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Effect of pairing on structure properties

I. Individual excitation spectra:

*Gap for even-even nuclei ⇒ a (quite) direct measure of the gap

II. Odd-even mass staggering (OES)

III. Collective excitations ⇒ less direct measure but sensitive to the spatial structure of the force

*Rotational: ր J (2) = −∂2Eω

∂2ω
with ω

*Vibrational states: low-lying states → especially in exotic nuclei

*Shape isomers: from intruders

IV. Width of deep-hole states

V. Matter density (reduces halos)

VI. Pair transfer

VII. Glitches in the inner crust of neutron stars

VIII. Cooling of neutron stars: emission processes and heat diffusion



Framework using gauge invariance symmetry breaking

I. Many-body perturbation theory written in terms of the bare nucleon-nucleon force:

*Green-function’s formalism

Galitskii, Migdal, Gorkov using non-time-ordered diagrams

*Goldstone formalism

Bogolyubov, Mehta, Henley and Wilets using time-ordered diagrams

II. Density Functional Theory a la Hohenberg-Kohn/Kohn-Sham:

*Fully non-local theory (well-behaved)

Oliveira et al. (1988) for High-Tc superconductors

*Local theory (including microscopic regularization schemes)

Bruun et al. (1999) for trapped ultracold fermionic atoms

Bulgac and Yu (2002) for finite nuclei

III. Variational-type HFB calculations:

*Fully non-local theory (regularized through the finite range)

Déchargé and Gogny (1981) for finite nuclei

*Local theory (including phenomenological regularization schemes)

Dobaczewski et al. (1984) for finite nuclei



Main ingredients for pairing

I. The global amount of pairing (in the ground-state as a start) depends on:

*The number of particles outside a closed-shell

*The density of s.p. states around the Fermi surface ⇐ m⋆, level of approx

*The proximity of the s.p. continuum

II. Pairing properties and their trends (toward drip-lines for instance) depend on:

*The characteristics of the effective pairing force/functional used:

−→ isoscalar and isovector density-dependence

−→ range? or regularization (+ gradient corrections)?

*The level of approximation one is working at:

−→ mean-field = static pairing

−→ beyond = coupling to vibrations and dynamical pairing

Influence on low-energy nuclear structure?



Phenomeno. zero-range effective forces/local functionals

I. Generalities

*Underlying mean-field usually generated by a Skyrme functional/Gogny force

*Pairing in the 1S0 channel for now (n-n and p-p)

*Only phenomenological schemes have been used in finite nuclei so far

*No attempt to construct non-empirical Kohn-Sham functional

II. Standard Density Dependent Delta Interaction (DDDI)/local functional quadratic in ρ̃ q:

Ep−p =
1

4

∑

q

∫

d~r t′0 fDDDI(~r) ρ̃ q 2 (~r) with fDDDI (~r) =

[

1 − η

(

ρ0(~r)

ρsat

)γ]

*ρ̃ q(~r) is the local/spin-singlet part of the pairing tensor

*ρ0(~r) is the local/scalar/isoscalar part of the normal density matrix

*η = 0 ↔ Volume (V)

1/2 ↔ Mixed (M)

1 ↔ Surface (S)

*The smaller γ, the stronger the interaction at low density

*Surface enhanced interaction was motivated by ab-initio calculations of ∆kF
(kF) in INM



Phenomeno. regularization schemes

I. Mainly used phenomenological regularization schemes are

Name Basis Scheme Regularized Quantity

ULB Can. λ−ǫcut ≤ ǫcan ≤ λ+ǫcut ρ̃ q(~r) ⇒ ∆ and Ep−p

DFT Q. P. Eqp ≤ Ecut ρ̃ q(~r) ⇒ ∆ and Ep−p

*”ULB” with ǫcut = 5MeV

ρ̃q
cut(~r) = 2

∑

i>0, σ

gULB
i |ϕi(~rσq)|2 uiq v̄ıq with gULB

i =
1

1 + e(ǫiq−λq−ǫcut)/∆ǫ

1

1 + e−(ǫiq−λq−ǫcut)/∆ǫ

*”DFT” with Ecut = 60MeV

ρ̃q
cut(~r) = −

∑

0<Ei, σ

gDFT
i Ψ2(Ei, ~rσq)Ψ∗

1(Ei, ~rσq) with gDFT
i =

1

1 + e(Ei−Ecut)/∆ǫ

II. The local pairing gap

∆q(~r) =
1

2
t′0 fDDDI(~r) ρ̃q

cut(~r)

III. t′0 is adjusted accordingly using one’s preferred recipe . . .



Current situation

I. Physics issues

*Existing schemes are successful over the known mass table

*Limited predictive power for unknown regions (very different predictions)

II. We need to

*Improve on usual DDDI ⇒ Regularization and (isovector) density-dependence

*Understand whether resolving the finite range of the force is necessary

*Understand bare force’s contribution to pairing in finite nuclei (Barranco et al., (2004))

*Understand what is needed beyond?

