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DFT from Microscopic NN · · ·N Interactions

What?
Constructive density functional theory (DFT) for nuclei

Why now?
Progress in chiral EFT

Application of RG (e.g., low-momentum interactions)

Advances in computational tools and methods

How?
Use framework of effective actions with EFT principles
EFT interactions and operators evolved to low-momentum

Few-body input not enough (?) =⇒ input from many-body

Merge with other energy functional developments
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Density Functional Theory (DFT) with Coulomb

Dominant application:
inhomogeneous
electron gas

Interacting point electrons
in static potential of
atomic nuclei

“Ab initio” calculations of
atoms, molecules, crystals,
surfaces, . . .

HF is good starting point,
DFT/LSD is better,
DFT/GGA is better still, . . .
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Atomization Energies of Hydrocarbon Molecules
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Sources of Nonperturbative Physics for NN

1 Strong short-range repulsion
(“hard core”)

2 Iterated tensor (S12) interaction

3 Near zero-energy bound states

Consequences:
In Coulomb DFT, Hartree-Fock gives dominate contribution

=⇒ correlations are small corrections =⇒ DFT works!
cf. NN interactions =⇒ correlations � HF =⇒ DFT fails??

However . . .
the first two depend on the resolution =⇒ different cutoffs
third one is affected by Pauli blocking
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Wavelength and Resolution
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The Deuteron at Different Resolutions
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Repulsive core =⇒ short-distance suppression
=⇒ high-momentum components

Low-momentum potential =⇒ much simpler wave function!
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The Deuteron at Different Resolutions more

0

2

4

6

0

2

4

6

0

5

10

k (fm−1)

Integrand of −〈ψd| V
Λ
 |ψd〉 for Λ =6.0 fm−1

k’ (fm−1)
−1

0

1

2

3

4

5

6

Dick Furnstahl DFT from Effective Actions



Outline Overview Action Topics Summary Intro Vlowk Philosophy ChPT NM Plan

The Deuteron at Different Resolutions more

0

2

4

6

0

2

4

6

0

5

10

k (fm−1)

Integrand of −〈ψd| V
Λ
 |ψd〉 for Λ =5.0 fm−1

k’ (fm−1)
−1

0

1

2

3

4

5

6

Dick Furnstahl DFT from Effective Actions



Outline Overview Action Topics Summary Intro Vlowk Philosophy ChPT NM Plan

The Deuteron at Different Resolutions more

0

2

4

6

0

2

4

6

0

5

10

k (fm−1)

Integrand of −〈ψd| V
Λ
 |ψd〉 for Λ =4.0 fm−1

k’ (fm−1)
−1

0

1

2

3

4

5

6

Dick Furnstahl DFT from Effective Actions



Outline Overview Action Topics Summary Intro Vlowk Philosophy ChPT NM Plan

The Deuteron at Different Resolutions more

0

2

4

6

0

2

4

6

0

5

10

k (fm−1)

Integrand of −〈ψd| V
Λ
 |ψd〉 for Λ =3.0 fm−1

k’ (fm−1)
−1

0

1

2

3

4

5

6

Dick Furnstahl DFT from Effective Actions



Outline Overview Action Topics Summary Intro Vlowk Philosophy ChPT NM Plan

The Deuteron at Different Resolutions more

0

2

4

6

0

2

4

6

0

5

10

k (fm−1)

Integrand of −〈ψd| V
Λ
 |ψd〉 for Λ =2.0 fm−1

k’ (fm−1)
−1

0

1

2

3

4

5

6

Dick Furnstahl DFT from Effective Actions



Outline Overview Action Topics Summary Intro Vlowk Philosophy ChPT NM Plan

In-Medium Wave Functions (NN Only)
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Conventional Wisdom on Nuclear Many-Body

Hans Bethe in review of nuclear matter (1971):

“The theory must be such that it can deal with any
nucleon-nucleon (NN) force, including hard or ‘soft’ core,
tensor forces, and other complications. It ought not to be
necessary to tailor the NN force for the sake of making the
computation of nuclear matter (or finite nuclei) easier, but
the force should be chosen on the basis of NN
experiments (and possibly subsidiary experimental
evidence, like the binding energy of H3).”

“Very soft potentials must be excluded because they do
not give saturation; they give too much binding and too
high density. In particular, a substantial tensor force is
required.”
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EFT and RG Make Physics Easier
There’s an old vaudeville joke about a doctor and patient . . .

Patient: Doctor, doctor, it hurts when I do this!
Doctor: Then don’t do that.
Weinberg’s Third Law of Progress in Theoretical Physics:

“You may use any degrees of freedom you like to describe
a physical system, but if you use the wrong ones, you’ll be
sorry!”

Dick Furnstahl DFT from Effective Actions
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Chiral Effective Field Theory for Two Nucleons

Epelbaum, Meißner, et al.

Also Entem, Machleidt

LπN + match at low energy
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How do you go from Chiral EFT to a Potential?

E.g., see Evgeny Epelbaum review: nucl-th/0509032

Method of unitary transformations (e.g., Okubo)
P space has nucleons only, Q space has the pions

Use chiral expansion in {p,mπ}/Λ
Energy-independent potential

Consistent operators constructed with power counting

Dick Furnstahl DFT from Effective Actions
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State of the Art: N 3LO
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State of the Art: N 3LO
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State of the Art: N 3LO
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State of the Art: N 3LO
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Many-Body Forces are Inevitable!

What if we have three
nucleons interacting?

