Pairing schemes for HFB calculations: Formal aspects

Thomas Duguet

NSCL and Dept. of Physics and Astronomy, MSU, USA

In collaboration with:

- K. Bennaceur, IPNL and CEA/ESNT, France
- P. Bonche, CEA/Saclay, France

Towards a Universal Density Functional for the Nucleus, Seattle, sept 26-30 2005

Effect of pairing on structure properties

I. Individual excitation spectra:

*Gap for even-even nuclei \Rightarrow a (quite) direct measure of the gap

II. Odd-even mass staggering (OES)

III. Collective excitations \Rightarrow less direct measure but sensitive to the spatial structure of the force

*Rotational: $\nearrow \mathcal{J}^{(2)} = -\frac{\partial^2 \mathcal{E}^{\omega}}{\partial^2 \omega}$ with ω *Vibrational states: low-lying states \rightarrow especially in exotic nuclei *Shape isomers: from intruders

IV. Width of deep-hole states

V. Matter density (reduces halos)

VI. Pair transfer

VII. Glitches in the inner crust of neutron stars

VIII. Cooling of neutron stars: emission processes and heat diffusion

Framework using gauge invariance symmetry breaking

I. Many-body perturbation theory written in terms of the bare nucleon-nucleon force:

*Green-function's formalism

Galitskii, Migdal, Gorkov using non-time-ordered diagrams

*Goldstone formalism

Bogolyubov, Mehta, Henley and Wilets using time-ordered diagrams

II. **Density Functional Theory** a la Hohenberg-Kohn/Kohn-Sham:

*Fully non-local theory (well-behaved) Oliveira et al. (1988) for High- T_c superconductors

*Local theory (including microscopic regularization schemes) Bruun et al. (1999) for trapped ultracold fermionic atoms Bulgac and Yu (2002) for finite nuclei

III. Variational-type HFB calculations:

*Fully non-local theory (regularized through the finite range) Déchargé and Gogny (1981) for finite nuclei

*Local theory (including phenomenological regularization schemes) Dobaczewski et al. (1984) for finite nuclei

Main ingredients for pairing

I. The global amount of pairing (in the ground-state as a start) depends on:

*The number of particles outside a closed-shell

The density of s.p. states around the Fermi surface $\leftarrow m^$, level of approx

*The proximity of the s.p. continuum

II. Pairing properties and their trends (toward drip-lines for instance) depend on:

*The characteristics of the effective pairing force/functional used:

 \longrightarrow isoscalar and isovector density-dependence

 \rightarrow range? or regularization (+ gradient corrections)?

*The level of approximation one is working at:

 \longrightarrow mean-field = static pairing

 \rightarrow beyond = coupling to vibrations and dynamical pairing

Influence on low-energy nuclear structure?

Phenomeno. zero-range effective forces/local functionals

I. Generalities

*Underlying mean-field usually generated by a Skyrme functional/Gogny force *Pairing in the ${}^{1}S_{0}$ channel for now (n-n and p-p) *Only phenomenological schemes have been used in finite nuclei so far *No attempt to construct non-empirical Kohn-Sham functional

II. Standard Density Dependent Delta Interaction (DDDI)/local functional quadratic in $\tilde{\rho}^{q}$:

$$E^{p-p} = \frac{1}{4} \sum_{q} \int d\vec{r} t_0' f_{DDDI}(\vec{r}) \, \tilde{\rho}^{q\,2}(\vec{r}) \quad \text{with} \quad f_{DDDI}(\vec{r}) = \left[1 - \eta \left(\frac{\rho_0(\vec{r})}{\rho_{sat}} \right)^{\gamma} \right]$$

 ${}^* \tilde{\rho}^{q}(\vec{r})$ is the local/spin-singlet part of the pairing tensor

 $*\rho_0(\vec{r})$ is the local/scalar/isoscalar part of the normal density matrix

$$*\eta = 0 \leftrightarrow Volume (V)$$

- $1/2 \leftrightarrow Mixed (M)$
- $1 \leftrightarrow Surface(S)$

*The smaller γ , the stronger the interaction at low density

*Surface enhanced interaction was motivated by ab-initio calculations of $\Delta_{k_F}(k_F)$ in INM

