Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

Petr Navratil Lawrence Livermore National Laboratory*

Collaborators:

W. E. Ormand (LLNL), J. P. Vary (ISU), E. Caurier (Strasbourg),V. Gueorguiev (LLNL), A. Nogga (Julich)

*This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. UCRL-PRES-216109

INT Seattle, 11 October 2005

- Motivation
- *Ab initio* no-core shell model (NCSM)
- ⁶Li and ¹⁰B calculations with the EFT N³LO NN potential
- Importance of three-nucleon interaction (TNI)
- First results with EFT N³LO NN potential plus consistent N²LO TNI
 - ⁷Li, ¹⁰B, ¹¹B, ¹²C, ¹³C
- Conclusions

Ab initio approaches to nuclear structure

- **Goal:** Describe nuclei as systems of nucleons that interact by fundamental interactions
 - Non-relativistic point-like nucleons interacting by realistic two- and three-nucleon forces
- Why it has not been solved yet?
 - High-quality nucleon-nucleon potentials constructed only recently
 - Difficult to use in many-body calculations
 - Need sophisticated approaches
 - Big computing power
 - Three-nucleon interaction not well known
 - Even more computing power needed to include it in many-body calculations
- Current status
 - A=3,4 many exact methods
 - 2001: A=4 benchmark paper: 7 different approaches obtained the same ⁴He bound state properties
 - Faddeev-Yakubovsky, CRCGV, SVM, GFMC, HH variational, EIHH, NCSM
 - A>4 few methods applicable
 - Green's Function Monte Carlo (GFMC)
 - S. Pieper, R. Wiringa, J. Carlson et al.
 - Effective Interaction for Hyperspherical Harmonics (EIHH)
 - Trento, results for ⁶Li
 - Coupled-Cluster Method (CCM), Unitary Model Operator Approach (UMOA)
 - Applicable mostly to closed shell nuclei
 - *Ab Initio* No-Core Shell Model (NCSM)

Ab initio no-core shell-model approach

- Goal: Solution of nuclear structure problem for light nuclei
- Many-body Schroedinger equation
 - *A*-nucleon wave function
- Hamiltonian

$$H|\Psi\rangle = E|\Psi\rangle$$

$$H = \sum_{i=1}^{A} \frac{\vec{p}_{i}^{2}}{2m} + \sum_{i < j}^{A} V_{NN}(\vec{r}_{i} - \vec{r}_{j}) \quad \left(+ \sum_{i < j < k}^{A} V_{ijk}^{3b} \right)$$

- Realistic nucleon-nucleon and three-nucleon potentials
 - Coordinate space Argonne V18, AV8', three-nucleon Tucson-Melbourne
 - Momentum space CD-Bonn, Chiral N³LO, three-nucleon chiral N²LO
- Modification by center-of-mass harmonic oscillator (HO) potential (Lipkin 1958)

$$\frac{1}{2}Am\Omega^2 \vec{R}^2 = \sum_{i=1}^A \frac{1}{2}m\Omega^2 \vec{r_i}^2 - \sum_{i< j}^A \frac{m\Omega^2}{2A}(\vec{r_i} - \vec{r_j})^2$$

- No influence on the internal motion (in infinite space)
- Introduces mean field for sub-clusters
- Convenient to work in the HO basis

$$H^{\Omega} = \sum_{i=1}^{A} \left[\frac{\vec{p}_{i}^{2}}{2m} + \frac{1}{2} m \Omega^{2} \vec{r}_{i}^{2} \right] + \sum_{i$$

Model space, truncated basis and effective interaction

- Strategy: Define Hamiltonian, basis, calculate matrix elements and diagonalize. But:
- <u>Finite</u> harmonic-oscillator Jacobi coordinate or Cartesian coordinate Slater determinant basis
 - Complete $N_{\max}h\Omega$ model space

Nucleon-nucleon interaction

 V_{NN}

1.0

RADIUS (fm)

2.0

150

100

50

-50

-100 L

POTENTIAL (MeV)

Repulsive core in $V_{\rm NN}$ cannot be accommodated in a truncated HO basis

Need for the effective interaction

Effective Hamiltonian in the NCSM

$$H: E_{1}, E_{2}, E_{3}, \dots E_{d_{P}}, \dots E_{\infty}$$
$$H_{eff}: E_{1}, E_{2}, E_{3}, \dots E_{d_{P}}$$
$$QXHX^{-1}P = 0$$
$$M_{eff} = PXHX^{-1}P$$
$$(unitary X = exp[-arctan h(\omega^{+} - \omega)]$$

•Properties of H_{eff} for *A*-nucleon system •*A*-body operator •Even if *H* two or three-body •For $P \rightarrow 1$ $H_{\text{eff}} \rightarrow H$