Successive two-body
scatterings with short-lived
high-energy intermediate
states unresolved =⇒ must
be absorbed into three-body
force

� �

How do we organize
(3,4, · · · )–body forces? EFT!
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(Approximate) Nuclear Matter with NN and NNN
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“≈ 2nd Order”
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(Nuclear) Many-Body Physics: “Old” vs. “New”

One Hamiltonian for all
problems and energy/length
scales (not QCD!)

Infinite # of low-energy
potentials; different
resolutions =⇒ different dof’s
and Hamiltonians

Find the “best” potential There is no best potential
=⇒ use a convenient one!

Two-body data may be
sufficient; many-body forces
as last resort

Many-body data needed and
many-body forces inevitable

Avoid (hide) divergences Exploit divergences (cutoff
dependence as tool)

Choose approximations (e.g.,
diagrams) by “art”

Power counting determines
diagrams and truncation error

Dick Furnstahl DFT from Effective Actions
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My Favored Scenario for DFT (Today!)

Construct a chiral EFT to a given order (N3LO at present)
including many-body forces (N3LO has leading 4-body)

choose cutoff regulator Λ as large as possible up to breakdown
scale to minimize truncation error

Evolve Λ down with RG (to Λ ≈ 2 fm−1 for ordinary nuclei)
all interactions

and other operators

Generate density functional in effective action form
direct construction (e.g., DME++)

or match to finite-density EFT expansion

Dick Furnstahl DFT from Effective Actions
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Density Functional Theory (DFT)

Hohenberg-Kohn: There exists
an energy functional Ev [ρ] . . .

Ev [ρ] = FHK [ρ] +

∫
d3x v(x)ρ(x)

FHK is universal (same for any
external v ) =⇒ H2 to DNA!

Introduce orbitals and minimize
energy functional =⇒ Egs, ρgs

Useful if you can approximate
the energy functional

Dick Furnstahl DFT from Effective Actions
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DFT as Effective Action

Effective action is generically the Legendre transform
of a generating functional with external source

Partition function in presence of J(x) coupled to density:

Z[J] = e−W [J] ∼ Tr e−β(bH+J bρ) −→
∫
D[ψ†]D[ψ] e−

R
[L+J ψ†ψ]

The density ρ(x) in the presence of J(x) is [we want J = 0]

ρ(x) ≡ 〈ρ̂(x)〉J =
δW [J]

δJ(x)

Invert to find J[ρ] and Legendre transform from J to ρ:

Γ[ρ] = W [J]−
∫

J ρ and J(x) = − δΓ[ρ]

δρ(x)
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Partition Function in Zero Temperature Limit
Consider Hamiltonian with time-independent source J(x):

Ĥ(J) = Ĥ +

∫
J ψ†ψ

If ground state is isolated (and bounded from below),

e−β
bH = e−βE0

[
|0〉〈0|+O

(
e−β(E1−E0)

)]
As β →∞, Z[J] =⇒ ground state of Ĥ(J) with energy E0(J)

Z[J] = e−W [J] ∼ Tr e−β(bH+J bρ) =⇒ E0(J) = lim
β→∞

−1
β

logZ[J] =
1
β

W [J]

Substitute and separate out the pieces:

E0(J) = 〈Ĥ(J)〉J = 〈Ĥ〉J +

∫
J〈ψ†ψ〉J = 〈Ĥ〉J +

∫
J ρ(J)

Expectation value of Ĥ in ground state generated by J[ρ]

〈Ĥ〉J = E0(J)−
∫

J ρ =
1
β

Γ[ρ]
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Putting it all together . . .
1
β

Γ[ρ] = 〈Ĥ〉J
J→0−→ E0 and J(x) = − δΓ[ρ]

δρ(x)
J→0−→ δΓ[ρ]

δρ(x)

∣∣∣∣
ρgs(x)

= 0

=⇒ For static ρ(x), Γ[ρ] ∝ the DFT energy functional FHK !

The true ground state (with J = 0) is a variational minimum
So more sources should be better! (e.g., Γ[ρ, τ, J, · · · ])

Universal dependence on external potential is trivial:

Γ[ρ] = W [J]−
∫

J ρ = Wv=0[J +v ]−
∫

[(J +v)−v ] ρ = Γv=0[ρ]+

∫
v ρ

But functionals change with resolution or field redefinitions
=⇒ only stationary points are observables

If uniform, find spontaneously broken ground state; if finite . . .

NOTE: Beware of new UV divergences!

[For Minkowski-space version of this, see Weinberg Vol. II ]
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J→0−→ E0 and J(x) = − δΓ[ρ]

δρ(x)
J→0−→ δΓ[ρ]

δρ(x)

∣∣∣∣
ρgs(x)

= 0

=⇒ For static ρ(x), Γ[ρ] ∝ the DFT energy functional FHK !

The true ground state (with J = 0) is a variational minimum
So more sources should be better! (e.g., Γ[ρ, τ, J, · · · ])

Universal dependence on external potential is trivial:

Γ[ρ] = W [J]−
∫

J ρ = Wv=0[J +v ]−
∫

[(J +v)−v ] ρ = Γv=0[ρ]+

∫
v ρ

But functionals change with resolution or field redefinitions
=⇒ only stationary points are observables

If uniform, find spontaneously broken ground state; if finite . . .

NOTE: Beware of new UV divergences!