Phenomeno. regularization schemes

I. Mainly used phenomenological regularization schemes are

Name	Basis	Scheme	Regularized Quantity
ULB	Can.	$\lambda - \epsilon_{cut} \leq \epsilon_{can} \leq \lambda + \epsilon_{cut}$	$ ilde{ ho}^{q}(ec{r}) \Rightarrow \Delta$ and E^{p-p}
DFT	Q. P.	$E_{qp} \le E_{cut}$	$ ilde{ ho}^{q}(ec{r}) \Rightarrow oldsymbol{\Delta}$ and E^{p-p}

*"*ULB*" with $\epsilon_{cut} = 5MeV$

$$\tilde{\rho}_{cut}^{q}(\vec{r}) = 2\sum_{i>0,\sigma} g_{i}^{ULB} |\varphi_{i}(\vec{r}\sigma q)|^{2} u_{iq} v_{\bar{\imath}q} \quad \text{with} \quad g_{i}^{ULB} = \frac{1}{1 + e^{(\epsilon_{iq} - \lambda^{q} - \epsilon_{cut})/\Delta\epsilon}} \frac{1}{1 + e^{-(\epsilon_{iq} - \lambda^{q} - \epsilon_{cut})/\Delta\epsilon}}$$

*"DFT" with $E_{cut} = 60 MeV$

$$\tilde{\rho}_{cut}^{q}(\vec{r}) = -\sum_{0 < E_i, \sigma} g_i^{DFT} \Psi_2(E_i, \vec{r}\sigma q) \Psi_1^*(E_i, \vec{r}\sigma q) \quad \text{with} \quad g_i^{DFT} = \frac{1}{1 + e^{(E_i - E_{cut})/\Delta\epsilon}}$$

II. The local pairing gap

$$\Delta^q(\vec{r}) = \frac{1}{2} t'_0 f_{DDDI}(\vec{r}) \,\tilde{\rho}^q_{cut}(\vec{r})$$

III. t_0' is adjusted accordingly using one's preferred recipe . . .

Current situation

I. Physics issues

*Existing schemes are successful over the known mass table

*Limited predictive power for unknown regions (very different predictions)

II. We need to

*Improve on usual DDDI \Rightarrow Regularization and (isovector) density-dependence

*Understand whether resolving the finite range of the force is necessary

*Understand bare force's contribution to pairing in finite nuclei (Barranco et al., (2004))

*Understand what is needed beyond?

III. Technical issues

*Simple forms required to perform extensive 3D HFB calculations of finite nuclei *Even more critical when going beyond the mean-field

Microscopic regularization in the DFT context = "RDFT"

I. Infinite matter : ultraviolet divergence of the pairing density

Bulgac and Yu (2002)

$$\lim_{\vec{r}_1 \to \vec{r}_2} \tilde{\rho}^q(\vec{r}_1, \vec{r}_2) = \tilde{\rho}^q_{reg}(\vec{r}_2) + \lim_{\vec{r}_1 \to \vec{r}_2} \frac{m}{4\pi\hbar^2} \frac{\Delta \exp\left(ik_F |\vec{r}_1 - \vec{r}_2|\right)}{|\vec{r}_1 - \vec{r}_2|} = +\infty$$

 \Rightarrow throw away the divergent part $m/2\pi\hbar^2|ec{r_1}-ec{r_2}|$ in the limit $ec{r_1}-ec{r_2} o 0$

II. Finite nuclei: Thomas-Fermi approximation of the HF propagator = $k_F \rightarrow k_F(\vec{r})$

$$\begin{split} \tilde{\rho}_{cut}^{q}(\vec{r}) &= -\sum_{0 < E_i < E_{cut}, \sigma} \Psi_2(E_i, \vec{r} \sigma q) \, \Psi_1^*(E_i, \vec{r} \sigma q), \\ \Delta^q(\vec{r}) &= \frac{1}{2} \, t_0' \, f_{DDDI}(\vec{r}) \, \tilde{\rho}_{reg}(\vec{r}) = \frac{1}{2} \, t_0^{eff} \, '(\vec{r}) \, f_{DDDI}(\vec{r}) \, \tilde{\rho}_{cut}(\vec{r}) \\ \frac{1}{t_0^{eff} \, '(\vec{r})} &= \frac{1}{t_0'} - \frac{mk_c(\vec{r})}{2\pi^2\hbar^2} \left[1 - \frac{k_F(\vec{r})}{2k_c(\vec{r})} \ln \frac{k_c(\vec{r}) + k_F(\vec{r})}{k_c(\vec{r}) - k_F(\vec{r})} \right] = \text{Regulator in coordinate space} \end{split}$$

