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Effective Actions and Broken Symmetries

@ Natural framework for spontaneous symmetry breaking
@ e.g., test for zero-field magnetization M in a spin system
@ introduce an external field H to break rotational symmetry
e Legendre transform Helmholtz free energy F (H):

invert M = —-9F(H)/0H = T[M]=F[H(M)]+ MH(M)
@ since H = 9r/OM — 0, minimize I to find ground state
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Overview Action  Inversion

Pairing from Effective Actions

@ For pairing, the broken symmetry is a U(1) [phase] symmetry

@ Textbook effective action treatment in condensed matter
e introduce contact interaction: g ¢yt

e Hubbard-Stratonovich with auxiliary pairing field A(x)
coupled to ¥Ty" = eliminate contact interaction

e construct 1PI I[A] with A = (A), look for 3‘% =0

e to leading order in the loop expansion (mean field)
— BCS weak-coupling gap equation with gap A
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Overview Action  Inversion

Pairing from Effective Actions

@ For pairing, the broken symmetry is a U(1) [phase] symmetry
@ Textbook effective action treatment in condensed matter
e introduce contact interaction: g ¢yt
e Hubbard-Stratonovich with auxiliary pairing field A(x)
coupled to ¥Ty" = eliminate contact interaction
e construct 1PI I[A] with A = (A), look for % =0
e to leading order in the loop expansion (mean field)
— BCS weak-coupling gap equation with gap A
@ Alternative: Combine an expansion (e.g., EFT) and the
inversion method for effective actions (Fukuda et al.)
e external current j(x) coupled to pair density breaks symmetry
@ natural generalization of Kohn-Sham DFT (Bulgac et al.)
o cf. DFT with nonlocal source (Oliveira et al.; Kurth et al.)
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Local Composite Effective Action with Pairing

@ Generating functional with sources J,j coupled to densities:
20,1 =03 = [Dwiv)exp{- [ [L+30x) vl ti)(w]v] + viv)]]

@ Densities found by functional derivatives wrt J, j:

)= 0w, = 50|
B(x) = (WT)YI(X) + ¥y () (x))3 = 5\2\;([;](7)1] J
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Local Composite Effective Action with Pairing

@ Generating functional with sources J,j coupled to densities:
20,1 =03 = [Dwiv)exp{- [ [L+30x) vl ti)(w]v] + viv)]]

@ Densities found by functional derivatives wrt J, j:

PR = (01 (R0 = ol |
6(x) = (W] (8] (X) + ¥, ()01 (X)) = 5g([i3j] )

@ Effective action [p, ¢] by functional Legendre transformation:

Mo d] = W3, J]—/d4XJX)P /d4XJ(X
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Claims (Hopes?) About Effective Action

@ [[p, ] x (free) energy functional E[p, ¢]
e at finite temperature, the proportionality constant is 3

@ The sources are given by functional derivatives wrt p and ¢

oE[p,¢] _ SE[p, 9] _ .
o) J(x) and o) =j(x)

e but the sources are zero in the ground state
= determine ground-state p(x) and ¢(x) by stationarity:

6E[p, 4] _ OE[p, 9]

- =0
0p(X) Nompgp=tes 09X | pmppsimges

@ This is Hohenberg-Kohn DFT extended to pairing!
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Claims (Hopes?) About Effective Action

@ [[p, ] x (free) energy functional E[p, ¢]
e at finite temperature, the proportionality constant is 3

@ The sources are given by functional derivatives wrt p and ¢

oE[p,¢] _ SE[p, 9] _ .
o) J(x) and o) =j(x)

e but the sources are zero in the ground state
= determine ground-state p(x) and ¢(x) by stationarity:

6E[p, 4] _ OE[p, 9]

- =0
0p(X) Nompgp=tes 09X | pmppsimges

@ This is Hohenberg-Kohn DFT extended to pairing!

