Pairing properties of nucleonic matter with dressed nucleons nucl-th/0508035, PRC in press

Herbert Müther Universität Tübingen &

Willem Dickhoff Washington University in St. Louis

- Pairing issues in matter
- · Short-range correlations and data!
- · Consequences of SRC
- Self-consistent Green's functions, dressed nucleons due to SRC
- · BCS: a reminder of standard pairing
- · SCGF plus BCS
- Results and Outlook

Pairing of dressed nucleons 1

Description of the nuclear many-body problem

Ingredients: Nucleons interacting by "realistic interactions"

Nonrelativistic many-body problem

Method: Green's functions (Propagators)

⇒ amplitudes instead of wave functions

keep track of all nucleons, including the high-momentum ones

Book:

Review: Prog. Part. Nucl. Phys. **52**, 377 (2004)

Lecture notes: http://www.nscl.msu.edu/~brown/theory-group/lecture-notes.html

Some pairing issues in infinite matter

- · Gap size in nuclear matter & neutron matter
- · Density & temperature range of superfluidity
- Resolution of ³S₁-³D₁ puzzle
- Influence of short-range correlations (SRC)
- Influence of polarization contributions
- Relation of infinite matter results & finite nuclei

Review: e.g. Dean & Hjorth-Jensen, RMP75, 607 (2003)

Puzzle related to gap size in ${}^3S_1 - {}^3D_1$ channel

Mean-field particles

Early nineties: BCS gaps ~ 10 MeV

Alm et al. Z.Phys.A337,355 (1990) Vonderfecht et al. PLB253,1 (1991) Baldo et al. PLB283, 8 (1992)

Dressing nucleons is expected to reduce pairing strength as suggested by in-medium scattering

Relative wave function and potential

Two effects associated with short-range correlations

- · Depletion of the Fermi sea
- · Admixture of high-momentum components

Recent data confirm both aspects (predicted by nuclear matter results)

Removal probability for valence protons from NIKHEF data Lapikás, NPA553,297c(1993)

Note:
We have seen mostly
data for removal of
valence protons

M. van Batenburg & L. Lapikás from ²⁰⁸Pb (e,e´p) ²⁰⁷Tl NIKHEF in preparation

Occupation of deeply-bound proton levels from EXPERIMENT

Up to 100 MeV
missing energy
and
270 MeV/c
missing momentum

Covers the whole mean-field domain for the FIRST time!!

Confirms predictions for depletion

Pairing of dressed nucleons 8

What are the last protons doing? Answer is coming!

- •Jlab E97-006 PRL 93, 182501(2004) Rohe et al.
- Location of high-momentum components
- Integrated strength in agreement with theoretical predictions!

High-energy strength due to SRC and tensor force 15%

SRC

100 MeV

10%

Coupling to surface phonons and Giant Resonances

65% quasihole strength

10%

Coupling to surface phonons and Giant Resonances

Spectral strength for a correlated nucleus

SRC

Location of high-momentum components due to SRC at high missing energy

We now essentially know what all the protons are doing in the ground state of a "closed-shell" nucleus !!!

- Unique for a correlated many-body system
- Information available for electrons in atoms (Hartree-Fock)
- Not for electrons in solids
- Not for atoms in quantum liquids
- Not for quarks in nucleons
- ⇒ Study nucleus for its intrinsic interest as a quantum many-body problem!

Green's function and Γ -matrix approach (ladders)

Single-particle Green's function

$$G(k,t_1,t_2) = -i \langle T c_k(t_1) c_k^+(t_2) \rangle$$

Dyson equation: -

$$G(k,\omega) = G^{(0)}(k,\omega) + G^{(0)}(k,\omega)\Sigma(k,\omega)G(k,\omega)$$

$$G(k,\omega) = \frac{1}{\omega - k^2/2m - \Sigma(k,\omega)}$$
 \Rightarrow $S(k,\omega) = -2\operatorname{Im}G(k,\omega)$

$$\Sigma$$
 = Γ . Γ -matrix

Self-energy

- Pairing instability possible
- Finite temperature calculation can avoid this

Self-consistency & SRC

$$\Gamma_{pphh} = \bullet \cdots \bullet + rac{1}{2}$$
 Γ_{pphh}

Interaction

Self-energy

Dyson equation

Pairing of dressed nucleons 13

Ladder diagrams in the medium (options)

Ladders in the medium

 $\Rightarrow self-energy calculation$

$$\left\langle k\ell \left| \Gamma_{pphh}^{JST} \left(K,E \right) \right| k'\ell' \right\rangle = \left\langle k\ell \left| V^{JST} \right| k'\ell' \right\rangle + \frac{1}{2} \sum_{\ell''} \int_{0}^{\infty} \frac{dq}{\left(2\pi \right)^{3}} q^{2} \left\langle k\ell \left| V^{JST} \right| q\ell'' \right\rangle G_{pphh}^{f} \left(q;K,E \right) \left\langle q\ell'' \right| \Gamma_{pphh}^{JST} \left(K,E \right) \left| k'\ell' \right\rangle$$

