Purpose of thetalk

In this talk we report on some aspects related to neutrotepnmairing effects, namely:

a)The limitations imposed on the solutions by the availalglametries. That is we look at
the solutions forA,,, Ap, Ag in N = Z systems.

As we shall show, we find solutions fdx,, = +A, and study them for the spin saturated
(single I-shell) and spin unsaturated (single j-shell). eck BCS against exact results.

b)The effect of model-dependent isospin violations up@n@RPA, in proton-neutron
channels.

There is a direct link between the break-up of the pn-QRPA@pmation and the isospin
mixing in the intrinsic state. We shall discuss the case ofqr-neutron pairing-like
configurations.
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Thegaps

Ag = g1 E Ugqw Vqw

Ag = go Z kw (Upwvnw + Unvaw)




Solutions

For N = Z and the same single particle-energies one has dways A2 = A2,

Thus:

a)Non-trivial : (two solutions)
Ap ==xA, Ao #0
b)Trivial: (two solutions)
DA, =Ap=0,A0#0
2) Ap =Ap #0,A0=0




In order to keep the formalism as simple as possible, we
consider in this work a separable pairing Hamiltonian of the
form

H= 2 ‘AZ CoauC M—gIE (Sor,)"Sor,

_802 (S 0) Sjoo (2.5)

It is useful to parametrize the interaction strengths as
=g(1—x), go=g(l+x), —-1=x=1. (2.6)

The matrix elements of the transformation (2.1) are fixed
through the following steps: (i) The diagonalization of the
two-quasiparticle Hamiltonian
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TABLE 1. The equivalence of the notation A,u in the /s and jj coupling schemes, the definition of the
pairing operators S o and of the occupation number 7 (—1=9=<1).
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FIG. 1. The vacuum energies W, for a single / shell as a func-
tion of x, (a) for = —0.80 and (b) »= —0.46. Dotted lines: trivial
solutions. Full: solution with A =A . Big dot: solution with A,
=—A,.



FIG. 2. The allowed region in the (x,7) plane for A,=A .



TABLE Il

. The solutions with A;=0 (second column) and A ,=

0 (third column) for a single / shell.
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FIG. 3. The energy spectrum as a function of x for {1 =41. (a)

A=4 and (b) A=16. Dot-dashed lines: exact solutions. Dotted:
trivial solutions. Full: solution with A =A .
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FIG. 4. The vacuum energies W
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for a single j shell as a func-

tion of x, for (a) »=—4/11 and (b) »=0. Dotted lines: trivial

solutions. Dashed: solution with A,=—-A4A,.

=A,.

Full: solution A,



Comments on the solutions

a)Exact solutions: the lowest eigenvalue continues to pieesented by two straight lines,
with a relatively sharp crossing at~ 0. This is consistent with the absence of non-trivial
solutions.

b)Single I-shell: the non-trivial solution lies exactlythe crossing point of the energies
corresponding to two trivial solutions.

c)Single j-shell: non-trivial solutions exist within a fiaidomain around = 0.
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Moreover, the Hamiltonian remains invariant with respect
to the double commutation with operators generating rota-
tions that are perpendicular to the symmetry axis (all such
directions are equivalent). If we choose the combination 7,
+s,,

[[H,(7'0+S}.)],(7'0+S),)]
=H—explim(ry+s,)]Hexp[—im(ry+s,)]=—H,
(5.2)

it is possible to define a discrete symmetry transformation

leaving invariant the Hamiltonian,” namely,

F=explim(7a+ m0+sy)]. (5.3)

If the vacuum state |) is not degenerate, it carries the quan-
tum numbers K=K ¢=0 and f, where

AN=£f), f==Ll (54)



Properties of the collective sector

So far we have discussed the structure of the solutions ofat@um and the quasiparticle
mean field. The collective sector of the wave function, tortmduded in the total wave
function, describes rotations in isospin, gauge and resadespln this sector the constraints

do apply.
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FIG. 6. The collective states associated with an intrinsic state
having f= 1. The same pattern repeats for all values of A=4v and
A=4py+2 within a nuclear shell. In addition to A, the states are
labeled by the quantum numbers (S,7).



Conclusions

¢ Identical number of protons and neutrons, identical sipgieicle
energies:
The vacuum energy was calculated in the single-l and singiell.
For the I-shell case the solution with,, = —A, does not exist (e.g:
only atx = 0). For the contrary, it exists in the j-shell situation,
within a finite interval ofr (z < —0.15).

Proton-Neutron interactions in pairing-like channels:

These interactions induced a strong mixing of T, thus thitisy
between intrinsic and collective variables becomes nacgskike in
the case of space rotations, the symmetries in gauge, msasgi
eventually spin spaces should be restored at the laboratbiy may
be achieved, for instance, by analytically projecting onla-set of
states with good quantum numbers. The naive use of the QRPA
produces large deviations respect to exact values.
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