Influence of the description of the projectile continuum on breakup calculations

Pierre Capel, Filomena Nunes, Daniel Baye, Gérald Goldstein

TRIUMF, Vancouver, Canada & NSCL, East-Lansing, USA & ULB, Brussels, Belgium

Outlook

- Introduction
- Theoretical reaction models
- Analysis of the influence of the projectile description:
 - Breakup of ⁸B on nickel at 25 MeV
 - Breakup of ¹¹Be on lead at 70AMeV
 - Breakup of 11 Be on carbon at 70AMeV
- Conclusion

Introduction

- RIB facilities give us access to exotic nuclei
- Breakup is used to study loosely bound nuclei In this reaction, the projectile dissociates through its interaction with a target
- Also indirect method to study radiative capture
- ⇒ Need of an accurate description of the reaction Several models exist: CDCC, time-dependent,...

Projectile usually seen as a 2-body system Sensitivity of the calculations to the potential? Small binding energy \Rightarrow peripheral? $\Rightarrow \sigma_{\text{bu}} \propto \text{ANC}^2$? Role of the continuum? couplings in the continuum? We address this issue for ^8B and ^{11}Be breakups

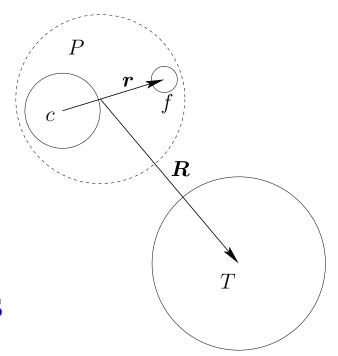
Theoretical framework

Projectile $(P) \equiv \text{core } (c) + \text{fragment } (f)$

$$\Rightarrow$$
 Hamiltonian: $H_0(\mathbf{r}) = -\frac{\hbar^2}{2\mu}\Delta_r + V_{cf}(r)$

 V_{cf} is a local potential adjusted to reproduce bound states of P and some resonances

Interactions with target T simulated with optical potentials



Breakup \equiv three-body scattering problem:

$$H(\boldsymbol{r},\boldsymbol{R})\Psi(\boldsymbol{r},\boldsymbol{R})=E_T\Psi(\boldsymbol{r},\boldsymbol{R}),$$
 with

$$H(\mathbf{r}, \mathbf{R}) = T_R + H_0(\mathbf{r}) + V_{cT}(R_{cT}) + V_{fT}(R_{fT})$$

CDCC

In Continuum Discretised Coupled Channels method wave function is expanded over H_0 eigenstates:

$$\Psi^{ ext{CDCC}}(m{r},m{R}) = \sum_{lpha} \phi_{lpha}(m{r}) \chi_{lpha}(m{R})$$

where

$$H_0\phi_lpha(m{r})=\epsilon_lpha\phi_lpha(m{r})$$

Continuum states ($\epsilon_{\alpha} > 0$) discretised in energy bins

 \Rightarrow resolution of coupled equations

$$[T_R + V_{\alpha\alpha}(\mathbf{R}) + E_T - \epsilon_{\alpha}] \chi_{\alpha}(\mathbf{R}) = -\sum_{\beta \neq \alpha} V_{\beta\alpha}(\mathbf{R}) \chi_{\beta}(\mathbf{R})$$

the coupling interactions are

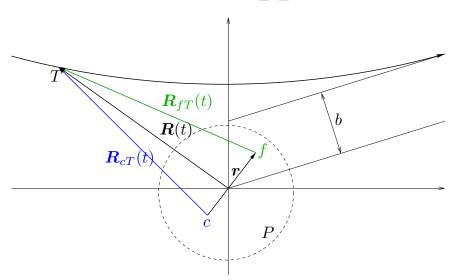
$$V_{\alpha\beta}(\mathbf{R}) = \langle \phi_{\alpha} | V_{cT}(R_{cT}) + V_{fT}(R_{fT}) | \phi_{\beta} \rangle$$

Time-dependent

The Time-dependent method: semiclassical approx.