@ We need a method to carry out the Legendre transforms
@ To get Kohn-Sham DFT, apply inversion methods

@ Can we renormalize consistently?
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Kohn-Sham Inversion Method (General)
@ Order-by-order matching in counting parameter A
diagrams = WI[J,j, \] = Wo[J,j] + AWq[J,j] + N2W,[J,j] + - --
assume = J[p, ¢, Al = Jolp, ¢ + Mo, ¢] + XJa[p, 6] + - -
assume = j[p, ¢, Al = jolp, &) + Aslp, ¢] + Nialp, 8] + - -
derive = T[p, ¢, \] = Tolp, @] + AT1[p, @] + NT2[p, ¢] + - -

@ Start with exact expressions for I' and p

ol =Wl - [30- [io = 000 =50 00 =

= plug in expansions with p, ¢ treated as order unity
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Kohn-Sham Inversion Method (General)
@ Order-by-order matching in counting parameter A
diagrams = WJ[J,j, \] = Wo[J,j] + AWq[J,j] + N2W,[J,j] + - --
assume = J[p, ¢, Al = Jolp, @] + Nilp, 8] + NJz[p, &] + - --
assume = j[p, ¢, Al = jolp, 8] + Ailp, 6] + Nj2lp, 8] + - -
derive == T[p,$,\] = [olp, ¢] + AT1[p, ¢] + NT2[p, @] + - --

@ 0™ order is Kohn-Sham system with potentials Jo(x) and jo(x)
— exact densities p(x) and ¢(x) by construction

Folp.) = Woldo.jol = [Jon = [io6 = o) = Fo5. o) =
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Kohn-Sham Inversion Method (General)
@ Order-by-order matching in counting parameter A
diagrams = WJ[J,j, \] = Wo[J,j] + AWq[J,j] + N2W,[J,j] + - --
assume = J[p, ¢, Al = Jolp, @] + Nilp, 8] + NJz[p, &] + - --
assume = j[p, ¢, A = jolp. 0] + Aalp, ¢] + Nialp, 8] + - - -
derive = T[p, ¢, Al = To[p, ¢] + AT1[p, 8] + NT2[p, ¢] +

@ 0™ order is Kohn-Sham system with potentials Jo(x) and jo(x)
— exact densities p(x) and ¢(x) by construction

SWol]

Folp. 6] = Waldo.Jol = [Jop~ [ino — p(x) = pll, o(x) = Woll

(5]0(X)

@ Introduce single-particle orbitals and solve (cf. HFB)
ho(X) — 1o Jo(x) ui(x) \ _ e ( ui(x)
( o) —ho(x) + o ) ( e ) -5 ( e )

A&
where ho(x) = oM + Virap(X) — Jo(X)
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Overview Action  Inversion

Diagrammatic Expansion of W,

@ Lines in diagrams are KS Nambu-Gor’kov Green’s functions

i = CX}+@+(><><)+©Q=.OQ+

. <<T7wT(x>w$(x')>o <TTwT(x>«m(x')>o> _ <GES Fic )
(Trb[ ()] (X))o (Tr] (x)e1 (X))o !

e Extra diagrams enforce inversion (here removes anomalous)
@ In frequency space, the Kohn-Sham Green’s functions are

e - 250 000
J

FSS(X,XI;w) == Z

i
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Overview Action  Inversion

Kohn-Sham Self-Consistency Procedure

@ Same iteration procedure as in Skyrme or RMF with pairing
@ In terms of the orbitals, the fermion density is

p(x) =2 vi(x)]?
and the pair density is

Z[u Wi(X) + Ui (x)v* (x)]

@ The chemical potential 1 is fixed by [p(x) =
@ Diagrams for I'[p, ¢] < Eglp, ¢#] + Eint[p, ¢] yields KS potentials

. OEint[p, ¢ 5Eint[P7 9]
JO(X))P:PQS B (5p(X) pP=pgs and (X)’ =dgs ; 6¢)(X) b=dgs
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Overview Action  Inversion

Kohn-Sham Self-Consistency Procedure

@ Same iteration procedure as in Skyrme or RMF with pairing
@ In terms of the orbitals, the fermion density is

p(x) =2 vi(x)]?
and the pair density is (warning: unrenormalized!)