- *n*-body cluster approximation, $2 \le n \le A$
- $H^{(n)}_{eff}$ *n*-body operator
- Two ways of convergence:
 - For $P \rightarrow 1$ $H^{(n)}_{eff} \rightarrow H$
 - For $n \rightarrow A$ and fixed $P: H^{(n)}_{eff} \rightarrow H_{eff}$

Test of convergence

- ⁴He with the CD-Bonn 2000 NN interaction
- Dependence of the 0⁺ 0 ground state and the 0⁺ 0 excited state energies on the basis size (N_{max}) and the HO frequency $(h\Omega)$

p-shell nuclei with realistic NN forces

NCSM calculations with the EFT N³LO NN interaction

Accurate NN potential at fourth order of chiral-perturbation theory (N³LO) D. R. Entem and R. Machleidt, Phys. Rev. C **68**, 041001(R) (2003)

NCSM calculations with the EFT N³LO NN interaction: ⁶Li binding energy convergence

NCSM calculations with the EFT N³LO NN interaction: Convergence of ⁶Li excitation energies

⁶Li quadrupole moment

EFT N³LO NN potential

¹⁰B using N³LO NN potential

- Clearly, ground state is incorrectly predicted
- In EFT, three-nucleon interaction appears already at N²LO
 - Should be included in the Hamiltonian
 - c₁,c₃,c₄ parameters of the twopion term should be the same as those used in the N³LO NN potential
 - $c_1 = -0.81, c_3 = -3.2, c_4 = 5.4$

EFT N²LO three-nucleon interaction

- Two-pion exchange term
 - Used in standard TNI models
 - Fujita-Miyazawa
 - Tucson-Melbourne
 - Urbana
 - Illinois
 - Low-energy constants c_1 , c_3 , c_4
 - Determined by the corresponding EFT NN interaction
 - Consistent NN & TNI
- One-pion exchange plus contact term
 - Low-energy constant c_D
 - Must be determined from experiment
- Contact term
 - Low-energy constant c_E
 - Must be determined from experiment
- A regulator appears in all terms
 - Depends on cutoff parameter Λ
 - Taken consistently from that used in the corresponding EFT NN interaction

Determination of the $c_{\rm D}$ and $c_{\rm E}$ low-energy constants

- Fit the ³H and ⁴He binding energies
 - Suggested and done by A. Nogga
 - Two solutions
 - 3NF-A

$$- c_{\rm D}^{=-1.11}$$

$$- c_{\rm E}^{=-0.66}$$

• 3NF-B

$$- c_{\rm D} = 8.14$$

 $- c_{\rm E} = -2.02$

- Present work: Two-pion term local in coordinate space
 - Change regulator: depending on momentum transfer
 - Need to re-fit $c_{\rm D}$ and $c_{\rm E}$
 - Found solutions

- "3NFA":
$$c_{\rm D}$$
=0.48, $c_{\rm E}$ =-0.17

- "3NFB":
$$c_{\rm D}$$
=7.69, $c_{\rm E}$ =-0.95

- 3NFA and 3NFB dominated by different terms
 - 3NFA two-pion term dominant
 - 3NFB one-pion term dominant
 - Contact term repulsive in both cases

 $\exp[-((p^2 + q^2)/\Lambda^2)^2] \iff \exp[-(Q^2/\Lambda^2)^2]$

$$\langle | \bullet \bullet \cdot | \rangle = -1.09 \quad \langle \bullet \bullet \cdot | \rangle = -0.07 \quad \langle \bullet \bullet \rangle = 0.25$$
$$\langle | \bullet \bullet \cdot | \rangle = -0.69 \quad \langle \bullet \bullet \cdot | \rangle = -0.88 \quad \langle \bullet \bullet \rangle = 0.37$$

Convergence for ³H with N³LO NN and N³LO NN plus N²LO three-nucleon interaction

Paves the way for including the V_{3N} in the NCSM *p*-shell calculations

- The lowest possible approximation n=3 three-body effective interaction
- Calculations performed in four steps
 - 1) Three-nucleon solutions for all relevant n=3 JT channels with and without V_{3b}

$$H^{\Omega} = \sum_{i=1}^{3} \left[\frac{\vec{p}_{i}^{2}}{2m} + \frac{1}{2} m \Omega^{2} \vec{r}_{i}^{2} \right] + \sum_{i < j}^{3} \left[V_{NN}(\vec{r}_{i} - \vec{r}_{j}) - \frac{m \Omega^{2}}{2A} (\vec{r}_{i} - \vec{r}_{j})^{2} \right] + V_{123}^{3b}$$

