rigorously show that in-medium Born series is perturbative for $V_{low k}$ at sufficient densities Bogner, AS, Furnstahl, Nogga, nucl-th/0504043.

study spectrum of $G_0(z)V |\Psi_\nu(z)\rangle = \eta_\nu(z) |\Psi_\nu(z)\rangle$ i.e., convergence of $T(z) |\Psi_\nu(z)\rangle = (1 + \eta_\nu(z) + \eta_\nu(z)^2 + ...) V |\Psi_\nu(z)\rangle$

write as Schroedinger eqn. $\left(H_0 + \frac{1}{\eta_{\nu}(z)}V\right)|\Psi_{\nu}(z)\rangle = z |\Psi_{\nu}(z)\rangle$

repulsive core eigenvalue small for lower cutoffs

deuteron eigenvalue small in-medium (fine-tuning elim.)

Perturbative two-body ladders

Weinberg analysis anticipates rapidly converging particle-particle contributions to nuclear matter energy for low-mom. interactions Bogner, AS, Furnstahl, Nogga, nucl-th/0504043.

Perturbation theory in place of ladder resummations Note second-order important (remaining tensor)

Nuclear matter with NN and 3N

Hartree-Fock bound, saturation from 3N force (2π-exchange dominates, no adjustments) Bogner, AS, Furnstahl, Nogga, nucl-th/0504043.

Nuclear matter with NN and 3N

Hartree-Fock bound, saturation from 3N force (2π-exchange dominates, no adjustments) Bogner, AS, Furnstahl, Nogga, nucl-th/0504043. Hartree-Fock + 2nd-order (approx. 2nd-order 3N treatment, continuous spectrum with m*) cutoff dep. strongly reduced

Ex-corr. much weaker, use $V_{low k} + V_{3N}$ to constrain nuclear DF

3N force remains natural in nuclear matter

3N force drives saturation but exp. values not unnaturally large

consistent with chiral EFT scaling

 $\langle V_{\rm 3N} \rangle \sim (Q/\Lambda)^3 \langle V_{\rm NN} \rangle$

 $V_{\text{low }k} \text{ exp. values change by } \approx 0.5 \text{ MeV}$ after inclusion of 3N interaction

largest 3N contribution from 2π -part

mom. dep. of 3N determines density dep.

		Hartree-Fock					Hartree-Fock $+$ dominant second order				
$k_{\rm F}$	Λ	Т	$V_{\mathrm{low}k}$	V_c	V_D	V_E	Т	$V_{\mathrm{low}k}$	V_c	V_D	V_E
1.2	1.6	17.92	-31.47	5.37	1.31	-0.64	20.86	-37.66	4.59	1.03	-0.65
	1.9	17.92	-28.95	5.61	-0.81	1.18	21.80	-37.38	3.99	-0.50	1.28
	2.1	17.92	-27.51	5.67	-1.37	1.84	22.87	-37.53	2.27	-0.37	1.82
	2.3	17.92	-26.13	5.70	-1.86	2.42	24.32	-37.95	-0.38	0.51	1.78

Coupled cluster results for $V_{low k}$

CC method can provide exact answer for low-momentum interactions without resummations or similarity trafo.

Can test other many-body methods for same interaction

Build DF from low-momentum interactions and compare to CC results

Spin-orbit strength of low-momentum interactions As for binding energies, interplay of NN and 3N contributions to LS splitting, individual parts depend on cutoff

CC results for different NN interactions, N=8, Gour et al., nucl-th/0507049

¹⁵ O	Expt.	N ³ LO	CD-Bonn
3/2-	6.176	6.26	7.35
1/2-	0.0	0.0	0.0
170		NUTO	
10	Expt.	N ³ LO	CD-Bonn
3/2+	Expt. 5.085	N°LO 5.68	СD-Вопп 6.41

Interaction							
Excited state	N ³ LO	CD-Bonn	V_{18}	Expt			
$^{15}O(3/2)_{1}^{-}$	6.264	7.351	4.452	6.176			
$^{15}N (3/2)_1^-$	6.318	7.443	4.499	6.323			
$^{17}O(3/2)_1^+$	5.675	6.406	3.946	5.084			
$^{17}O(1/2)_1^+$	-0.025	0.311	-0.390	0.870			
${}^{17}\mathrm{F}~(3/2)_1^+$	5.891	6.677	4.163	5.000			
${}^{17}\mathrm{F}~(1/2)_1^+$	0.428	0.805	0.062	0.495			

similar observation in 0h ω with V_{low k} AS, Zuker, nucl-th/0501038. 1210 ħω=12 MeV, Λ=1.9 fm spectra on HO closures [MeV] iω=12 MeV, Λ=2.1 fm ħω=8 MeV, Λ=1.9 fm⁻¹ $0d_{3/2}$ 6 1d. $1p_{1/2}$ 0f_{7/2} 0p_{3/2} 0d_{5/2} $0g_{9/2}$ -2 1d_{5/2} $2s_{1/2}$ pfh shell ⁴¹Ca exp.: $0f_{5/2}$ - $0f_{7/2} \approx 6.0 \text{ MeV}$ ¹⁷O exp.: $0d_{3/2}$ - $0d_{5/2} \approx 5.1 \text{ MeV}$