[For Minkowski-space version of this, see Weinberg Vol. II ]

Dick Furnstahl DFT from Effective Actions



Outline Overview Action Topics Summary Basics Kohn-Sham Covariant Pairing

Putting it all together . . .
1
β

Γ[ρ] = 〈Ĥ〉J
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Paths to the Effective Action Density Functional

1 Follow Coulomb Kohn-Sham DFT
Calculate asymmetric nuclear matter as function of density

=⇒ LDA functional + standard Kohn-Sham procedure

Add semi-empirical gradient expansion

2 RG approach [Polonyi/Schwenk]
3 Auxiliary field method [Faussurier, Valiev/Fernando]

Eliminate ψ†ψ in favor of auxiliary field ϕ

Loop expansion about expectation value φ

Kohn-Sham: Use freedom to require density unchanged

4 Inversion method [Fukuda et al., Valiev/Fernando]
=⇒ systematic Kohn-Sham DFT
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Kohn-Sham DFT

VHO

=⇒
VKS

Interacting density in VHO ≡ Non-interacting density in VKS

Orbitals {φi(x)} in local potential VKS([ρ], x)

[−∇2/2m + VKS(x)]φi = εiφi =⇒ ρ(x) =
A∑

i=1

|φi(x)|2

Plan: Make this work by construction
inversion method (“point-coupling”)

auxiliary fields (e.g., “mesons” in covariant DFT)
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What can Power Counting do for DFT?

Given W [J] as an EFT expansion, how do we find Γ[ρ]?

Γ[ρ] = W [J]−
∫

Jρ

Inversion method: order-by-order inversion from W [J] to Γ[ρ]

Decompose J(x) = J0(x) + JLO(x) + JNLO(x) + . . .

Two conditions on J0:

ρ(x) =
δW0[J0]

δJ0(x)
and J0(x)|ρ=ρgs

=
δΓinteracting[ρ]

δρ(x)

∣∣∣∣
ρ=ρgs

Interpretation: J0 is the external potential that yields for
a noninteracting system the exact density

This is the Kohn-Sham potential!

Two conditions involving J0 =⇒ Self-consistency
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Treat Source J(x) as a Background Field
Effective action as a path integral =⇒ construct W [J],

order-by-order in an expansion (e.g., EFT power counting)
Propagators (lines) are in the background field J(x)

G0
J(x, x

′;ω) =
∑
α

ψα(x)ψ∗α(x′)
[
θ(εα − εF)

ω − εα + iη
+

θ(εF − εα)

ω − εα − iη

]

where ψα(x) satisfies:
[
−∇

2

2M
+ v(x)− J(x)

]
ψα(x) = εαψα(x)

E.g., apply to short-range LO contribution: Hartree-Fock

LO :

W1[J] =
1
2
ν(ν − 1)C0

∫
d3x

∫ ∞

−∞

dω
2π

∫ ∞

−∞

dω′

2π
G0

J(x, x;ω)G0
J(x, x;ω′)

= −1
2

(ν − 1)

ν
C0

∫
d3x [ρJ(x)]2 where ρJ(x) ≡ ν

εF∑
α

|ψα(x)|2
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Kohn-Sham Via Inversion Method (cf. KLW [1960])

Inversion method for effective action DFT [Fukuda et al.]
order-by-order matching in λ (e.g., EFT expansion)

diagrams =⇒ W [J, λ] = W0[J] + λW1[J] + λ2W2[J] + · · ·
assume =⇒ J[ρ, λ] = J0[ρ] + λJ1[ρ] + λ2J2[ρ] + · · ·

derive =⇒ Γ[ρ, λ] = Γ0[ρ] + λΓ1[ρ] + λ2Γ2[ρ] + · · ·

Start with exact expressions for Γ and ρ

Γ[ρ] = W [J]−
∫

d4x J(x)ρ(x) =⇒ ρ(x) =
δW [J]

δJ(x)

=⇒ plug in expansions with ρ treated as order unity

Diagonalize W0[J0] by introducing KS orbitals =⇒ sum of εi ’s
Find J0 for the ground state via self-consistency loop:

J0 → W1 → Γ1 → J1 → W2 → Γ2 → · · · =⇒ J0(x) =
∑
i>0

δΓi [ρ]

δρ(x)
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Kohn-Sham Potential
Local J0(x) [cf. non-local, state-dependent Σ∗(x, x′;ω)]

e.g., J0(x) =
δΓint[ρ, τ ]

δρ(x)
and η0(x) =

δΓint[ρ, τ ]

δτ(x)

Direct derivatives (e.g., DME++) are easiest,
or use “inverse density-density correlator”

J0(x) =
δΓint[ρ]

δρ(x)
=

∫







δρ(x)

δJ0(y)







−1
δΓint[ρ]

δJ0(y)
= − − + · · ·

= − + · · ·

New Feynman rules for Γint =⇒ anomalous diagrams

��������� 	 	 	 	 
�
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Example: Dilute EFT Ingredients
See “Crossing the Border” [nucl-th/0008064]

1 Use the most general L with low-energy dof’s consistent with
global and local symmetries of underlying theory

Left = ψ†
[
i ∂∂t + ∇ 2

2M

]
ψ − C0

2 (ψ†ψ)2 − D0
6 (ψ†ψ)3 + . . .

2 Declaration of regularization and renormalization scheme
natural a0 =⇒ dimensional regularization and min. subtraction

3 Well-defined power counting =⇒ small expansion parameters

use the separation of scales =⇒ kF
Λ with Λ ∼ 1/R =⇒ kFa0, etc.