III. Technical issues

*Simple forms required to perform extensive 3D HFB calculations of finite nuclei

*Even more critical when going beyond the mean-field



Microscopic regularization in the DFT context = ”RDFT”

I. Infinite matter : ultraviolet divergence of the pairing density Bulgac and Yu (2002)

lim
~r1→~r2

ρ̃q(~r1, ~r2) = ρ̃q
reg(~r2) + lim

~r1→~r2

m

4π~2

∆exp (ikF |~r1 − ~r2|)
|~r1 − ~r2|

= +∞

⇒ throw away the divergent part m/2π~2|~r1 − ~r2| in the limit ~r1 − ~r2 → 0

II. Finite nuclei: Thomas-Fermi approximation of the HF propagator = kF → kF(~r)

ρ̃q
cut(~r) = −

∑

0<Ei<Ecut, σ

Ψ2(Ei, ~rσq)Ψ∗
1(Ei, ~rσq),

∆q(~r) =
1

2
t′0 fDDDI(~r) ρ̃reg(~r) =

1

2
teff0

′(~r) fDDDI(~r) ρ̃cut(~r)

1

teff0
′(~r)

=
1

t′0
− mkc(~r)

2π2~2

[

1 − kF(~r)

2kc(~r)
ln

kc(~r) + kF(~r)

kc(~r) − kF(~r)

]

= Regulator in coordinate space

with

λq ≡
~2k2

F(~r)

2m
+ U(~r) and Ecut ≡

~2k2
c (~r)

2m
+ U(~r) − λq

III. Comments

*One parameter less theory; systematic principle behind regularization method

*One is still left with constructing the functional for finite nuclei



A complementary approach : MBPT + bare NN force

Step by step construction of the functional (a priori non-local)

I. First step = mean-field picture = lowest-order in terms of IRREDUCIBLE vertices

Particle-hole: Particle-particle:

In-medium two-body matrix (G/T/Vlowk at 2nd order) BARE INTERACTION

Two-body scattering in the medium Two-body bound state in the medium

⇐⇒ HFB = Independent pairs approximation

II. Beyond lowest order

*Screening effects due to spin and density fluctuations (dressed vertex and self-energy)

Shen et al. (2005); Terasaki et al. (2001)

*We want to understand that in the context of GCM/Projection

III. For now, the lowest order...

*Understand systematically the contribution of the bare force to pairing in finite nuclei

*Structure effects in exotic nuclei

*Setting up an approximate local functional containing (most of) this physics



Bare NN force in the 1S0 channel

I. Realistic NN forces in their full glory are too involved

II. Impossible to use in systematic calculations of heavy nuclei

III. A solution T. D., PRC 69 (2004)

〈~k1
~k2 |Vsep |~k3

~k4〉 ≈ λ v(k) v(k′) (2π)3 δ(~P − ~P ′) with v(k) = e−α2k2

Very well justified at low energy (virtual di-neutron in the vacuum around 0 energy)

IV. Fit (using predictions from AV18 NN interaction, Wiringa et al. (1995))

*Phase shifts δ
1S0 (k) from NN scattering

*Pairing gap from realistic NN interaction in infinite matter



III. Results in infinite matter (no self-energy at this point: ǫ(k) = k2/2m)
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*The separable force is able to reproduce fine pairing properties:

∆q(kF) up to the gap closure AND ∆q(k) ∀ k

*The Gogny force is close to Vsep and Vlow k (stronger though)



IV. Self-consistent HFB calculations of finite nuclei in coordinate space: Vsep is still untractable

V. Link to density-dependent zero-range interactions: not obvious

VI. Exact reformulation of the pairing problem in terms of an effective force

Combine ∆q
i ı̄ = −

∑

j
〈 i ı̄ |Vsep | j ̄ 〉ujq vjq

with 〈 i j |R(s) | k l 〉 = 〈 i j |Vsep | k l 〉 +
∑

mn
〈 i j |R(s) |m n 〉 F R

mn (s) 〈m n |Vsep | k l 〉

VII. Freedom in the choice of F R
mn (s) ⇒ sums p-p and h-h ladders in the superfluid

F
D/T

mn (0) = −
(1 − v2

mq) (1 − v2
nq)

Emq + Enq
±

v2
mq v2

nq

Emq + Enq

∆q
i ı̄ = −

∑

j

〈 i ı̄ | D(0) | j ̄ 〉2 v2
jq ujq vjq

∆q
i ı̄ = −

∑

j

〈 i ı̄ | T (0) | j ̄ 〉2 (1 − v2
jq) v2

jq ujq vjq



VIII. Effective pairing interactions:

〈 i ı̄ |V eff D
q | j ̄ 〉 ≡ 〈 i ı̄ | D(0) | j ̄ 〉2 v2

jq

〈 i ı̄ |V eff T
q | j ̄ 〉 ≡ 〈 i ı̄ | T (0) | j ̄ 〉2 (1 − v2

jq) v2
jq

*Both are exact and equivalent (between themselves and to the starting point = bare force)

*Of course, not true anymore if approximations are made on D(0)/T (0)

*Resum high-E virtual excitations → treat non-linear pair scatterings through the gap equation