Z[u Wi(X) + Ui (x)v* (x)]

@ The chemical potential 1 is fixed by [p(x) =
@ Diagrams for I'[p, ¢] < Eglp, ¢#] + Eint[p, ¢] yields KS potentials

. OEint[p, ¢ 5Eint[P7 9]
JO(X))P:PQS B (5p(X) pP=pgs and (X)’ =dgs ; 6¢)(X) b=dgs
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Renormalization Divergences DR LO NLO Finite

Outline

Renormalization Issues
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UV Divergences in Nonrelativistic
and Relativistic Effective Actions

@ All low-energy effective theories have incorrect UV behavior

@ Sensitivity to short-distance physics signalled by divergences
but finiteness (e.g., with cutoff) doesn’t mean not sensitive!
= must absorb (and correct) sensitivity by renormalization

@ Instances of UV divergences

nonrelativistic covariant
scattering scattering
pairing pairing
anti-nucleons

@ Can we consistently renormalize within inversion method?
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UV Divergences in Nonrelativistic
and Relativistic Effective Actions

@ All low-energy effective theories have incorrect UV behavior

@ Sensitivity to short-distance physics signalled by divergences
but finiteness (e.g., with cutoff) doesn’t mean not sensitive!
= must absorb (and correct) sensitivity by renormalization

@ Instances of UV divergences

nonrelativistic covariant
scattering scattering
pairing pairing
anti-nucleons

@ Can we consistently renormalize within inversion method?
@ Strategy: Verify renormalization using scale parameter A
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Divergences: Uniform Dilute Fermi System
@ Generating functional with constant sources ;. and j:

_ 2
el = [owivyem{~ [d% [uh(a — 3or — W0 + Lofuluiiy
i+ wM)J}

e cf. adding integration over auxiliary field [D(A*, A) e Tl J1ar
— shift variables to eliminate 4]y for Ay,
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Renormalization Divergences DR LO NLO Finite

Divergences: Uniform Dilute Fermi System
@ Generating functional with constant sources ;. and j:
Wik o v? Co
e il = [p(utvyen]- [ax W3]~ oo — e + 2ulv]u
+ iy +vled] }

e cf. adding integration over auxiliary field [D(A*, A) e Tl J1ar
— shift variables to eliminate 4]y for Ay,

@ New divergences because of j = e.g., expand to O(j?)

J J

@ Same linear divergence as in 2-to-2 scattering
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Renormalization Divergences DR LO NLO Finite

Divergences: Uniform Dilute Fermi System
@ Generating functional with constant sources ;. and j:

_ 2 C
e Wikl — /D(Wz/))exp{—/dA'X [¢L(% - 2V_|v| — W)a + 701/47#%1/4

. 1 .
+ i +ufel) +5¢07]}
e cf. adding integration over auxiliary field [D(A*, A) e Tl J1ar
— shift variables to eliminate 4]y for Ay,
@ New divergences because of j = e.g., expand to O(j?)

J J

@ Same linear divergence as in 2-to-2 scattering
@ Renormalization: Add counterterm 2(¢|j|? to £ (cf. Zinn-Justin)

e Additive to W (cf. |A]?) = no effect on scattering
e How to determine (? Energy interpretation of I'?
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Use Dimensional Regularization (DR)

@ Generalize Papenbrock & Bertsch DR/MS calculation
@ DR/PDS = generate explicit A to “check” renormalization
@ Basic free-space integral in D spatial dimensions

A 3-D dPk 1 oS 1 - | . n
<§> /(27T)D P2 —K2 tic — —E(/\-Hp) {note. Q _ Z}

e Renormalizing free-space scattering yields:

47Ta5 1
M 1-agA

_ 4ras n 4ral
M M

@ Recover DR/IMS with A =0

Co(N) ANoN)y=clV+cP +... —
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Use Dimensional Regularization (DR)

@ Generalize Papenbrock & Bertsch DR/MS calculation
@ DR/PDS = generate explicit A to “check” renormalization
@ Basic free-space integral in D spatial dimensions

A 3-D dPk 1 os 1 - | . n
<§> /(27T)D P2 —K2 tic — —E(/\-Hp) {note. " - Z}

e Renormalizing free-space scattering yields:

47Ta5 1
M 1-agA

4ras n 47ra§
M

@ Recover DR/IMS with A =0

@ E.g., verify NLO renormalization —> independent of A
)

XY - o

Co(N) = ANoN)y=clV+cP +... —

Dick Furnstahl DFT Pairing from Effective Actions



Kohn-Sham Non-Interacting System

@ Bare density p: 1

= - = — V,
W ope V2

= [ (1 %52)

@ Bare pair density ¢g:

1 oWe[] 2 0 | €
o = N dio =V zk:Uka K, k
a3k o @ jo plays role of constant gap

) (2r)? Ec

) k2
Ex = /() —po)?> +i&, e = 2M
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Kohn-Sham Non-Interacting System