O
(
k6

F

)
: O

(
k7

F

)
: +

E = ρ
k2

F

2M

[
3
5

+
2

3π
(kFa0) +

4
35π2 (11− 2 ln 2)(kFa0)

2 + · · ·
]
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Comparing Skyrme and Dilute Functionals
Skyrme energy density functional (for N = Z )

E [ρ, τ, J] =

∫
d3x

{
τ

2M
+

3
8

t0ρ2 +
1

16
(3t1 + 5t2)ρτ+

1
64

(9t1 − 5t2)(∇ρ)2

− 3
4

W0ρ∇ · J +
1

16
t3ρ2+α + · · ·

}
Dilute ρτ energy density functional for ν = 4 (Vexternal= 0)

E [ρ, τ, J] =

∫
d3x

{
τ

2M
+

3
8

C0ρ
2 +

1
16

(3C2 + 5C′
2)ρτ+

1
64

(9C2 − 5C′
2)(∇ρ)2

− 3
4

C′′
2 ρ∇ · J +

c1

2M
C2

0ρ
7/3 +

c2

2M
C3

0ρ
8/3 +

1
16

D0ρ
3 + · · ·

}

Same functional as dilute Fermi gas with ti ↔ Ci

equivalent a0 ≈ −2–3 fm but |kFap|, |kFr0| < 1 (with ap < 0)

missing non-analytic terms, NNN, . . .

Dick Furnstahl DFT from Effective Actions



Outline Overview Action Topics Summary Basics Kohn-Sham Covariant Pairing

Comparing Skyrme and Dilute Functionals
Skyrme energy density functional (for N = Z )

E [ρ, τ, J] =

∫
d3x

{
τ

2M
+

3
8

t0ρ2 +
1

16
(3t1 + 5t2)ρτ+

1
64

(9t1 − 5t2)(∇ρ)2

− 3
4

W0ρ∇ · J +
1

16
t3ρ2+α + · · ·

}
Dilute ρτ energy density functional for ν = 4 (Vexternal= 0)

E [ρ, τ, J] =

∫
d3x

{
τ

2M
+

3
8

C0ρ
2 +

1
16

(3C2 + 5C′
2)ρτ+

1
64

(9C2 − 5C′
2)(∇ρ)2

− 3
4

C′′
2 ρ∇ · J +

c1

2M
C2

0ρ
7/3 +

c2

2M
C3

0ρ
8/3 +

1
16

D0ρ
3 + · · ·

}
Same functional as dilute Fermi gas with ti ↔ Ci

equivalent a0 ≈ −2–3 fm but |kFap|, |kFr0| < 1 (with ap < 0)

missing non-analytic terms, NNN, . . .

Dick Furnstahl DFT from Effective Actions



Outline Overview Action Topics Summary Basics Kohn-Sham Covariant Pairing

Power Counting Terms in Energy Functionals
Scale contributions according to average density or 〈kF〉

LO NLO LDA ρτ 10*(∇ρ)
0.001

0.01

0.1

1

en
er

gy
/p

ar
tic

le

ap = as

ap=0

 ν =4, as = 0.10, A = 140

 τ -NNLO

Reasonable estimates =⇒ truncation errors understood

Where to truncate for nuclei?
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Covariant DFT as Legendre Transformation
To probe the system, add a source V µ(x) coupled to current
operator ĵµ(x) ≡ ψ(x)γµψ(x) to the partition function:

Z[V ] = e−W [V ] ∼ Tr e−β(bH+V ·bj) −→
∫
D[ψ†]D[ψ] e−

R
[L+Vµ ψγ

µψ]

The (time-dependent) current jµ(x) in presence of V µ(x) is

jµ(x) =
(
ρv (x), jv (x)

)
≡ 〈ψ(x)γµψ(x)〉V =

δW [V ]

δVµ(x)

Invert to find V µ[j] and Legendre transform from V µ to jµ:

Γ[j] = −W [V ] +

∫
V · j with Vµ(x) =

δΓ[j]
δjµ(x)

−→ δΓ[j]
δjµ(x)

∣∣∣∣
jgs(x)

= 0

=⇒ For static jµ(x), Γ[j] ∝ the DFT energy functional E [ρv ]
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What About the Scalar Density?

Can add additional sources and Legendre transformations

In nonrelativistic DFT, add to Lagrangian + η(x) ∇ψ†∇ψ

Γ[ρ, τ ] = W [J, η]−
∫

J(x)ρ(x)−
∫
η(x)τ(x)

=⇒ Skyrme HF energy functional E [ρ, τ, J] of density
and kinetic energy density (see A. Bhattacharyya talk)

In covariant DFT, add to Lagrangian + S(x)ψψ

Γ[jµ, ρs] = W [Vµ,S]−
∫

V (x) · j(x)−
∫

S(x)ρs(x)

=⇒ RMF energy functional E [ρv , ρs] [with jµ = (ρv ,0)]

Generates point-coupling functional
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Pairing in DFT/EFT from Effective Action

Natural framework for spontaneous symmetry breaking
e.g., test for zero-field magnetization M in a spin system

introduce an external field H to break rotational symmetry

Legendre transform Helmholtz free energy F (H):

invert M = −∂F (H)/∂H =⇒ Γ[M] = F [H(M)] + MH(M)

since H = ∂Γ/∂M, minimize Γ to find ground state
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Generalizing Effective Action to Include Pairing

Generating functional with sources J, j coupled to densities:

Z [J, j] = e−W [J,j] =

∫
D(ψ†ψ) e−

R
d4x [L+ J(x)ψ†

αψα + j(x)(ψ†
↑ψ

†
↓+ψ↓ψ↑)]

Densities found by functional derivatives wrt J, j :

ρ(x) ≡ 〈ψ†(x)ψ(x)〉J,j =
δW [J, j]
δJ(x)

∣∣∣∣
j

φ(x) ≡ 〈ψ†↑(x)ψ†↓(x) + ψ↓(x)ψ↑(x)〉J,j =
δW [J, j]
δj(x)

