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from Ropke and Schell, Prog. Part. Nucl. Phys. 42, 53 (1999)
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Why do nuclear lattice simulations?

~ 0.15 fm

Nucleon in lattice QCD
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Nucleons as point particles on lattice



Simulations with Effective Field Theory

Non-perturbative lattice simulations of effective field 
theory of low energy pions and nucleons.

Non-perturbative effective field theory?... but isn’t 
effective field theory based upon an expansion?

G = G0 G2+ +  …

For pions the expansion is simple



V = +

V= +G V+

V0 V2

V +  …

For nucleons we must take care of infrared singularities
[Weinberg, PLB 251 (1990) 288, NPB 363 (1991) 3]

+  …



We will iterate “everything”

G =

�
≤ki

iG =

A complete summation of all diagrams involving 
interaction terms with order  � k.  [D.L., Borasoy, 
Schäfer, PRC70 (2004) 014007]



Pure neutron matter

θ

Incoming and scattered wave

[D.L. and Schäfer, PRC72 (2005) 024006]



Partial wave decomposition

Phase shifts

S-wave scattering dominant at lowest energies



S-wave scattering length

Effective range expansion

Neutron-neutron scattering length is  –18 fm while the 
range is only 2.8 fm.



In this limit, no dimensionful parameters as T � 0, 
and so we expect the energy per particle and 
superfluid gap to satisfy

Theoretically interesting … for dilute neutron matter 
one is close to unitary regime or universal scaling 
limit where magnitude of scattering length  ��,  
range � 0.



Experiments done with cold Li and K atoms, which 
can form diatomic molecules, Li2 and K2.

Tune energy of the diatomic molecule with external 
magnetic to produce a resonance near threshold. 
[O’Hara et. al., Science 298 (2002) 2179; Regal, Jin, 
PRL (2003) 230404; etc.]

Feshbach resonance



For dilute neutron matter we have the effective 
Hamiltonian,

On the lattice,



We use a Hubbard-Stratonovich transformation to 
rewrite the interaction as

We then integrate out the neutron field.  The resulting 
action has no signs or phases, as the determinant of 
the matrix is positive semi-definite.



The matrix has the structure  

So we can use standard pseudofermion methods with 
Hybrid Monte Carlo



Most computationally intensive step is conjugate 
gradient inversion

Can be accelerated by diagonal preconditioning

where



We use Lüscher’s formula to set the operator coefficient 
C to give the physical s-wave scattering length for two-
particle scattering.

Operator coefficient on the lattice

We sum the full set of bubble diagrams
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Energy per particle vs. density
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Energy per particle vs. density
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Energy per particle vs. density



Virial expansion

Expansion in fugacity,

Thermal wavelength



In the unitary regime (zero range and infinite 
scattering length)

Second virial coefficient determined by 
two-particle interactions 



At T  = 0, other diagrams are suppressed by factors of 
kF|ann|. For T  > 0, the thermal wavelength

At low densities we can compute the self-energy by 
summing bubble chain diagrams

High temperature/low density



Similarly we can compute the logarithm of the 
partition function (sum of connected diagrams with 
no external legs).

replaces the scattering length when it is the smaller of 
the two… comparable to expanding in fugacity



Lattice vs. continuum virial coefficients





Fixing the problem…
Tune the operator coefficient to give the correct second 
virial coefficient at the given simulation temperature 
[D.L., Schäfer, nucl-th/0509017]

or

Use an improved lattice action [R. Thomson, D.L., 
work in progress]



Scaling limit (scattering length  � ±�)

Hamiltonian lattice (temporal spacing = 0)

Three-dimensional attractive Hubbard model with



We note that

is a function of only the two dimensionless quantities

The dependence on the lattice spacing must drop out, 
so observables at different temperatures can be 
rescaled to a single universal function
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Axial structure factor
(or spin susceptibility)

measures spin correlation … decreases if neutrons 
form spin zero pairs
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Dineutron correlator

Look for long range order and Bose condensate of 
dineutron pairs 
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Pseudogap
(incoherent pairs)

Superfluid

[Bulgac, Drut, Magierski, cond-mat/0505374]

[Wingate, cond-mat/0502372]

Normal

[D.L., Schäfer, nucl-th/0509018]

[Prokof’ev, Svistunov, preliminary]



Road map

1.  Larger simulations of cold dilute neutron
matter

2.  Improved actions
3.  Few body systems and three-body forces
4.  Asymmetric nuclear matter without pions
5.  Nuclear matter with pions