*Natural cut-off in the gap equation = regularization scheme in the medium

Asymmetric version around λq: 2 v2
jq =⇒ together with D(0)

Symmetric version around λq: 2 (1 − v2
jq) v2

jq =⇒ together with T (0)

*V
eff D/T
q depends on the medium ⇒ isoscalar and isovector density dependences

Appropriate scheme to study range (and regularization) vs density-dependence



V eff D effective interaction in infinite matter

I. Form 〈~k | D[kq
F ](0) |~k ′ 〉 = λ f(kq

F) v(k) v(P/
√

2) v(k′) = λ f(kq
F) exp

[

−α2
(

k2 + P 2/2 + k
′ 2
)]

II. Density dependence: f(Z)FR(kq
F)
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Zero-range approx

*f(Z)FR(kq
F) ≈ A(Z)FR + B(Z)FR ln kq

F + C(Z)FR (ln kq
F)2

*Strong enhancement at low-density ⇐⇒ virtual state in the vacuum

*Zero-range approx: surf/vol ր = pure density effect renormalizing the finite range

*Finite range can be kept for calculations of finite nuclei (gradient corrections to all orders)



HFB calculations in coordinate space

I. The force is finite-ranged, non-local and density-dependent:

〈~r1 ~r2 | Dq(0) |~r3 ~r4 〉 =
λ

(2π)6α12

∫

d~r fFR(~r ) e
−
∑4

i=1
|~r−~ri|2/2α2

with fFR(~r ) ≡ fFR(kq
F(~r ))

but

ˆ̃ρq
reg(~r) = 2

∑

i>0, σ

2 v2
iq |ϕ̂i(~rσq)|2 uiq v̄ıq

∆̂q
reg(~r) =

1

2
λ fFR(~r) ˆ̃ρq

reg(~r)

Ep−p =
1

2

∑

q

∫

d~r ∆̂q
reg(~r) ˆ̃ρ q (~r)

with ϕ̆i(~rσq) = 1

(
√

2π α)3

∫

d~r ′ e−|~r−~r ′|2/2α2
ϕi(~r ′σq)

*Same form as for a zero-range force + convoluted canonical w.f.

*CPU / systematic 3D HFB calculations in coordinate space through 2-basis method are tractable

*Requires only trivial modifications of existing codes



Regularization scheme: comparison between RDFT and ”2v2
iq”

*Same idea of taking care of the ultraviolet divergence in the medium

*Use very different technics

*Are expressed in different basis: coordinate basis vs canonical basis

*However, they regularize the pairing problem in the same way

1

|t′0|
=

∫ kc

0

dk
k2

4π2

[

1
√

[ǫ(k) − λ]2 + ∆2
− h(k)

]

−→
kc→∞

finite

-Asymmetric RDFT and 2v2
k :

[

1√
[ǫ(k)−λ]2+∆2

− h(k)

]

−→
ǫk→+∞

∆2

2(ǫk−λ)3

-Symmetric RDFT and 2(1 − v2
k)v

2
k :

[

1
ǫ(k)−λ]2+∆2 − h(k)

]

−→
ǫk→±∞

∆2

2|ǫk−λ|3



Regularization scheme: does it impact the physics?

I. Ex: DFT and RDFT only differs through the regularization method

⇒ comparison through 1D HFB calculations of semi-magic nuclei

⇒ SLy5 Skyrme parametrization in the p-h channel

⇒ fDDDI with γ = 1 and η = 1/2 (very moderately enhanced at low dens)

Masses, S2N, gaps, δ〈r2〉, ∆(~r) of spherical nuclei are almost identical

II. BUT: strongly rising intensity at low dens derived in the present work from NN force

⇒ Crucial to use a microscopic regularization scheme

⇒ Crucial to derive the microscopic cut-off and the density dependence accordingly

⇒ K. Bennaceur’s talk



Summary

I. Microscopic pairing interaction in 3D HFB calculations in coordinate space

*Possible to handle the bare NN force through a recast of the pairing problem

*Finite range and non local

*Isoscalar and isovector density dependences as well as low density regime

*Confirmation of refine phenomenological study in favor of Mixed DDDI (Doba et al. (2001))

Perspectives

I. Extensive study T. D., K. Bennaceur and P. Bonche (2005) in preparation

*Convergence properties of different methods

*Detailed discussion of regularization schemes

*SN and S2N (drip-lines), Odd-even mass differences, PES, moment of inertia (cf. Epair)

*Systematic bare force’s contribution to pairing in finite nuclei

*Spatial di-neutron correlations (cf. Matsuo et al. (2004)) : FR vs ZFR

*Individual excitations: FR vs ZFR



II. Near future

*Beyond mean-field (Projection + GCM methods): FR vs ZFR (with M. Bender)

*New Skyrme force adjusted with FR; mass tables (with T. Lesinski and K. Bennaceur)

*Systems probing the strong pairing force at low density (with B. Avez and V. Rotival)

*Coulomb for proton-proton pairing : DME treatment (with K. Bennaceur)

II. Future

*Effect of the three-body force on pairing properties

*Correction to the pairing vertex in GCM and Projection methods (with V. Rotival)