∣∣∣∣
J

Effective action Γ[ρ, φ] by functional Legendre transformation:

Γ[ρ, φ] = W [J, j]−
∫

d4x J(x)ρ(x)−
∫

d4x j(x)φ(x)
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∫
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Γ[ρ, φ] ∝ ground-state (free) energy functional E [ρ, φ]

at finite temperature, the proportionality constant is β

The sources are given by functional derivatives wrt ρ and φ

δE [ρ, φ]

δρ(x)
= J(x) and

δE [ρ, φ]

δφ(x)
= j(x)

but the sources are zero in the ground state

=⇒ determine ground-state ρ(x) and φ(x) by stationarity:

δE [ρ, φ]

δρ(x)

∣∣∣∣
ρ=ρgs,φ=φgs

=
δE [ρ, φ]

δφ(x)

∣∣∣∣
ρ=ρgs,φ=φgs

= 0

This is Hohenberg-Kohn DFT extended to pairing!

We need a method to carry out the inversion
For Kohn-Sham DFT, apply inversion methods

We need to renormalize!

Dick Furnstahl DFT from Effective Actions



Outline Overview Action Topics Summary Basics Kohn-Sham Covariant Pairing

Γ[ρ, φ] ∝ ground-state (free) energy functional E [ρ, φ]

at finite temperature, the proportionality constant is β

The sources are given by functional derivatives wrt ρ and φ

δE [ρ, φ]

δρ(x)
= J(x) and

δE [ρ, φ]

δφ(x)
= j(x)

but the sources are zero in the ground state

=⇒ determine ground-state ρ(x) and φ(x) by stationarity:

δE [ρ, φ]

δρ(x)

∣∣∣∣
ρ=ρgs,φ=φgs

=
δE [ρ, φ]

δφ(x)

∣∣∣∣
ρ=ρgs,φ=φgs

= 0

This is Hohenberg-Kohn DFT extended to pairing!

We need a method to carry out the inversion
For Kohn-Sham DFT, apply inversion methods

We need to renormalize!

Dick Furnstahl DFT from Effective Actions



Outline Overview Action Topics Summary Basics Kohn-Sham Covariant Pairing

Kohn-Sham Inversion Method Revisited

Order-by-order matching in EFT expansion parameter λ

W [J, j , λ] = W0[J, j] + λW1[J, j] + λ2W2[J, j] + · · ·
J[ρ, φ, λ] = J0[ρ, φ] + λJ1[ρ, φ] + λ2J2[ρ, φ] + · · ·
j[ρ, φ, λ] = j0[ρ, φ] + λj1[ρ, φ] + λ2j2[ρ, φ] + · · ·
Γ[ρ, φ, λ] = Γ0[ρ, φ] + λΓ1[ρ, φ] + λ2Γ2[ρ, φ] + · · ·

0th order is Kohn-Sham system with potentials J0(x) and j0(x)
=⇒ yields the exact densities ρ(x) and φ(x)

introduce single-particle orbitals and solve (cf. HFB)(
h0(x)− µ0 j0(x)

j0(x) −h0(x) + µ0

)(
ui(x)
vi(x)

)
= Ei

(
ui(x)
vi(x)

)

where h0(x) ≡ −∇2

2M
+ V (x)− J0(x)

with conventional orthonormality relations for ui , vi
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Diagrammatic Expansion of Wi

Same diagrams, but with Nambu-Gor’kov Green’s functions

Γint = + + + + · · ·

iG =

(
〈Tψ↑(x)ψ†↑(x

′)〉0 〈Tψ↑(x)ψ↓(x ′)〉0
〈Tψ†↓(x)ψ†↑(x

′)〉0 〈Tψ†↓(x)ψ↓(x ′)〉0

)
≡

(
iG0

ks iF 0
ks

iF 0
ks
† −iG0

ks

)

In frequency space, the Green’s functions are

iG0
ks(x, x

′;ω) =
∑

i

[
ui(x) u∗i (x′)
ω − Ei + iη

+
vi(x′) v∗i (x)

ω + Ei − iη

]

iF 0
ks(x, x

′;ω) = −
∑

i

[
ui(x) v∗i (x′)
ω − Ei + iη

−
ui(x′) v∗i (x)

ω + Ei − iη

]
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Kohn-Sham Self-Consistency Procedure

Same iteration procedure as in Skyrme or RMF with pairing
In terms of the orbitals, the fermion density is

ρ(x) = 2
∑

i

|vi(x)|2

and the pair density is (warning: divergent!)

φ(x) =
∑

i

[u∗i (x)vi(x) + ui(x)v∗i (x)]

The chemical potential µ0 is fixed by
∫
ρ(x) = A

Diagrams for Γ̃[ρ, φ] = −E [ρ, φ] (with LDA+) yields KS
potentials

J0(x)
∣∣∣
ρ=ρgs

=
δΓ̃int[ρ, φ]

δρ(x)

∣∣∣∣∣
ρ=ρgs

and j0(x)
∣∣∣
φ=φgs

=
δΓ̃int[ρ, φ]

δφ(x)

∣∣∣∣∣
φ=φgs
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Outline

Overview: Microscopic DFT

Effective Actions and DFT

Issues and Ideas and Open Problems

Summary
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Questions about DFT and Nuclear Structure

How do we connect to the free NN· · ·N interaction?
Chiral EFT RG−→ low-momentum interactions: Power counting?

What can you calculate in a DFT approach?
What about single-particle properties? Excited states?