Target follows classical trajectory $\boldsymbol{R}(t)$ (straight lines)

P-T interaction modelled by time-dependent potential



 \Rightarrow Resolution of TDSE:

$$i\frac{\partial}{\partial t}\Psi^{\text{TDSE}}(\boldsymbol{r},t) = \left[H_0 + V_{cT}(t) + V_{fT}(t)\right]\Psi^{\text{TDSE}}(\boldsymbol{r},t)$$

TDSE has been improved to the dynamical eikonal approximation Baye, PC, Goldstein PRL 95, 082502 (2005) (see Daniel Baye's seminar)

$^{8}\mathbf{B}$

⁸B: Candidate one-p halo nucleus -----modelled as 7 Be($3/2^{-}$)+p $_{2^{+}$ -0.137 0p3/2

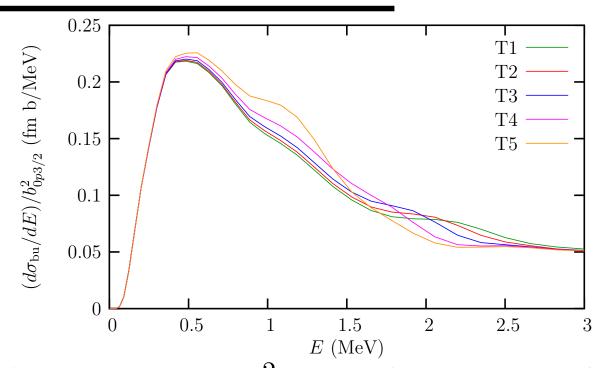
Its Coulomb breakup used to infer S_{17} Its breakup on 58 Ni at 26 MeV measured at ND Guimarães *et al.* PRL 84, 1862 (2000)

CDCC calculation in good agreement with experiment Tostevin, Nunes, Thompson PRC 63, 024617 (2001)

Sensitivity of the calculation to ⁷Be-*p* potential?

Calculations within CDCC approach 5 potentials based on Esbensen, Bertsch NPA 600, 37 (1996) WS with different a (T1–T5) reproducing only the gs they also exhibit an unfitted p1/2 resonance

⁸B breakup on ⁵⁸Ni @ 26MeV

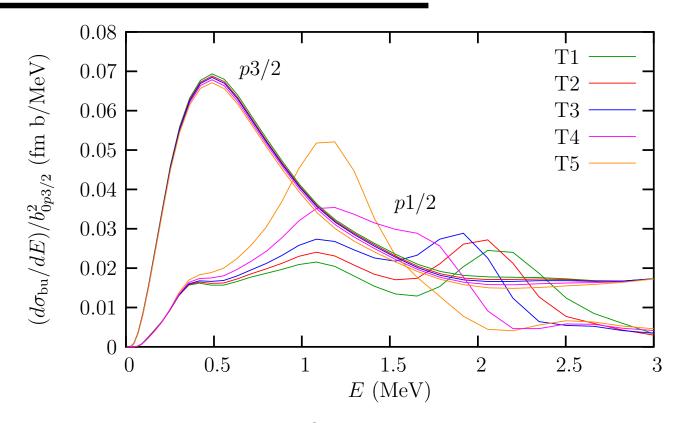


 σ_{bu} approximately \propto ANC² \Rightarrow peripheral reaction But bumps above 0.5 MeV

If Coulomb waves describe the continuum,

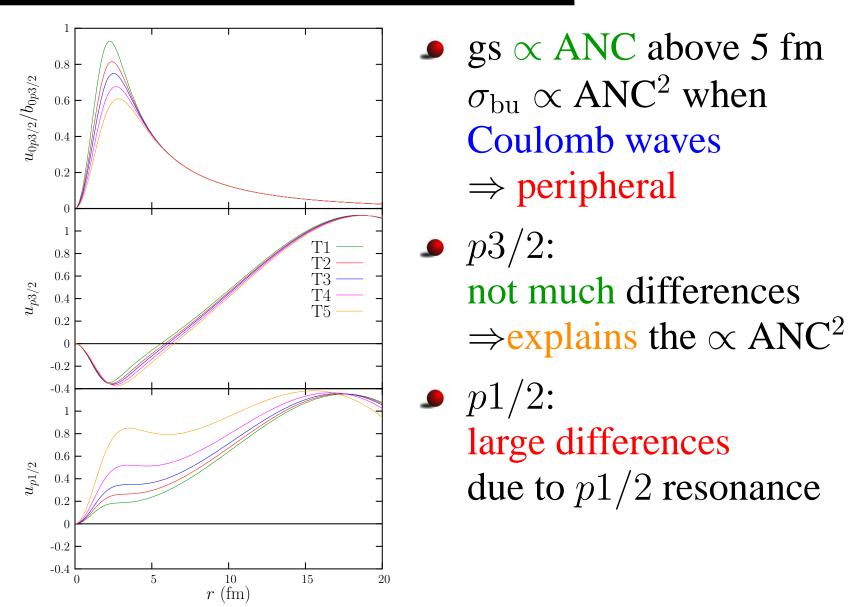
- No bumps
- $\sigma_{\rm bu}$ exactly $\propto {\rm ANC}^2$
- ⇒ continuum plays a role