with

$$\lambda^{q} \equiv \frac{\hbar^{2}k_{F}^{2}(\vec{r})}{2m} + U(\vec{r}) \quad \text{and} \quad E_{cut} \equiv \frac{\hbar^{2}k_{c}^{2}(\vec{r})}{2m} + U(\vec{r}) - \lambda^{q}$$

III. Comments

*One parameter less theory; systematic principle behind regularization method *One is still left with constructing the functional for finite nuclei

A complementary approach : MBPT + bare NN force

Step by step construction of the functional (a priori non-local)

I. First step = mean-field picture = lowest-order in terms of IRREDUCIBLE vertices

Particle-hole:

In-medium two-body matrix $(G/T/V_{lowk} \text{ at } 2^{nd} \text{ order})$

Two-body scattering in the medium

Particle-particle:

BARE INTERACTION

Two-body bound state in the medium

\iff HFB = Independent pairs approximation

II. Beyond lowest order

*Screening effects due to spin and density fluctuations (dressed vertex and self-energy) Shen et al. (2005); Terasaki et al. (2001) *We want to understand that in the context of GCM/Projection

III. For now, the lowest order...

*Understand systematically the contribution of the bare force to pairing in finite nuclei *Structure effects in exotic nuclei *Setting up an approximate local functional containing (most of) this physics

Bare NN force in the ${}^{1}S_{0}$ channel

I. Realistic NN forces in their full glory are too involved

II. Impossible to use in systematic calculations of heavy nuclei

III. A solution

T. D., PRC 69 (2004)

$$\langle \vec{k}_1 \vec{k}_2 | V_{sep} | \vec{k}_3 \vec{k}_4 \rangle \approx \lambda v(k) v(k') (2\pi)^3 \delta(\vec{P} - \vec{P}')$$
 with $v(k) = e^{-\alpha^2 k^2}$

Very well justified at low energy (virtual di-neutron in the vacuum around 0 energy)

IV. Fit (using predictions from AV18 NN interaction, Wiringa et al. (1995))

*Phase shifts $\delta^{1S_0}(k)$ from *NN* scattering

*Pairing gap from realistic NN interaction in infinite matter

III. Results in infinite matter (no self-energy at this point: $\epsilon(k) = k^2/2m$)

*The separable force is able to reproduce fine pairing properties:

 $\Delta^q(k_F)$ up to the gap closure AND $\Delta^q(k) \quad \forall \; k$

*The Gogny force is close to V_{sep} and $V_{low k}$ (stronger though)

IV. Self-consistent HFB calculations of finite nuclei in coordinate space: V_{sep} is still untractable

V. Link to density-dependent zero-range interactions: not obvious

VI. Exact reformulation of the pairing problem in terms of an effective force

Combine $\Delta_{i\,\overline{\imath}}^{q} = -\sum_{j} \langle \, i\,\overline{\imath} \,|\, V_{sep} \,|\, j\,\overline{\jmath} \,\rangle \, u_{jq} \, v_{jq}$

with $\langle ij | \mathcal{R}(s) | kl \rangle = \langle ij | V_{sep} | kl \rangle + \sum_{mn} \langle ij | \mathcal{R}(s) | mn \rangle F_{mn}^{\mathcal{R}}(s) \langle mn | V_{sep} | kl \rangle$