How is Kohn-Sham DFT more than “mean field”?
Where are the approximations? How do we truncate?

How do we include long-range effects (correlations)?

What about broken symmetries? (translation, rotation, . . . )

What about the “Dirac sea” in covariant DFT?

What about UV divergences in DFT pairing?
Can we (should we) decouple pp and ph?

Are higher-order contributions important?
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How is the Full G Related to Gks? [nucl-th/0410105]

+ + + + · · · =⇒ = +
x′

x
=⇒ Σ∗(x,x′;ω)

Add a non-local source ξ(x ′, x) coupled to ψ(x)ψ†(x ′):

Z [J, ξ] = eiW [J,ξ] =

∫
DψDψ† ei

R
d4x [L+ J(x)ψ†(x)ψ(x) +

R
d4x′ ψ(x)ξ(x,x′)ψ†(x′)]

With Γ[ρ, ξ] = Γ0[ρ, ξ] + Γint[ρ, ξ],

G(x , x ′) =
δW
δξ

∣∣∣∣
J

=
δΓ

δξ

∣∣∣∣
ρ

= Gks(x , x ′) + Gks

[1
i
δΓint

δGks
+
δΓint

δρ

]
Gks

� � �����
�

�����

� ���

�
	��� �

� ���

� ���
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J
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δΓ
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∣∣∣∣
ρ

= Gks(x , x ′) + Gks

[1
i
δΓint

δGks
+
δΓint

δρ

]
Gks

� � �����
�

�����

� ���

�
	��� �

� ���

� ���
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How is the Full G Related to Gks? [nucl-th/0410105]
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G and Gks Yield the Same Density by Construction

Claim: ρks(x) = −iνG0
KS(x , x+) equals ρ(x) = −iνG(x , x+)

Start with
� � �����

�

�����

� ���

�
	��� �

� ���

� ���

Simple diagrammatic demonstration:
� � � � � � � � �

Densities agree by construction!

Is the Kohn-Sham basis a useful one for G?
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How Close is GKS to G?

It depends on what sources are used!

G(x , x ′) =
δW
δξ

∣∣∣∣
J

=
δΓ

δξ

∣∣∣∣
ρ

= Gks(x , x ′) + Gks

[1
i
δΓint

δGks
+
δΓint

δρ

]
Gks

Nonrel. M∗ in Γ[ρ] vs. Γ[ρ, τ ] vs.
· · · (see Anirban’s talk)

Covariant case at LO:
Γ[ρv ] vs. Γ[ρv , ρs]

Higher orders?
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Questions about DFT and Nuclear Structure

How do we connect to the free NN· · ·N interaction?
Chiral EFT RG−→ low-momentum interactions: Power counting?

What can you calculate in a DFT approach?
What about single-particle properties? Excited states?

How is Kohn-Sham DFT more than “mean field”?
Where are the approximations? How do we truncate?

How do we include long-range effects (correlations)?

What about broken symmetries? (translation, rotation, . . . )

What about the “Dirac sea” in covariant DFT?

What about UV divergences in DFT pairing?
Can we (should we) decouple pp and ph?

Are higher-order contributions important?
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Kohn-Sham DFT and “Mean-Field” Models

�

�

Fk k

n(k)

1

1 Kohn-Sham propagator always has “mean-field” structure
=⇒ doesn’t mean that correlations aren’t included in Γ[ρ]!

2 n(k) = 〈a†
kak〉 is resolution dependent (not observable!)

=⇒ operator related to experiment is more complicated
3 Is the Kohn-Sham basis a useful one for other observables?
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Approximating and Fitting the Functional

Need a truncated expansion to carry out inversion method
Chiral EFT expansion is well-defined

Power counting for low-momentum interactions?

Gradient expansions?
Density matrix expansion

Semiclassical expansions used in Coulomb DFT

Derivative expansion techniques developed for
(one-loop) effective actions?

How should we “fine tune” a DFT functional?
What does EFT say about what knobs to adjust?

EFT tells about theoretical errors
=⇒ use in fits (e.g., Bayesian)
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Long-range Effects

Long-range forces (e.g., pion exchange) =⇒ limits of DME++

��������� 	 
 � � ���

	 � � ���

Non-localities from near-on-shell particle-hole excitations

+ + + + · · ·
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Symmetry Breaking and Zero Modes

What about breaking of translational, rotational invariance,
particle number?

No guidance from Coulomb DFT (?)

Effective action =⇒ zero modes
cf. soliton zero modes and projection methods

Fadeev-Popov games?

Energy functional for the intrinsic density?
=⇒ J. Engel: one-dimensional laboratory
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UV Divergences in Nonrelativistic
and Relativistic Effective Actions

All low-energy effective theories have incorrect UV behavior

Sensitivity to short-distance physics signalled by divergences
but finiteness (e.g., with cutoff) doesn’t mean not sensitive!
=⇒ must absorb (and correct) sensitivity by renormalization

Instances of UV divergences

nonrelativistic covariant
scattering scattering

pairing pairing
anti-nucleons
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Power Counting Lost / Power Counting Regained

Gasser, Sainio, Svarc =⇒ ChPT for πN with relativistic N ’s
loop and momentum expansions don’t agree

=⇒ systematic power counting lost

heavy-baryon EFT restores power counting by 1/M expansion

Hua-Bin Tang (1996) [and with Paul Ellis]:

“. . . EFT’s permit useful low-energy expansions only if
we absorb all of the hard-momentum effects into the
parameters of the Lagrangian.”