 G_{pphh}^f has different form depending on the level of sophistication Nuclear matter:

$$G_{BG}^{f}(k_1, k_2; E) = \frac{\theta(k_1 - k_F)\theta(k_2 - k_F)}{E - \varepsilon(k_1) - \varepsilon(k_2) + i\eta}$$

Bethe-Goldstone

$$G_{GF}^{f}(k_1, k_2; E) = \frac{\theta(k_1 - k_F)\theta(k_2 - k_F)}{E - \varepsilon(k_1) - \varepsilon(k_2) + i\eta} - \frac{\theta(k_F - k_1)\theta(k_F - k_2)}{E - \varepsilon(k_1) - \varepsilon(k_2) - i\eta}$$

Galitskii-Feynman

$$G_{pphh}^{f}\left(k_{1},k_{2};E\right) = \int_{\varepsilon_{F}}^{\infty} dE_{1} \int_{\varepsilon_{F}}^{\infty} dE_{2} \frac{S_{p}\left(k_{1};E_{1}\right)S_{p}\left(k_{2};E_{2}\right)}{E-E_{1}-E_{2}+i\eta} - \int_{-\infty}^{\varepsilon_{F}} dE_{1} \int_{-\infty}^{\varepsilon_{F}} dE_{2} \frac{S_{h}\left(k_{1};E_{1}\right)S_{h}\left(k_{2};E_{2}\right)}{E-E_{1}-E_{2}-i\eta}$$
Pairing of dressed nucleons 14

Phase shifts for dressed nucleons

PRC60, 064319 (1999) also PRC58, 2807 (1998)

Results from Nuclear Matter 2nd generation (2000)

- Spectral functions for $k = 0, 1.36, \& 2.1 \text{ fm}^{-1}$
- Common tails on both sides of ϵ_{F}

Momentum distribution: only minor changes

Occupation in nuclei: Depleted similarly!

Thesis Libby Roth Stoddard (2000)

Pairing of dressed nucleons 16

Self-energy

$$G(k,\omega) = \frac{1}{\omega - k^2/2m - \Sigma(k,\omega)}$$
 \Rightarrow $S(k,\omega) = -2\operatorname{Im}G(k,\omega)$

Real and imaginary part of the retarded self-energy

• $k_F = 1.35 \text{ fm}^{-1}$

• T = 5 MeV

• $k = 1.14 \text{ fm}^{-1}$

Note differences due to NN interaction

Spectral functions

- ·Strength above and below the Fermi energy as in BCS
- but broad distribution in energy
- BCS not just a cartoon of SCGF
 but both features must be
 considered in a consistent way
- CDBonn interaction at T=0

BCS: a reminder

NN correlations on top of Hartree-Fock:

$$\varepsilon_k$$
, c_k^+

Bogoliubov transformation $a_k^+ = u_k c_k^+ + v_k c_{\bar{k}}$

$$a_k^+ = u_k c_k^+ + v_k c_{\bar{k}}$$

with
$$u_k^2$$
 = $\frac{1}{2} \left[1 \pm \frac{\varepsilon_k - \mu}{\sqrt{(\varepsilon_k - \mu)^2 + \Delta(k)^2}} \right]$, $E(k) = \sqrt{(\varepsilon_k - \mu)^2 + \Delta(k)^2}$

Gap equation

Spectral function $S(k,\omega)$

$$\Delta(k) = \int k'^2 dk' < k, \bar{k} | V | k', \bar{k}' > \frac{\Delta(k')}{-2E(k)}$$

Solution of the gap equation

$$\Delta(k) = \sum_{k'} \langle k, \overline{k} | V | k', \overline{k'} \rangle \frac{\Delta(k')}{\omega - 2E(k)} \quad \text{with} \quad E(k) = \sqrt{(\varepsilon_k - \mu)^2 + \Delta(k)^2} \quad \text{and} \quad \omega = 0$$

Define:
$$\delta(k) = \frac{\Delta(k)}{\omega - 2E(k)}$$

$$\begin{pmatrix} 2E(k) + \langle k | V | k \rangle, & \dots, & \langle k | V | k' \rangle \\ \vdots & & \ddots, & \vdots \\ \langle k' | V | k \rangle, & \dots, & 2E(k') + \langle k' | V | k' \rangle \end{pmatrix} \begin{pmatrix} \delta(k) \\ \vdots \\ \delta(k') \end{pmatrix} = \omega \begin{pmatrix} \delta(k) \\ \vdots \\ \delta(k') \end{pmatrix}$$
 Eigenvalue problem for a pair of nucleons at $\omega = 0$