VII. Freedom in the choice of $F_{mn}^{\mathcal{R}}(s) \Rightarrow$ sums p-p and h-h ladders in the **superfluid**

$$F_{mn}^{\mathcal{D}/\mathcal{T}}(0) = -\frac{(1-v_{mq}^{2})(1-v_{nq}^{2})}{E_{mq}+E_{nq}} \pm \frac{v_{mq}^{2}v_{nq}^{2}}{E_{mq}+E_{nq}}$$
$$\Delta_{i\bar{\imath}}^{q} = -\sum_{j} \langle i\bar{\imath} | \mathcal{D}(0) | j\bar{\jmath} \rangle 2 v_{jq}^{2} u_{jq} v_{jq}$$
$$\Delta_{i\bar{\imath}}^{q} = -\sum_{j} \langle i\bar{\imath} | \mathcal{T}(0) | j\bar{\jmath} \rangle 2 (1-v_{jq}^{2}) v_{jq}^{2} u_{jq} v_{jq}$$

VIII. Effective pairing interactions:

 $\langle i\bar{\imath} | V_q^{eff\mathcal{D}} | j\bar{\jmath} \rangle \equiv \langle i\bar{\imath} | \mathcal{D}(0) | j\bar{\jmath} \rangle 2 v_{jq}^2$ $\langle i\bar{\imath} | V_q^{eff\mathcal{T}} | j\bar{\jmath} \rangle \equiv \langle i\bar{\imath} | \mathcal{T}(0) | j\bar{\jmath} \rangle 2 (1 - v_{jq}^2) v_{jq}^2$

*Both are exact and equivalent (between themselves and to the starting point = bare force)

*Of course, not true anymore if approximations are made on $\mathcal{D}(0)/\mathcal{T}(0)$

*Resum high-E virtual excitations \rightarrow treat non-linear pair scatterings through the gap equation

*Natural cut-off in the gap equation = regularization scheme in the medium

Asymmetric version around λ^q : $2 v_{jq}^2 \implies$ together with $\mathcal{D}(0)$

Symmetric version around λ^q : $2(1-v_{jq}^2)v_{jq}^2 \implies$ together with $\mathcal{T}(0)$

 $*V_q^{eff \mathcal{D}/\mathcal{T}}$ depends on the medium \Rightarrow isoscalar and isovector density dependences

Appropriate scheme to study range (and regularization) vs density-dependence

$V^{eff \mathcal{D}}$ effective interaction in infinite matter

I. Form
$$\langle \vec{k} | \mathcal{D}[k_F^q](0) | \vec{k'} \rangle = \lambda f(k_F^q) v(k) v(P/\sqrt{2}) v(k') = \lambda f(k_F^q) \exp\left[-\alpha^2 \left(k^2 + P^2/2 + k'^2\right)\right]$$

II. Density dependence: $f_{(Z)FR}(k_F^q)$

 $*f_{(Z)FR}(k_F^q) \approx A_{(Z)FR} + B_{(Z)FR} \ln k_F^q + C_{(Z)FR} (\ln k_F^q)^2$

*Strong enhancement at low-density \iff virtual state in the vacuum

*Zero-range approx: surf/vol / = pure density effect renormalizing the finite range
*Finite range can be kept for calculations of finite nuclei (gradient corrections to all orders)

HFB calculations in coordinate space

I. The force is finite-ranged, non-local and density-dependent:

$$\langle \vec{r_1} \, \vec{r_2} \, | \, \mathcal{D}_q(0) \, | \, \vec{r_3} \, \vec{r_4} \, \rangle \, = \, \frac{\lambda}{(2\pi)^6 \alpha^{12}} \, \int d\vec{r} \, f_{FR}(\vec{r}) \, e^{-\sum_{i=1}^4 \, |\vec{r} - \vec{r_i}|^2 / 2\alpha^2} \qquad \text{with} \qquad f_{FR}(\vec{r}) \equiv f_{FR}(k_F^q(\vec{r}))$$

but

$$\begin{split} \hat{\rho}^{q}_{reg}(\vec{r}) &= 2\sum_{i>0,\sigma} 2v^{2}_{iq} |\hat{\varphi}_{i}(\vec{r}\sigma q)|^{2} u_{iq} v_{\bar{i}q} \\ \hat{\Delta}^{q}_{reg}(\vec{r}) &= \frac{1}{2} \lambda f_{FR}(\vec{r}) \, \hat{\bar{\rho}}^{q}_{reg}(\vec{r}) \\ E^{p-p} &= \frac{1}{2} \sum_{q} \int d\vec{r} \, \hat{\Delta}^{q}_{reg}(\vec{r}) \, \hat{\bar{\rho}}^{q}(\vec{r}) \end{split}$$

with $\bar{\varphi}_i(\vec{r}\sigma q) = \frac{1}{(\sqrt{2\pi}\alpha)^3} \int d\vec{r}' e^{-|\vec{r}-\vec{r}'|^2/2\alpha^2} \varphi_i(\vec{r}'\sigma q)$

*Same form as for a zero-range force + convoluted canonical w.f.