q > Λ

VB

VB

=⇒ C0 and

µ +M−M
ωx x

}negative−energy states

x x x x
x x x

x x x

holes

}positive−energy states

}x x x x

Becher/Leutwyler IR =⇒ Schindler-Gegelia-Scherer version
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Moving Dirac Sea Physics into Coefficients

Absorb the “hard” part of a diagram into parameters,
=⇒ the remaining “soft” part satisfies chiral power counting

original πN prescription by H.B. Tang (expand,
integrate term-by-term, and resum propagators)

systematized for πN by Becher and Leutwyler:
“infrared regularization” or IR

not unique; e.g., Fuchs et al. additional finite subtractions in DR

Extension of IR to multiple heavy particles [Lehmann/Prézeau]
convenient reformulation by Schindler, Gegelia, Scherer

tadpoles, NN loops in free space vanish!

particle-particle loop reduces to nonrelativistic DR/MS result
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Consequences for Free-Space Natural Fermions

Tadpoles, NN loops in free space vanish!

Leading order (LO) has scalar, vector, etc. vertices

Left = · · · − Cs
2 (ψψ)(ψψ)− Cv

2 (ψγµψ)(ψγµψ) + · · · =⇒

At NLO, only particle-particle loop survives IR

� � ����� � � �

Only forward-going nucleons contribute
=⇒ same scattering amplitude as nonrel. DR/MS for small k
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Comments on Vacuum Physics

Unlike QED DFT, “no sea” for nuclear structure is a misnomer
include “vacuum physics” in coefficients via renormalization

Renormalization versus Renormalizability
Renormalization is required to account for short-distance

behavior but can be implicit

Renormalizability at the hadronic level corresponds to making
a model for the short-distance behavior

not a good model phenomenologically
Please don’t send me any more RHA papers to referee!

Fixing short-distance behavior is not the same thing as
throwing away negative-energy states

For a long time, we looked for unique “relativistic effects”;
these were largely misguided efforts
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Divergences: Dilute Fermi System
Generating functional with constant sources µ and j :

e−W =

∫
D(ψ†ψ) e−

R
d4x [ψ†

α( ∂
∂τ −

∇ 2
2M −µ)ψα +

C0
2 ψ

†
↑ψ

†
↓ψ↓ψ↑+ j(ψ↑ψ↓+ψ†

↓ψ
†
↑)]

+ 1
2 ζ j2 ]

cf. adding integration over auxiliary field
∫

D(∆∗,∆) e−
1

|C0|
R
|∆|2

=⇒ shift variables to eliminate ψ†↑ψ
†
↓ψ↓ψ↑ for ∆∗ψ↑ψ↓

New divergences because of j =⇒ e.g., expand to O(j2)

� �������	��
 ������ � � � ����

Same linear divergence as in 2-to-2 scattering

Strategy: Add counterterm 1
2ζ j2 to L

additive to W (cf. |∆|2) =⇒ no effect on scattering

Energy interpretation? Finite part?
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Divergences: Dilute Fermi System
Generating functional with constant sources µ and j :

e−W =

∫
D(ψ†ψ) e−

R
d4x [ψ†

α( ∂
∂τ −

∇ 2
2M −µ)ψα +

C0
2 ψ

†
↑ψ

†
↓ψ↓ψ↑+ j(ψ↑ψ↓+ψ†

↓ψ
†
↑)

]

+ 1
2 ζ j2 ]

cf. adding integration over auxiliary field
∫

D(∆∗,∆) e−
1

|C0|
R
|∆|2

=⇒ shift variables to eliminate ψ†↑ψ
†
↓ψ↓ψ↑ for ∆∗ψ↑ψ↓

New divergences because of j =⇒ e.g., expand to O(j2)

� �������	��
 ������ � � � ����

Same linear divergence as in 2-to-2 scattering

Strategy: Add counterterm 1
2ζ j2 to L

additive to W (cf. |∆|2) =⇒ no effect on scattering

Energy interpretation? Finite part?
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Renormalized Uniform System Observables

To find the energy density, evaluate Γ at the stationary point:

E
V

= (Γ0 + Γ1)|j0=− 1
2 |C0|φ =

∫
d3k

(2π)3

[
ξk−Ek+

1
2

j20
Ek

]
+
[
µ0−

1
4
|C0|ρ

]
ρ

with

ρ =

∫
d3k

(2π)3

(
1− ξk

Ek

)
and φ = −

∫
d3k

(2π)3

j0
Ek

+ ζ(0)j0

Explicitly finite and dependence on ζ(0) cancels out

Finite system =⇒ optimize renormalization (see Bulgac et al.)
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Higher Order: Induced Interaction

As j0 → 0, ukvk peaks at µ0

Leading order T = 0:
∆LO/µ0 = 8

e2 e−1/N(0)|C0|

= 8
e2 e−π/2kF|as|

NLO modifies exponent
=⇒ changes prefactor

∆NLO ≈ ∆LO/(4e)1/3

µ0

0

1

εk

vk
2 uk

2

j0

ukvk

��� �
�������
	�� � �� ���� 	���

� � � � � ����� ��� ��� � � ���
���

� ���� �  � �

Same renormalization works (Furnstahl/Hammer)
=⇒ energy interpretation? finite system?
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Higher Order: Induced Interaction

As j0 → 0, ukvk peaks at µ0

Leading order T = 0:
∆LO/µ0 = 8

e2 e−1/N(0)|C0|

= 8
e2 e−π/2kF|as|

NLO modifies exponent
=⇒ changes prefactor

∆NLO ≈ ∆LO/(4e)1/3
µ0

0

1

εk

vk
2 uk

2

j0

ukvk

����� ��� �
�
	����� � 	��� ���

�
� 	 �  � � 	 � �  ��

��� ����� ��� � ������ ��� �! � " ��� ���$#�% �'&)(+*�(-, (.*�/0(-,2143 56 7

Same renormalization works (Furnstahl/Hammer)
=⇒ energy interpretation? finite system?
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Outline

