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General Remarks

1. Self-Consistent Mean Field Methods

v’ Variational space of wave functions fj©i gmade of product of single (quasi)particles operators
acting on the vacuum.

v To include correlations within a product-type w.f. b Breaking of the symmetries

v’ Fails in weakly correlated regimes P Methods Beyond the Mean Field

2. Restoration of the symmetries

v' Exact w.f. is an eigenstate of the operators associated to the symmetries P Improvement
of the MF w.f. by restoring the broken symmetries

v Projection techniques: From a mean field w.f. (product-type) j©i ) ja Si = st©i
where P> is the projector onto the subspace of w.f. with the proper quantum numbers.

3. Projection technigues

v Projection After Variation (PAV)

v Variation After Projection (VAP) | Somme>> * Restricted VAP method

* (Projected) Lipkin-Nogami
K prescriptions

/Approximations to VAP solution: \
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Pairing Correlations. Particle Number Projection

1. Mean Field (BCS or HEB) fj@i J product of quasiparticle operators
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2. Projection After Variation (PAV)
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3. Variation After Projection (VAP) fj2 Nj = pN J©i g projected producttype w.f.
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Towards the VAP solution

Kamlah expansion of the projected (VAP) energy provides the most
relevant degrees of freedom:
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1. Restricted VAP 1 (RVAP,) f1©(¢ N 2)| g product of quasiparticle operators
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. : : Defines a Projected
ho(¢ N 2)”4 P™jO(¢ N2) Potential Energy Surface

ho(¢ N 2)jPN j©(¢ N 2)i (PPES) which is a reduced
variational space
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Towards the VAP solution
EYAP vuhi i koh(¢ N2 § kah(¢ N4 |

2. Restricted VAP 2 (RVAPZ)_ fj@((]: N 2; ¢ N 4)i g product of quasiparticle operators
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Defines a two dimensional
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reduced variational space
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Towards the VAP solution

3. Lipkin-Nogami (LN) Prescrition fj©I g product of quasiparticle operators
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4. Projected Lipkin-Nogami (PLN)
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Towards the VAP solution

5. (P)Lipkin-Nogami and Restricted VAP methods

« Lipkin-Nogami w.f. belongs to the set of wave functions constrained to ¢ N 2

a
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The above condition can be deduced in a variational way:
a

© :
> We evaluate with the set of constrained wave function J©(¢ N2)i the
approximate projected energy as a function of ¢ N?2

ESN(EN2) = i hoh(¢ N2
> We minimize ESN(¢ N2) alongthe (¢ N?2) direction assuming that:
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Towards the VAP solution

5. (P)Lipkin-Nogami and Restricted VAP methods

* LN method provides results as good as RVAP; whenever the second
order expansion of the projected energy will be a good approach to
the exact projected energy.

« LN solution will coincide to the minimum of E5N(¢ N2) = i j hoh(¢ N')?i
curve whenever hz 6 h2(¢ N?)
ag
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« PLN solution will be as good as RVAP, onlyl.j"’l Noni 2 PNjO(e N2)i



Pairing hamiltonians

v" Multilevel pairing hamiltonian

 Single particle levels are equally
spaced an doubly-degenerated (W=2).
* N = number of particles = number of
levels

v" Normalized interaction strength
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Multilevel Pairing hamiltonian

v Mean Field (BCS)
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v There is a phase transition
between non-correlated and
correlated regimes at the mean
field level, associated to the
breaking of the particle number
symmetry.

v' After the phase transition the
condensation energy decreases
with increasing interaction strength



Multilevel Pairing hamiltonian

v Projection After Variation (PAV)
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Multilevel Pairing hamiltonian

v Variation After Projection (VAP)
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v No phase transition is observed
in the VAP approach.

v" Correlated solutions are
obtained for the whole range of
Interaction strengths.

v Best approximation to the exact
solution (Richardson).



Multilevel Pairing hamiltonian

v Restricted Variation After Projection 1 (RVAP,) and
Lipkin-Nogami methods

— -CBCS ' '
| PCBCS /_
- =N /
. @ BCS=PAV
RVAP s
i LNSC

i RVAP,
I LN

| \ ] \ | $¢ \ , 1 \
0 1 2 0 1 2 3 4
0.0 05 1.0 15 20 DN DN?

C non-correlated regime correlated regime /




Multilevel Pairing hamiltonian

v Restricted Variation After Projection 1 (RVAP,) and
Lipkin-Nogami methods

\ v The phase transition

disappears.

v' Closer to the VAP solution than
MF and PAV approaches

v LN and PLN almost coincide to
the RVAP1 solution

0.0 | 015 | 1fo ' 1'_5 ' 2_'0 | v’ There are still correlations that
cannot be described by neither

K C / RVAP, nor (P)LN methods




Multilevel Pairing hamiltonian
vRVAP, vs. (P)LN
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Multilevel Pairing hamiltonian

v Restricted Variation After Projection 2 (RVAP,)
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Exploring the¢ N# at the
minima of the PPES along
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Multilevel Pairing hamiltonian

v Restricted Variation After Projection 2 (RVAP,)
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Choosing the minimaof ¢ N2:¢ N4
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Multilevel Pairing hamiltonian

v Restricted Variation After Projection 2 (RVAP,)
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Two Level Pairing hamiltonian
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Two Level Pairing hamiltonian

vRVAP, vs. (P)LN
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» The Projected Energy expansion is
not a good approximation to the exact
projection

> h, parameter has a strong
dependence on DNZ? direction.




Relative Errors

Multilevel Two-level
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» LN method fails in weakly correlated regimes
» PLN is as good as RVAP, although in weakly correlated regimes could
fail

» In the Multilevel model PLN and RVAP, have a poor performance in
the weak pairing region and RVAP, is necessary




Conclusions

v" Variation After Projection solutions can be approximated
by the Restricted Variation After Projection method in a
general and computationally feasible procedure.

v' The Lipkin-Nogami method can be deduced in a
variational context where an approximate projected
energy is minimized along DN direction.

v" Whenever the Lipkin-Nogami and Projected Lipkin-
Nogami fails (weak pairing regions) the Restricted
Variation After Projection method is a perfect candidate to
approximate VAP solutions.