3N contrib. to LS for N3LO or $V_{low k}$ smaller, agrees with Q/A expectation

4) Strategies for density-functional calculations from nuclear interactions

Revisit density-matrix expansion with low-momentum interactions Direct constraints on general ∇^2 DF

Inversion method, provided a power counting for nuclear matter Functional RG approach to DF Polonyi, Schwenk, formalism in nucl-th/0403011.

Effective action is minimal at the physical (K=0) ground state density $\frac{\delta\Gamma[\rho]}{\delta\rho}\Big|_{\rho=\rho_{gs}} = 0 \quad \text{with gs energy } E_{gs} = E[\rho_{gs}] = \lim_{\beta \to \infty} \frac{1}{\beta} \Gamma[\rho_{gs}]$ curvature will include ex-corr. $\begin{pmatrix} \delta^2\Gamma[\rho] \\ \delta\rho \delta\rho \\ \rho_{gs} \end{pmatrix}^{-1} = \frac{\delta^2 W[K]}{\delta K \delta K}\Big|_{K=0}$ $= \underbrace{\sum_{K=0}^{\infty} Y_{K}}_{K=0}$ + interactions

Basic idea of functional RG approach

start from non-interacting fermions in a background potential (a simple guess for the mean field) gradually switch off background potental while turning on the microscopic interactions

$$S_{\lambda,1}[\psi^{\dagger},\psi] = \sum_{\sigma} \int dx \,\psi_{\sigma}^{\dagger}(x) \left(\partial_{t} - \frac{1}{2m} \nabla_{\mathbf{x}}^{2} + (1-\lambda) V_{\lambda;\sigma}(\mathbf{x})\right) \psi_{\sigma}(x)$$
$$S_{\lambda,2}[\psi^{\dagger},\psi] = \frac{\lambda}{2} (\psi^{\dagger}\psi) \cdot U \cdot (\psi^{\dagger}\psi)$$

Evolution of the effective action with control parameter

$$\partial_{\lambda}\Gamma_{\lambda}[\rho] = \partial_{\lambda}\left[\left(1-\lambda\right)V_{\lambda}\right] \cdot \rho + \frac{1}{2}\rho \cdot U \cdot \rho + \frac{1}{2}\operatorname{Tr}\left[U \cdot \left(\frac{\delta^{2}\Gamma_{\lambda}[\rho]}{\delta\rho\,\delta\rho}\right)^{-1}\right]$$

change in: background V Hartree exchange-correlations

Expand density functional around evolving gs density

 $\Gamma_{\lambda}[\rho]$

$$\Gamma_{\lambda}[\rho] = \Gamma[\rho_{\mathrm{gs},\lambda}]^{(0)} + \sum_{n \ge 2} \int_{X_1,\dots,X_n} \frac{1}{n!} \Gamma[\rho_{\mathrm{gs},\lambda}]^{(n)}_{X_1,\dots,X_n} \cdot (\rho - \rho_{\mathrm{gs},\lambda})_{X_1} \cdots (\rho - \rho_{\mathrm{gs},\lambda})_{X_n}$$

Evolution equations for expansion coeff. (build up many-body correlations)

All exchange-correlations via dressed ph propagator

5) Summary

- 1. RG removes model dependences from nuclear forces, results in "universal" low-momentum interaction
- 2. Low-momentum 3N forces become weaker in this regime first 3N calculations for A>12 nuclei D. Dean et al., in prep.
- 3. CC method provides converged results for intermediate-A nuclei Results for low-mom. interactions do not require resummations and can be used as many-body test cases
- 4. Nuclear matter seems perturbative with low-mom. interactions ph contributions need further studies
- 5. Cutoff variation estimates errors + completeness of calculations important for extrapolations to extremes, ISAC, FAIR, RIA
- 6. Low-mom. interactions can provide valuable constraints on DF with consistent interaction in ph and pp channel
- 7. Exciting time to combine progress in nuclear interactions, DFT and exact many-body methods