@ Bare density p: 1

= - = — V,
W ope V2

= [ (1 %52)

@ Bare pair density ¢g:

1 aw[] 2 0 | <
d’B = ﬁV 5]0 BRY; zk:Uka Ky "

a3k o @ jo plays role of constant gap
) (2n)? Ex : k2
Ex = \/m ;= oM
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Kohn-Sham Non-Interacting System

@ Bare density p: 1

= - = — V,
BV o v; ‘

_ /d3k (1_63—M0> ——

(2n)? Ex

@ Bare pair density ¢g: uv

1 aw[] 2 0 | .
d’B = ﬁV 5]0 BRY; zk:Uka Ky "

a3k o @ jo plays role of constant gap
) (2n)? Ex : k2
Ex = \/m ;= oM
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Kohn-Sham Non-Interacting System

@ Bare density p: 1

= - = — V,
W ope V2

= [ (1 %52)

@ Bare pair density ¢g:

1 oWe[] 2 0 | €
o = N dio =V zk:Uka K, k
a3k o @ jo plays role of constant gap

) (2r)? Ec

) k2
Ex = /() —po)?> +i&, e = 2M
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Kohn-Sham Non-Interacting System

@ Bare density p: 1

- — V,
BV o v; ‘

_ / d3k 1_ 68 — 1o
n (27‘(‘)3 Ek
@ Bare pair density ¢g:

1 OWpl]
¢ = ﬁV 8]2 VZUka

a3k o @ jo plays role of constant gap

(27)% Ex K2

H 0
Ex = /(€ —o)? +j5, & = 2M

0
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Kohn-Sham Non-Interacting System

@ Bare density p:
W e Tv |

7T TV ono - ,
_ / dk (. o /
] (2n)3 Ex !
. . i Kv2 kzukvk
@ Bare pair density ¢g: LA k /
//l | e
l"l‘() 8k

1 OWo[] 2 0
@ jo plays role of constant gap
k2

% = Vo
oy
(2m)3 Ey .
B = /(€ —mo) +i§, & =5

Dick Furnstahl DFT Pairing from Effective Actions




Kohn-Sham Non-Interacting System

@ The basic DR/PDS integral in D dimensions, with X = jo/ 0, iS

3-D dPk 0)B X2
(3) = (/—2\) /(27r)D @ (_';)0)2+j§ = '\;T/T\ B (1 08,2 2)

M3/2
S

U LR ()

V14 x2
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Kohn-Sham Non-Interacting System

@ The basic DR/PDS integral in D dimensions, with X = jo/ 0, iS
A\3-D [ dPk (e2)” MA x?
8 = (= / S k =——ul (105,
(2) (27T) (eg_uo)z_’_jg 27‘(‘ ( 2)

(=) M3/2 [3(1 + x2)|+/2/2 P, ( -1 )
+ ()P T (L + x -
V2 p+1/2 V14 x2

@ Check the KS density equation = A dependence cancels:

1 OWpl] d3k L
v 8uoo /(zﬁ)g (1— e EE) ——0—1(1) + 10 1(0)
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Kohn-Sham Non-Interacting System

@ The basic DR/PDS integral in D dimensions, with X = jo/ 0, iS
A\3-D [ dPk (e2)” MA x?
8 = (= / S k =——ul (105,
(2) (2’/T) (eg_uo)z_’_jg 27‘(‘ ( 2)

(=) M3/2 [3(1 + x2)|+/2/2 P, ( -1 )
+ ()P T (L + x -
V2 p+1/2 V14 x2

@ Check the KS density equation = A dependence cancels:

1 OWpl] d3k L
v 8uoo /(zﬁ)g (1— e EE) ——0—1(1) + 10 1(0)

@ The KS equation for the pair density ¢ fixes ¢(9):

iaWo[]__/d K Jo
BV O (27)® Ex
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Renormalization Divergences DR LO NLO Finite
Calculating to  n™ Order

@ Find M <i<n[p, ¢] from Wi<i<nlpo(p; ¢),io(p: ¢)]
e including additional Feynman rules

rint=c>@+@+(><><>+©o=o@+...