Steps of the calculation:

- \triangleright Assume $\Delta(k)$ and determine E(k)
- \triangleright Solve eigenvalue equation and evaluate new $\Delta(k)$
 - •If lowest eigenvalue ω <0 enhance $\Delta(k)$ (resp. $\delta(k)$)
 - •If lowest eigenvalue ω >0 reduce $\Delta(k)$
- > Repeat until convergence

Gaps from BCS for realistic interactions

- momentum dependence $\Delta(k)$
- different NN interactions
- very similar to pairing gaps in finite nuclei for like particles...!?
- for np pairing no strong empirical evidence...?!
- •consequences for neutron stars:
 - •Neutrino propagation
 - •Glitches
 - •Cooling

T = 0 Mean-field particles

Beyond BCS in the framework of SCGF

Generalized Green's functions:

Extend

$$G(k, t_1, t_2) = -i \langle T c_k(t_1) c_k^+(t_2) \rangle$$

Anomalous propagators

$$G(k, t_1, t_2) = \begin{pmatrix} -i \langle Tcc^+ \rangle & -i \langle Tcc \rangle \\ i \langle Tc^+c^+ \rangle & i \langle Tc^+c \rangle \end{pmatrix} = \begin{pmatrix} G & F \\ F^+ & \overline{G} \end{pmatrix}$$

Generalized Dyson equation: Gorkov equations

$$\begin{pmatrix} \omega - t_k - \Sigma(k, \omega) & -\Delta(k, \omega) \\ -\Delta^+(k, \omega) & \omega + t_k + \Sigma(k, \omega) \end{pmatrix} \begin{pmatrix} G_{pair}(k, \omega) & F(k, \omega) \\ F^+(k, \omega) & \overline{G}_{pair}(k, \omega) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Leads to e.g.

$$G_{pair} = G - G \Delta F$$

G includes all normal self-energy terms

Anomalous self-energy: Δ & generalized Gap equation

$$\Delta(k) = \int k'^2 dk' \left\langle k \middle| V \middle| k' \right\rangle \int d\omega \int d\omega' \frac{1 - f(\omega) - f(\omega')}{-\omega - \omega'} \, S(k', \omega) \, S_{pair}(k', \omega') \quad \Delta(k')$$
 Fermi function
$$f(\omega) = \frac{1}{e^{\beta \omega} + 1}$$

If we replace $S(k,\omega)$ by "HF" approx. and $S_{pair}(k,\omega)$ by BCS: \Rightarrow Usual Gap equation

If we take $S_{pair}(k,\omega) = S(k,\omega)$:

 \Rightarrow Corresponds to the homogeneous solution of Γ -matrix eq.

With $S_{pair}(k,\omega)$:

⇒ The above and self-consistency

Consistency of Gap equation (anomalous selfenergy) and Ladder diagrams

Iteration of Gorkov equations for anomalous propagator generates

... and all other ladder diagrams at total momentum and energy zero (w.r.t. 2μ) plus anomalous self-energy terms in normal part of propagator

So truly consistent with inclusion of ladder diagrams at other total momenta and energies

Features of generalized gap equation

$$\Delta(k) = \int k'^2 dk' \langle k|V|k' \rangle \int d\omega \int d\omega' \frac{1 - f(\omega) - f(\omega')}{-\omega - \omega'} S(k', \omega) S_{pair}(k', \omega') \Delta(k')$$

$$\frac{1}{-2|\varepsilon_{k'}-\mu|}$$

Dashed:

Spectral strength only at 1 energy Dashed-dot:

Effect of temperature (5 MeV)

Solid:

Includes complete strength distribution due to SRC

Related studies by Baldo, Lombardo, Schuck et al. use BHF self-energy

Proton-neutron pairing in symmetric nuclear matter

Using CDBonn

Dashed lines: quasiparticle poles

Solid lines: dressed nucleons

No pairing at saturation density!

CDBonn yields stronger pairing than ArV18

Pairing and spectral functions

Spectral functions

 $S(k,\omega)$ dashed = $A(k,\omega)$

 $S_{pair}(k,\omega)$ solid = $A_{S}(k,\omega)$

 ρ = 0.08 fm⁻³

T = 0.5 MeV

 $k = 193 \text{ MeV/c} \quad 0.9 k_F$

Expected effect

Pairing in neutron matter

Dressing effects weaker, but non-negligible CDBonn

Conclusions

- Consistent treatment of short-range and pairing correlations
- Short-range correlations reduce pairing significantly
- No proton-neutron pairing at normal density!
- Correlation effects are weaker in neutron matter but nonnegligible

Outlook

- Pairing and screening of interaction (polarization effects)...
- Complex and energy-dependent Δ
- Effects of pairing plus correlations on physics of neutrino propagation ...