8B: partial-wave contributions



- Dominant $p3/2 \propto \text{ANC}^2$
- Bumps only in p1/2 due to unfitted resonance
- Same in DWBA ⇒explained by 1-step transitions
 ⇒little influence of couplings in the continuum

8B: first-order analysis



Differences in $\sigma_{\rm bu}$ explained by gs and continuum

¹¹**Be**

 11 Be: best known one-n halo nucleus modelled as 10 Be(0^+)+n

$$\frac{5/2^{+} \ 1.274 \quad d5/2}{\frac{1/2^{-} -0.184 \quad 0p1/2}{1/2^{+} -0.504 \quad 1s1/2}}$$

Breakup on Pb and C at 70AMeV measured at RIKEN

Fukuda et al. PRC 70, 054606 (2004)

They find $C^2S(^{10}\text{Be}(0^+)\otimes s1/2)=0.7$

Sensitivity of this figure to ${}^{10}\text{Be-}n$ potential?

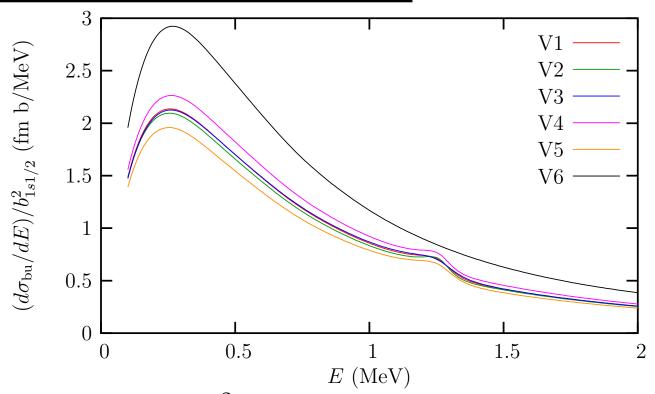
Calculations with time-dependent model

5 potentials [WS with different r_0 and a (V1–V5)] they reproduce the first 3 states

+ potential of Fukuda et al. (V6)

it reproduces only the ground state

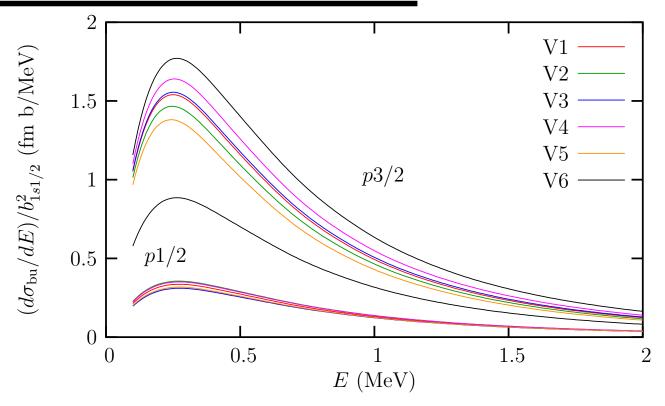
¹¹Be breakup on Pb @ 69AMeV



Large differences $\Rightarrow C^2S$ questionable $\sigma_{\rm bu}$ NOT \propto to ANC² Bump at 1.3 MeV due to d5/2 resonance

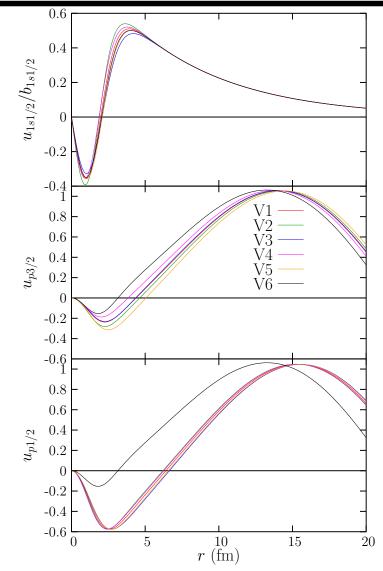
Using plane waves $\Rightarrow \sigma_{\rm bu} \propto \rm ANC^2$ \Rightarrow influence of continuum

¹¹Be: partial-wave contributions



- Dominant p3/2 contains the difference in V1–V5
- p1/2 approximatively $\propto ANC^2$ but for V6
- Same result at first-order
 ⇒ explained by 1-step transition

¹¹Be: first-order analysis



- gs \propto ANC above 5 fm $\sigma_{\rm bu} \propto$ ANC² when plane waves \Rightarrow peripheral $\Rightarrow C^2S$ questionable
- p3/2:

 large differences

 in phase shift
- p1/2:
 V1–V5 small differences
 but V6 very different
 due to p1/2 bound state