*CPU / systematic 3D HFB calculations in coordinate space through 2-basis method are tractable *Requires only trivial modifications of existing codes

Regularization scheme: comparison between RDFT and " $2v_{ia}^2$ "

*Same idea of taking care of the ultraviolet divergence in the medium

*Use very different technics

*Are expressed in different basis: coordinate basis vs canonical basis

*However, they regularize the pairing problem in the same way

$$\frac{1}{|t'_0|} = \int_0^{k_c} dk \frac{k^2}{4\pi^2} \left[\frac{1}{\sqrt{[\epsilon(k) - \lambda]^2 + \Delta^2}} - h(k) \right] \xrightarrow[k_c \to \infty]{} \text{finite}$$

-Asymmetric RDFT and
$$2v_k^2$$
: $\left[\frac{1}{\sqrt{[\epsilon(k)-\lambda]^2+\Delta^2}}-h(k)\right] \xrightarrow[\epsilon_k \to +\infty]{\Delta^2} \frac{\Delta^2}{2(\epsilon_k-\lambda)^3}$

-Symmetric RDFT and
$$2(1 - v_k^2)v_k^2$$
: $\left[\frac{1}{\epsilon(k) - \lambda]^2 + \Delta^2} - h(k)\right] \xrightarrow[\epsilon_k \to \pm \infty]{\Delta^2} \frac{\Delta^2}{2|\epsilon_k - \lambda|^3}$

Regularization scheme: does it impact the physics?

I. Ex: DFT and RDFT only differs through the regularization method

 \Rightarrow comparison through 1D HFB calculations of semi-magic nuclei

 \Rightarrow SLy5 Skyrme parametrization in the p-h channel

 $\Rightarrow f_{DDDI}$ with $\gamma = 1$ and $\eta = 1/2$ (very moderately enhanced at low dens)

Masses, S_{2N} , gaps, $\delta \langle r^2 \rangle$, $\Delta(\vec{r})$ of spherical nuclei are almost identical

II. BUT: strongly rising intensity at low dens derived in the present work from NN force

 \Rightarrow Crucial to use a microscopic regularization scheme

 \Rightarrow Crucial to derive the microscopic cut-off and the density dependence accordingly

 \Rightarrow K. Bennaceur's talk

Summary

I. Microscopic pairing interaction in 3D HFB calculations in coordinate space

*Possible to handle the bare NN force through a recast of the pairing problem

*Finite range and non local

*Isoscalar and isovector density dependences as well as low density regime

*Confirmation of refine phenomenological study in favor of *Mixed* DDDI (Doba et al. (2001))

Perspectives

I. Extensive study T. D., K. Bennaceur and P. Bonche (2005) in preparation

*Convergence properties of different methods

*Detailed discussion of regularization schemes

 $*S_N$ and S_{2N} (drip-lines), Odd-even mass differences, PES, moment of inertia (cf. E_{pair})

*Systematic bare force's contribution to pairing in finite nuclei

*Spatial di-neutron correlations (cf. Matsuo et al. (2004)) : FR vs ZFR

*Individual excitations: FR vs ZFR

II. Near future

*Beyond mean-field (Projection + GCM methods): FR vs ZFR (with M. Bender)
*New Skyrme force adjusted with FR; mass tables (with T. Lesinski and K. Bennaceur)
*Systems probing the strong pairing force at low density (with B. Avez and V. Rotival)
*Coulomb for proton-proton pairing : DME treatment (with K. Bennaceur)

II. Future

*Effect of the three-body force on pairing properties

*Correction to the pairing vertex in GCM and Projection methods (with V. Rotival)