Overview: Microscopic DFT

Effective Actions and DFT

Issues and Ideas and Open Problems

Summary
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Summary

Plan: Chiral EFT −→ low momentum VNN ,VNNN , . . .
−→ DFT for nuclei

Effective action formalism provides framework

Many issues to resolve (my list for today)

gradient expansions (DME++, . . . ), long-range effects

isospin dependence, many-body contributions, low-density limit

symmetry breaking and restoration

higher-order pairing

how to fine-tune?

systematic covariant DFT
...
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Outline RG

The Deuteron at Different Resolutions back
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The Deuteron at Different Resolutions back
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The Deuteron at Different Resolutions back
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The Deuteron at Different Resolutions back
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The Deuteron at Different Resolutions back
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Outline RG

Effective Action as Energy Functional: Minkowski
back

See, e.g., Weinberg, Vol. II
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Outline RG

Polonyi-Schwenk RG Approach to DFT back

Non-interacting fermions in
background mean-field
potential V at λ = 0

Gradually switch off background
potential and turn on the
microscopic interaction U
as λ→ 1

Sλ,1[ψ†, ψ] =

∫
dx ψ†α(x)

(
∂

∂t
− ∇2

x

2M
+ (1− λ)Vλ;α(x)

)
ψα(x)

Sλ,2[ψ†, ψ] =
λ

2

∫ ∫
(ψ†ψ) · U · (ψ†ψ)
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Outline RG

Density Functional = Effective Action for Density
back

Effective action Γ[ρ] = −W [J] + J · ρ is minimal at the
physical (zero source) ground state density:

δΓ[ρ]

δρ

∣∣∣∣
ρgs

= 0 =⇒ Egs = E [ρgs] = lim
β→∞

1
β

Γ[ρgs]

The effective action       is minimal at 
the physical (=zero source) ground state density, i.e.,

  , with g.s. energy

     Density functional = effective action for the density

curvature will include
exchange-correlations

-1

=

+ interactions

Curvature will include correlations(
δ2Γ[ρ]

δρ δρ

∣∣∣∣
ρgs

)−1

=
δ2W [J]

δJ δJ

∣∣∣∣
J=0

=

The effective action       is minimal at 
the physical (=zero source) ground state density, i.e.,

  , with g.s. energy

     Density functional = effective action for the density

curvature will include
exchange-correlations

-1

=

+ interactions

+ interactions
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Outline RG

Evolution of Effective Action with Parameter λ
back

∆ background Hartree exchange-correlations

∂λΓλ[ρ] = ∂λ[(1− λ)Vλ] · ρ+
1
2
ρ · U · ρ+

1
2

Tr

[
U ·
(
δ2Γλ[ρ]

δρ δρ

)−1
]

Expand density functional about evolving ground-state density

Γλ[ρ] = Γ[ρgs,λ]
(0) +

∑
n≥2

∫
· · ·
∫

1
n!

Γ[ρgs,λ]
(n) · (ρ− ρgs,λ)1 · · · (ρ− ρgs,λ)n

change in background potential   Hartree contribution   exchange-correlations

All exchange-corr. via dressed ph propagator

Evolution of the effective action with control parameter

Expand density functional around evolving g.s. density

Evolution equations
for expansion coeff.
(build up many corr. as
Fermi liquid RG)

Evolution equations for
expansion coefficients build up
correlations through dressed ph
propagator
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Outline RG

Auxiliary Fields [Faussurier] back

Introduce scalar field ϕ coupled to ψ†ψ

Construct S̃[ψ†, ψ, ϕ] such that ψ,ψ† is only in ψ†[G−1(ϕ)]ψ
and ∫

DϕeieS[ψ†,ψ,ϕ] =⇒ eiS[ψ†,ψ]

Integrate out ψ†ψ =⇒ determinant =⇒ Tr ln[G−1(ϕ)] + · · ·
Keep only leading saddle point φ0(x) =⇒ Hartree

fluctuation corrections generate loop expansion

freedom to choose mean field [Kerman et al. (1983)]
cf., H = (T + U) + (V − U) for arbitrary U

Kohn-Sham: choose special saddle-point evaluation
reference local potential φxc such that −Tr Gxc(x , x+) = n(x)

expand Tr ln[G−1
xc + δφ] in δφ = φ− φxc

=⇒ Γxc[n] with φxc(x) = δΓxc[n]/δn(x)

introduce orbitals {ψα, εα} to diagonalize Tr ln[G−1
xc ]

Dick Furnstahl DFT from Effective Actions



Dominant application:
inhomogeneous
electron gas

Interacting point electrons
in static potential of
atomic nuclei

“Ab initio” calculations of
atoms, molecules, crystals,
surfaces, . . .

HF is good starting point,
DFT/LSD is better,
DFT/GGA is better still, . . .

H2 C2 C2H2 CH4 C2H4 C2H6 C6H6

molecule
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Hartree-Fock
DFT Local Spin Density Approximation
DFT Generalized Gradient Approximation

Atomization Energies of Hydrocarbon Molecules
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=⇒ high-momentum components

Low-momentum potential =⇒ much simpler wave function!
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Scale contributions according to average density or 〈kF〉

Reasonable estimates =⇒ truncation errors understood

Where to truncate for nuclei?
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