Differences in σ_{bu} explained by differences in δ_{lj} \Rightarrow breakup probes ground state and the continuum

Constraining the continuum

Breakup of loosely bound nuclei is peripheral $\Rightarrow \sigma_{bu}$ sensitive to ANC of gs AND to phase-shifts

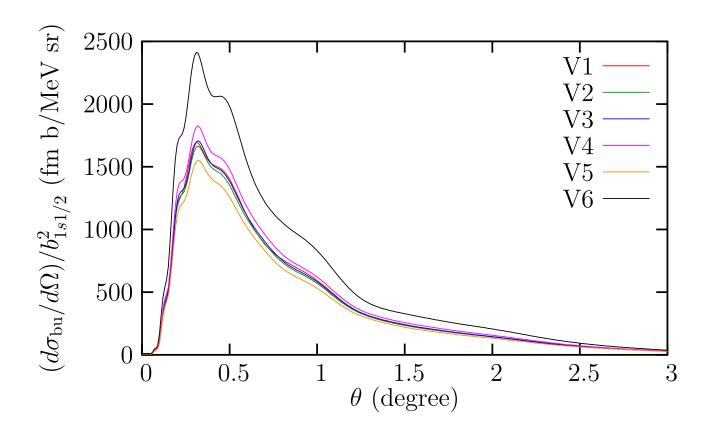
Adjusting the potential to gs is not sufficient Need to constrain the continuum description

Adjusting excited states constrains phase-shifts Is this accurate?

Unfortunately scattering data are scarce

- ⇒other observables (angular distributions,...)?
- ⇒other reactions (nuclear breakup,...) ?

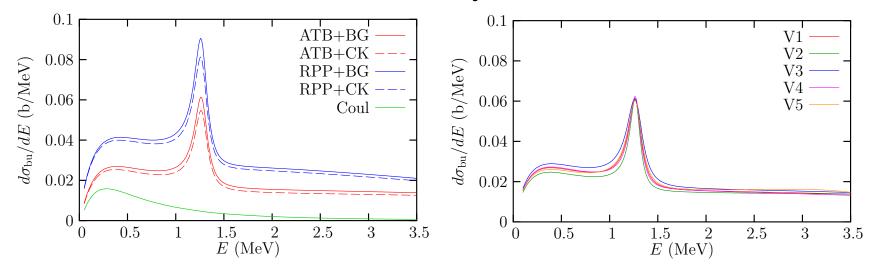
¹¹Be: angular distribution



- Same shape for all potentials
- Change in amplitude similar to $\sigma_{\rm bu}$
- ⇒Angular distribution does not constrain continuum

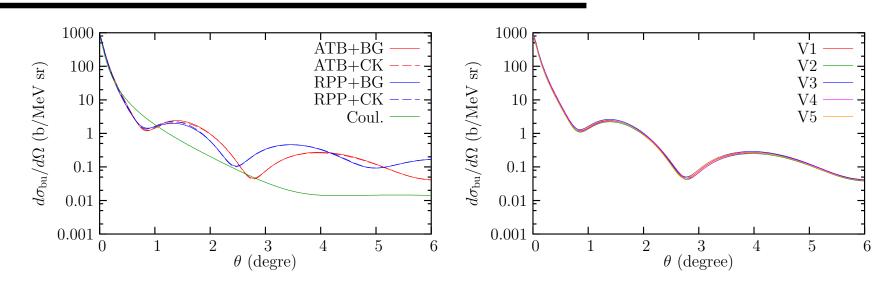
¹¹Be breakup on C @ 68AMeV

Measured at RIKEN Fukuda *et al.* PRC 70, 054606 (2004) Calculated in PC, Goldstein, Baye PRC 70, 064605 (2004)



- Breakup is nuclear dominated \Rightarrow sensitive to V_{PT}
- Breakup on light target is also sensitive to V_{cf} but same difference \Rightarrow no additional information
- Sensitivity to V_{cf} smaller than to V_{PT}

¹¹Be + C: angular distribution



- Large sensitivity to optical potentials
- All V_{cf} potentials lead to similar angular distribution: small difference in amplitude
- ⇒Angular distribution on light target does not constrain the continuum

But can constrain V_{PT}

Conclusion

- Analysis of the sensitivity of breakup calculations on V_{cf} for $^{11}\mathrm{Be}$ and $^{8}\mathrm{B}$
- $\sigma_{\rm bu}$ depends significantly on the potential choice even if fitted on same levels
- Influence of both bound and scattering states
- ⇒ Continuum must be constrained to extract information from breakup measurements Since direct measurement is difficult perhaps other observables/reactions can be used?