- 2) Three-body effective interaction by unitary transformation method
 - X₃
- 3) Effective interaction in Jacobi coordinate HO basis, *p*-shell nuclei calculations more efficient in Cartesian coordinate Slater determinant basis
 - transformation must be performed
- 4) A-nucleon calculation performed by a shell model code with a three-body capability

No transformation for ⁴He Performed in Jacobi coordinates Code MANYEFF3b

• MFD, REDSTICK

$$h_{1} + h_{2} + h_{3} + V_{12} + V_{13} + V_{23} + V_{123} \rightarrow X_{3} \rightarrow P_{3} \begin{bmatrix} h_{1} + h_{2} + h_{3} + V_{3eff,123}^{2b+3b} \end{bmatrix}_{3} \rightarrow P \begin{bmatrix} \sum_{i}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{2b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \end{bmatrix} P$$

$$\begin{bmatrix} \text{Step 3} \\ \text{Tranformation} \\ \text{here} \end{bmatrix}$$

⁷Li using N³LO NN plus consistent N²LO TNI

Very reasonable results obtained using just the NN N³LO+3NFA 7_{Li} interaction 14 $h\Omega = 15 \text{ MeV}$ Some issues concerning 13 1/2 level splitting 12 5/2 1/2 3/2 3/2 What is the effect of the 11 . 7/2 three-nucleon interaction? 10 3/2 7/2 1/2 3/2 9 Level ordering remains E (MeV) ٠ 5/2 5/2 5/2 the same 5/2 Improved level spacing for the lowest five states 7/2 7/2 1/2 3/2 1/2 3/2 0 $6h\Omega$ $2h\Omega$ Exp $4h\Omega$ $0h\Omega$

> The N²LO three-nucleon interaction does not spoil good description achieved already using the NN interaction Improves on level spacing

¹⁰B using N³LO NN plus consistent N²LO TNI

E (MeV)

- N²LO TNI 3NF-A dominated by twopion exchange term
 - The first $6h\Omega$ calculation with V_{3N}
 - Dimension 12 million
 - Confirms convergence of spectra
 - Results close to the TM'
 - Reasonable binding energy
 - $E_{\rm B}$ =64.03 MeV
- N²LO TNI 3NF-B dominated by onepion exchange plus contact term
 - Visible difference in particular for higher-lying states
 - No overbinding
 - $E_{\rm B}$ =63.14 MeV
 - Calculation to be re-done after proper fitting to ⁴He

Both 3NF-A and 3NF-B resolve the ¹⁰B ground state spin problem Similarly like TM', Illinois 3NF, but unlike Urbana IX

Gamow-Teller transitions ¹¹ B ÷ ¹¹ C B(GT; 3/2 ⁻ ₁ ÷ J ⁻ _f)							
J_{f}^{-}	AV8'	AV8'+TM	'(99) Exp				
$3/2^{-1}$ $1/2^{-1}$ $5/2^{-1}$ $3/2^{-2}$ $5/2^{-2}$	$\begin{array}{c} 0.765 \\ 0.909 \\ 0.353 \\ 0.531 \\ 0.197 \end{array}$	0.315 0.591 0.517 0.741 0.625	$\begin{array}{c} 0.345\\ 0.440\\ 0.526\\ 0.525\\ 0.461\end{array}$				

New (³He,t) experiment at RCNP Osaka, Y. Fujita *et al.*, PRC **70**, 011306(R) (2004).

V_{3b} : Bad description of ¹¹B greatly improved

¹¹B using N³LO NN plus consistent N²LO TNI

• N²LO TNI 3NF-A dominated by two-pion exchange term

- A large-scale $6h\Omega$ calculation with the V_{3N}
 - Dimension 20 million
 - Confirms convergence of spectra
- Results close to the TM'
- Good agreement for higher-lying states
- Reasonable binding energy
 - $E_{\rm B}$ =76.70 MeV
- N²LO TNI 3NF-B dominated by one-pion exchange plus contact term
 - Visible difference in particular for higherlying states
 - No overbinding
 - $E_{\rm B}$ =76.22 MeV
 - Calculation to be re-done after proper fitting to ⁴He

Both 3NF-A and 3NF-B predict correct level ordering of lowest states of ¹¹B, similarly like TM'

- Large basis calculation
- Complex spectrum
- Correct level ordering for 5 lowest states
- Good convergence o excitation energies
- Level spacing incorrect