@ Calculate y, jj from T, then use "' ,ji =] — O to find jo
@ Renormalization conditions:
@ No freedom in choosing Co(A) = A’s must cancel!

e Choose 521.(") and ¢(™ to convert ¢g to renormalized ¢
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Renormalization Divergences DR LO NLO Finite
Calculating to  n™ Order

@ Find M <i<n[p, ¢] from Wi<i<nlpo(p; ¢),io(p: ¢)]
e including additional Feynman rules

rim—QQ+@+(><:><>+C>Q=QQ+...

@ Calculate y, jj from T, then use "' ,ji =] — O to find jo
@ Renormalization conditions:
@ No freedom in choosing Co(A) = A’s must cancel!

e Choose 521.(") and ¢(™ to convert ¢g to renormalized ¢
@ Leading order: Diagrams for I'1[p, ¢] = W1[uo(p; ¢),o(p, #)]

F1=©<:> + C){:) + C'X + o RV
Yjodss

: 1r(1) 52
TRvP vk Sk ULV Spt U Ut (SZ]( 3¢Mig

1 TN 1 _ . (1) _ 4ma
= ﬂTrl[P7¢]:ZCO p2+ZC° ¢? with C§" = MS
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The “Gap” Equation at Leading Order (LO)

@ 1 dependence on p and ¢ explicit = easy to find u;, and j;:

1or 1 _q

1o 1 10, 1
Mm=%va, 2707

——Cc()l)¢

and =5 ee T2

@ “Gap” equation fromj =jog+j; =0

. . 1 1 . d3k 1
jo=—j1= _5|c(()1)|¢ = §|c(()1)|Jo 2n)? - = — ¢
(ep — ko) + 8
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The “Gap” Equation at Leading Order (LO)

@ 1 dependence on p and ¢ explicit = easy to find u;, and j;:

1or 1 _q

1o 1 10, 1
M=%va, "2707

——Cél)¢

and =5 ee T2

@ “Gap” equation fromj =jog+j; =0

. . 1 1 . d3k 1
jo=—j1= _§|c(()1)|¢ = §|c(()1)|Jo 2n)? - = — ¢
(ep — ko) + 8

@ DR/PDS reproduces Papenbrock/Bertsch (with x = |jo/pol)

-1 N 4 —-6log2 2
1= V2Mpuoas(1+x%) Py 5 (W) eas[F 5+ T logx|

1 j 8 —T S
— if kpag < 1, % = 2 /2kelas| holds
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Renormalized Energy Density at LO

@ Renormalized effective action ' =g + I'1:

1 1 . . 1 1
ﬂ_vr = /(68 — po — Ex) + EC(O)Jg + fop — jod + ZCél)pZ + ZCél)qSZ
@ Check for A’s:
lr_o_ (2 2 1MA,
T =012+ 200l(1) ~ (4 +IENO) + 555 +

— DN (B B/2ud) + 208 — 4~ i+ 5i3) =0
@ To find the energy density, evaluate I at the stationary point
jo= —%]Cél)]qﬁ with pq fixed by the equation for p
= same results as Papenbrock/Bertsch (plus HF term)
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Renormalized Energy Density at LO

@ Renormalized effective action ' =g + I'1:

1 1 . . 1 1
ﬂ_vr = /(68 — po — Ex) + EC(O)Jg + fop — jod + Zcél)pz + ZCél)qSZ
@ Check for A’s:
lr_o_ (2 2 1MA,
T =012+ 200l(1) ~ (4 +IENO) + 555 +

— DN (B B/2ud) + 208 — 4~ i+ 5i3) =0
@ To find the energy density, evaluate I at the stationary point
jo= —%]Cél)]qﬁ with pq fixed by the equation for p
= same results as Papenbrock/Bertsch (plus HF term)

@ Life gets more complicated at NLO
e dependence of I'; on p, ¢ is no longer explicit
e analytic formulas for DR integrals not available
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Renormalization

Divergences DR LO NLO Finite
I, at Next-to-Leading Order (NLO)
so? Cén
d®p [d%k [d3q 1
_(cWy? /
> = &) (27)% J (2m)* J (27 Ep + Ex + Ep—q + Exuq
o = x [US UV o VE g — 2u5 VZ (UV)p—q (UV)kiq
+ (uv)p (uv )k (uv)p—q (UV )kt |
X URVL C((]l) d3k
182 1 1 2
= ()" [ myp 2, [P+ 00 (0 )]
C(SU 2 Uprvy

