Radiative Capture versus Coulomb Dissociation Experiments $Henning\ Esbensen$

Physics Division, Argonne National Laboratory

Measurements of the ⁸B→⁷Be+p breakup on a high-Z target is often analyzed in terms of

• 1st order E1 transitions in the far-field (FF) approx. FF approx.: NO OVERLAP of projectile and target. Nice separation of structure and reaction dynamics:

$$\frac{d\sigma^{(CD)}}{dE_{rel}} = \frac{dB(E1)}{dE_{rel}} \times \int_0^\infty d^2 \mathbf{b} |S_{E1}(E_\gamma, b)|^2 \epsilon_{eff}(E_\gamma, b).$$

where $E_{\gamma} = S_p + E_{rel}$ is the excitation/photon energy.

• Detailed balance:
Coulomb dissociation
and radiative capture
are determined by the
same dipole matrix
element.

Infer:
$$\sigma_{E1}^{(rc)} = constant \times \frac{E_{\gamma}^3}{E_{rel}} \frac{dB(E1)}{dE_{rel}}$$

How reliable is this method?

Experimental evidence: significant differences between

the S factors,
$$S_{17}(E_{rel}) = E_{rel} \sigma_{E1}^{(rc)} \exp(2\pi\eta)$$
,

obtained in direct capture measurements:

and in Coulomb dissociation experiments:

CD gives smaller $S_{17}(0)$ and steeper slope of $S_{17}(E_{rel})$.

CD gives smaller $S_{17}(0)$ and a steeper slope of $S_{17}(E)$, Junghans et al., PRC 68, 065803 (03).

Breakdown of the far-field approximation; the overlap of projectile and target cannot be ignored.

Use instead unrestricted multipole expansion (point charge):

$$V_{\text{Coul}} = \sum_{\lambda\mu} \frac{4\pi Z_x Z e^2}{2\lambda + 1} \frac{r_{<}^{\lambda}}{r_{>}^{\lambda+1}} Y_{\lambda\mu}^*(\hat{r}_x) Y_{\lambda\mu}(\hat{R}),$$

where $r_{<} = min(r_x, R)$ and $r_{>} = max(r_x, R)$. R: projectile-target distance. r_x : intrinsic coordinate: r_x . Far-field (FF) approximation: $r_x < R$.

Example: ${}^{8}B \rightarrow {}^{7}Be+p$ on Pb at 52 MeV/u at b=20 fm. First-order perturbation theory (incl. finite size effect):

Strong suppression at low excitation energies compared to the far-field (FF) approximation, in particular E2!

Other issues: What is the significance of E2 transitions, higher-order processes, nuclear induced breakup?

Can be tested in Semiclassical Calculations of the 8B → 7Be +p breakup in the Coulomb and nuclear fields from a target nucleus.

- Use Classical Coulomb trajectories $\vec{R}(t)$.
- Quantal description of the ⁷Be+p two-body motion. Initial state $\psi_0(\vec{r})$, $H_0\psi_0 = \epsilon_0\psi_0$, $\epsilon_0 = -137$ keV.
- Solve time-dependent Schrödinger equation numerically

$$i\hbar \frac{d\psi(\vec{r},t)}{dt} = \left[H_0 + V_{pT}(\vec{R}(t) - \vec{r}_p) + V_{cT}(\vec{R}(t) - \vec{r}_c) \right] \psi(\vec{r},t).$$

Interactions:

 V_{pT} : proton-target

 V_{cT} : core-target

See Esbensen, Bertsch & Snover, PRL 94, 042502 (2005).

⁸B → ⁷Be+p on Pb at 52 MeV/u, fixed b=20 fm. Further suppression at low excitation energies due to higher-order and nuclear processes

Dynamical polarization effect in CD is of order \mathbb{Z}^3 :

$$P_{\rm CD}(b) \approx P_{\rm P.Th.}^{(1)}(b) \left[1 - \frac{Ze^2}{E} \frac{{\rm Const.}}{\sqrt{b^2 + a^2}} \right].$$

Caused by interference of 1st and 2nd Born amplitudes.