- N²LO TNI 3NF-A dominated by two-pion exchange term
 - The $6h\Omega^{13}C$
 - One of the two biggest calculation with the TNI so far
 - Dimension 38 million
 - 3 GB TNI input file
 - MFD code on 3160 processors of Thunder in 4.6 hours
 - Confirms convergence of the excitation energies
 - Significant improvement for lowest states compared to the NN interaction only
 - Reasonable binding energy $E_{\rm B}$ =98.7 MeV
 - Results close to the TM'
- N²LO TNI 3NF-B dominated by one-pion exchange plus contact term
 - Visible difference in particular for low-lying states
 - Worse agreement with experiment compared to 3NF-A
 - Better agreement for T=3/2 states
 - $3/2^{-}_{2}$ appears to be under-predicted
 - Binding energy at $4h\Omega$
 - $E_{\rm B}$ =103.2 MeV
 - Calculation to be re-done after proper fitting to ⁴He
 - $6h\Omega$ needed to check convergence of spectra

Both 3NF-A and 3NF-B improve level spacing of lowest states of ¹³C, compared to CD-Bonn

¹²C using N³LO NN plus consistent N²LO TNI

Neutrino scattering on ¹²C

- Exclusive $0^+ 0 \rightarrow 1^+ 1$ cross section & transistions
- Extremely sensitive to the spin-orbit interaction strength
 - B(GT) (B(M1)) στ,
 - No spin-orbit $0^+ 0$ and $1^+ 1$ in different SU(4) irreps
 - no transition
 - ¹²C ground state 8 nucleons in $p_{3/2}$
 - Transition overestimated by a factor of six
- NCSM no fit, no free parameters
 - V_{2b} up to $6h\Omega$ saturation
 - Underestimates by a factor of 2-3
 - $V_{2b} + V_{3b}$ up to $6h\Omega$
 - Significant improvement
 - Different processes dominated by different Q
 - Correlation with M1 transverse form factor

		AV8'	AV8'+TM'(9	9) Exp		
B(C	(TG	0.26	0.67	0.88		
	C	D-Bonn	AV8'+TM'(9	9) Exp		
(v	e ⁻)	3.69	6.8	$8.9 \pm 0.3 \pm 0.9$		
(v	μ)	0.312	0.537	$0.56 \pm 0.08 \pm 0.1$		
μ-capture 2.38 4.43 6.0±0.4						

¹²C B(M1; 0⁺ 0 -> 1⁺1)

 $V_{\rm 3b}$ increases the strength of the spin-orbit force

First *p*-shell nuclei results with EFT based NN plus consistent NNN interaction

L

- N³LO NN potential by D. Entem and R. Machleidt
- N²LO three-nucleon interaction with consistent c_1 , c_3 , c_4 and Λ
 - $c_{\rm D}$ and $c_{\rm E}$ terms determined as suggested by A. Nogga to reproduce A=3,4 binding energies
- Two solutions: 3NF-A, 3NF-B
 - Predict different spectra as well as binding energies, radii, and electromagnetic properties
 - Both solve major issues like level ordering of lowest states
 - Neither give a perfect agreement with experiment and it is not straightforward to judge which is preferable at this point
 - 3NF-A describes better the ⁴He charge radius
 - Most important issue is to verify the convergence
 - $6h\Omega$ calculations now possible for the whole *p*-shell
- One-pion and contact terms important: 3NF-A and 3NF-B improves TM' results
 - No overbinding, larger radii
 - Level ordering of lowest states the same
 - Fine details: Spectra similarly (in)accurate
- N³LO LEC c_1 , c_3 , c_4 different from those used in TM'(99), also different from those given by Rentmeester *et al*.
 - Worth-investigating different sets of LEC in the TNI

	<i>c</i> ₁	<i>c</i> ₃	<i>c</i> ₄
Entem	-0.81	-3.20	5.40
Rentmeester	-0.76	-4.78	3.96
TM'(99)	-0.93	-4.55	2.44

- *Ab initio* no-core shell model
 - Method for solving the nuclear structure problem for light nuclei
 - Apart from the GFMC the only working method for A>4 at present
 - Advantages
 - applicable for any NN potential
 - Presently the only method capable to apply the QCD χ PT NN+NNN interactions to *p*-shell nuclei
 - Easily extendable to heavier nuclei
 - Calculation of complete spectra at the same time
 - Success importance of three-nucleon forces for nuclear structure

Work in progress

- Calculations with realistic three-body forces in the *p*-shell
 - Better determination of the three-body force itself
- Coupling of the NCSM to nuclear reactions theories
 - Direct reactions
 - Density from NCSM plus folding approaches
 - Low-energy resonant and nonresonant reactions
 - RGM-like approach
 - Exotic nuclei: RIA
 - Thermonuclear reaction rates: Astrophysics

Future plans

- Extensions to heavier nuclei
 - Effective interaction for valence nucleons
 - RIKEN, RIA