@ UV divergences identified from

1 §k k—oo j2|V|2 1 é-k k— o0 j2|V|2
2 _ 0 2 _ 0
e _(:|__k>_) 2 Uy — 1+ == — 1 —
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Renormalization Divergences DR LO NLO Finite

Next-To-Leading-Order (NLO) Renormalization

2
@ Bowtie with Céz) = %/\ vertex must precisely cancel

N's from beachballs with C(()l) = A’K/Iﬁ vertices:

1
s} o} C’é>

Oé?) > Uk, C(l) > ’U]%/

PRTIRIN X URUE Oél)
% + m = A’s cancel
C(()Q) > Up U C(()l) X Up U

(Note that 6Zj(l) vertex takes ¢g — ¢)

@ How do we see cancellation of A’s and evaluate renormalized
results without analytic formulas? [but first .. .]
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Renormalization Divergences DR LO NLO Finite

Standard Induced Interaction Result Recovered

@ Look atjp < A 1
@ As jo — 0, Ukvg peaks at uo vi/ \ui
@ Leading order T = 0:
— 8 e~1/N(O)[Co|
Ao/mo =€
B or/2kelas 5
= = e m F|ds
2
ukvk
0 ;
Ho &
or
I = +CTCH - = j1 = 71 ,| 0|¢

T URVE X u;cvfc
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Renormalization Divergences DR LO NLO Finite

Standard Induced Interaction Result Recovered

@ Lookatjp < A

@ Asjo — 0, ugvi peaks at s v v
@ Leading order T = 0:
Ao/ o = % e—1/N(0)[Col
— 8 g—m/2kelas|
2
@ NLO modifies exponent /ukvk
—> changes prefactor 0 ;

@ Ano ~ Ao /(4e)/3

o]
= (Y0 + @ = di+a = 510l [L = [Col(1I0) g pejoi] ¢

1oyl
SURvy XUV Sugupy s uh)
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Renormalization Divergences DR LO NLO Finite

Standard Induced Interaction Result Recovered

@ Lookatjp < A

@ Asjo — 0, ugvi peaks at s v v
@ Leading order T = 0:
Ao/ o = % e—1/N(0)[Col
— 8 g—m/2kelas|
2
@ NLO modifies exponent /ukvk
—> changes prefactor 0 ;

@ Ano ~ Ao /(4e)/3

o]
= (Y0 + @ = di+a = 510l [L = [Col(1I0) g pejoi] ¢

1oyl
SURvy XUV Sugupy s uh)

@ How does the Kohn-Sham gap compare to “real” gap?
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Renormalizing with Subtractions

@ NLO integrals over Ey = /(ex — 10)? + j3 are intractable, but

1 1 P
/E1+E2+E3+E4_/|:E1+E2+E3+E4_52+6(2)6863

plus a DR/PDS integral that is proportional to A
= just make the substitution in []'s for renormalized result
@ When applied at LO,

1 1 P MA
/E_k:/[Ek‘eng

@ Cf. subtraction to eliminate Cy in gap equation

i+i_3/ﬂi:>'\"__l/‘3'3" 11
4ras  [Co| 2 (2m)3 & 4ras 2 ) (2r)% |Ex €
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Renormalizing with Subtractions

@ NLO integrals over Ey = /(ex — 10)? + j3 are intractable, but

1 1 P
/E1+E2+E3+E4_/[E1+E2+E3+E4_eg+egegeg

plus a DR/PDS integral that is proportional to A
= just make the substitution in []'s for renormalized result
@ When applied at LO,

[E-[[E-T)+
Ek o Ek e(k) 27
@ Cf. subtraction to eliminate Cy in gap equation
i+i_ifﬂ£:>'\"__l/d3k [1_1}
4ras  [Co| 2 (2m)3 & 4ras 2 ) (2r)% |Ex €
@ Any equivalent subtraction works, e.g.,
d*k P rd% 1
@F & J(@rP
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Anomalous Density in Finite Systems

@ How do we renormalize the pair density in a finite system?

¢(x) = Z [U" (X)vi (%) + Ui (X)v;" (X)] — oo

e cf. scalar density ps = >; ¥(X)i(x) for relativistic mft
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Anomalous Density in Finite Systems

@ How do we renormalize the pair density in a finite system?