Known as the Barkas effect in atomic physics. Explains the difference in the stopping powers of protons and anti-protons, π^+ and π^- , etc. See Andersen et al., PRL 62, 1731 (1989).

Decay energy spectrum for all b > 12 fm:

Suppression at low E_{rel} . Increases extracted $S_{17}(E_{rel})$! Decay energy spectrum for all b > 30 fm:

 $\frac{d\sigma}{dE} \approx \text{E1 FF at low } E_{rel}, \frac{d\sigma}{dE} \approx \text{E1+E2 FF at high } E_{rel}.$ Explains why the extracted slope of $S_{17}(E_{rel})$ is large!

The full calculation (Dynamic CN) is reduced compared to the first-order E1 FF approximation by the ratio

Ratio =
$$\frac{\left[\frac{d\sigma}{dE}\right]_{\text{Full}}}{\left[\frac{d\sigma}{dE}\right]_{\text{E1}}}$$
.

How to correct the S factor extracted in the E1 FF approx?

$$S^{\text{Corrected}}(E) = S_{\text{E1}}^{\text{Exp}}(E) \times \frac{\left[\frac{d\sigma}{dE}\right]_{\text{E1}}}{\left[\frac{d\sigma}{dE}\right]_{\text{Full}}} = \frac{S_{\text{E1}}(E)}{\text{Ratio}}.$$

The corrected S factor becomes larger at low E_{rel} and smaller at high relative energies.

Improves agreement with capture measurements.

RIKEN experiment at 52 MeV/A on Pb, Kikuchi et al., PLB 391, 261 (1997). Relative energy-cut: $0.5 < E_{rel} < 0.75$ MeV.

Dynamic-CN should be scaled by 1.17 $[S_{17}(0) = 22.1 \text{ eV b}]$. Ogata et al. $[\theta_b < 4^{\circ}, \text{ large } \delta\theta]$: $S_{17}(0) = 20.9 \pm 2 \text{ eV b}$.

Experimental evidence of strong reduction compared to 1st-order E1+E2 far-field approximation.

 $^8\mathrm{B}{\rightarrow}^7\mathrm{Be}$ breakup on Ni at 26 MeV Guimarães et al., PRL 84, 1862 (2000).

1st order: correct 1st-order E0+E1+E2 Coulomb dissoc.

Dynamic CD: Coulomb dissociation to all orders.

Dynamic CN: Coulomb + nuclear breakup to all orders (includes stripping).

Conclusion

Low energy S factors extracted from CD experiments using the first-order E1 Far-Field approximation should (in some cases) be increased because of

- non-zero projectile-target overlap (all E, smaller b)
- dynamic polarization (at lower beam energies)
- nuclear effects (Coulomb-nuclear interference).

The S factor at high relative energies should be reduced.

These effects reduce discrepancy with capture measurements.

Relativistic effects should be implemented!

MSU-NSCL experiment at 83 MeV/A on Pb, B. Davids et al., PRC 63, 065806 (2001).

Measured: $\frac{d\sigma}{dE}$ at forward angles, for b > 30 fm. Analysis performed in the first-order FF approximation. Included a quenched 5% E2 component (Davids and Typel, PRC 68, 045802 (2003)).

Remove 5% E2 at low E_{rel} : Increase S factor by 5%. Use 10% E2 at high E_{rel} : reduce it S factor by 5%.

New slope in better agreement with capture measurements. New $S_{17}(0)$ agrees with other dissociation experiments but it is lower than the mean value of capture measurements. GSI experiment at 254 MeV/A on Pb, Schümann et al., PRL 90, 232501 (2003).

Measured: $\frac{d\sigma}{dE}$ at forward angles, for b > 30 fm. Analysis performed in the first-order FF approximation. Included only E1 (should have included a 5% E2).

> Leave $S_{17}(E_{rel})$ unchanged at low E_{rel} . Reduce $S_{17}(E_{rel})$ by 5% at high E_{rel} .

 $S_{17}(0)$ is unchanged. Reduced slope of $S_{17}(E_{rel})$.