= Z [ui" (})vi (x) + Ui (X)v;" (x)] — oo

I
e cf. scalar density ps = >; ¥(X)i(x) for relativistic mft
@ Plan: Use subtracted expression for ¢ in uniform system

ke g3
= / g k3' L —10 k= finite
(2m) V0@ — )2 +i§
@ Apply this in a local density approximation (Thomas-Fermi)

M K¢ (X)

2
600 =23 u0vi0) 00 ) with £ = S0 500 g
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Renormalization Divergences DR LO NLO Finite

Bulgac Renormalization [Bulgac/Yu PRL 88 (2002) 042504]

@ Convergence is very slow as the energy cutoff is increased
— Bulgac/Yu: make a different subtraction

ke 43
¢ = / ‘; k3 jo ! P ) e inite
m) (€0 — po)2+j2 kMo

@ Compare convergence in uniform system, in nuclei with LDA

25
2
202 K=l ]
= 10°F =0 A
8
§ 10" [ subtraction 1 7
= S — subtraction 2

1071 h

-6 M| M| M| Lol
10 0.01 0.1 1 10

Energy Cutoff
@ How do we generalize this?
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Questions Energy Kohn- m  Summary

Outline

Open Questions
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Questions Energy Kohn-Sham Summary

Energy Interpretation

@ Effective actions of local composite operators 30 years ago
@ “Sentenced to death” by Banks and Raby
@ Underlying problems from new UV divergences

@ Connection between effective action and variational energy
e Euclidean space (see Zinn-Justin)

1 ~ ~
STl = (R~ [30= )y
@ Minkowski space constrained minimization (see Weinberg)

@ source terms serve as Lagrange multipliers
o Are these properties invalidated by nonlinear source terms?
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Energy Interpretation

@ Effective actions of local composite operators 30 years ago
@ “Sentenced to death” by Banks and Raby
@ Underlying problems from new UV divergences

@ Connection between effective action and variational energy
e Euclidean space (see Zinn-Justin)

STl = (@) — [35= (s

@ Minkowski space constrained minimization (see Weinberg)
@ source terms serve as Lagrange multipliers

o Are these properties invalidated by nonlinear source terms?
@ Potential ambiguities in the renormalization

e Arbitrary finite part of added counterterms = shift minima

e Verschelde et al. claim not arbitrary

@ Are the stationary points valid in any case?
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Questions Energy Kohn-Sham  Summary

Kohn-Sham Questions

@ How are Kohn-Sham “gap” and conventional gap related?
e Kohn-Sham Green’s function vs. full Green’s function

G(x,x") = Gys(X, X) + Gys| = 1 0ot , Oline Mim Gis
i 6G ks

R

@ When do we need the “real” gap?
@ What about broken symmetries?
e E.g., number projection for pairing
e How to accomodate within effective action framework?
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Better Alternatives to Local Kohn-Sham?

@ Couple source to non-local pair field (Oliveira et al.):

H—H- /dx dx’ [D*(x,x )1 (X)), (X") + H.c]

e CJT 2PI effective action I'[p, A] with A(x,x") = (¢ (x)¥, (X))

e Auxiliary fields: Introduce A*(x ) (X)(x) + H.c. via H.S.
e 1PI effective action in A(x) = <B(x)>
@ Special saddle point evaluation — Kohn-Sham DFT

@ DFT from Renormalization Group (Polonyi-Schwenk)
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Summary

@ Effective action formalism generates Kohn-Sham DFT
with local pairing fields = systematic expansion
@ Renormalization is tricky, but consistent treatment possible
@ Some of the open issues
e Energy interpretation and ambiguities
Number projection
Renormalization in finite systems
Efficient numerical implementation
Implementing low-momentum potential =—- Power counting
Better alternatives?
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Fraction Missing

—_
@)

[a—
oI

(=)

[y

—_
oI
[\S]

—_
)
&

[E—
OI
N

—
o|
W

p—
OI

o)}

=1
j,=0.1

— subtraction 1

— subtraction 2

|

|

T0.01 0‘1 o
Energy Cutoff

1

10




	Outline
	Effective Actions and Pairing -3mu Kohn-Sham DFT
	Action
	Inversion

	Renormalization Issues
	Divergences
	DR
	LO
	NLO
	Finite

	Open Questions
	Energy
	Kohn-Sham
	Summary


