Influence of the description of the projectile continuum on breakup calculations Pierre Capel, Filomena Nunes, Daniel Baye, Gérald Goldstein TRIUMF, Vancouver, Canada & NSCL, East-Lansing, USA & ULB, Brussels, Belgium #### **Outlook** - Introduction - Theoretical reaction models - Analysis of the influence of the projectile description: - Breakup of ⁸B on nickel at 25 MeV - Breakup of ¹¹Be on lead at 70AMeV - Breakup of 11 Be on carbon at 70AMeV - Conclusion #### Introduction - RIB facilities give us access to exotic nuclei - Breakup is used to study loosely bound nuclei In this reaction, the projectile dissociates through its interaction with a target - Also indirect method to study radiative capture - ⇒ Need of an accurate description of the reaction Several models exist: CDCC, time-dependent,... Projectile usually seen as a 2-body system Sensitivity of the calculations to the potential? Small binding energy \Rightarrow peripheral? $\Rightarrow \sigma_{\text{bu}} \propto \text{ANC}^2$? Role of the continuum? couplings in the continuum? We address this issue for ^8B and ^{11}Be breakups ### Theoretical framework Projectile $(P) \equiv \text{core } (c) + \text{fragment } (f)$ $$\Rightarrow$$ Hamiltonian: $H_0(\mathbf{r}) = -\frac{\hbar^2}{2\mu}\Delta_r + V_{cf}(r)$ V_{cf} is a local potential adjusted to reproduce bound states of P and some resonances Interactions with target T simulated with optical potentials Breakup \equiv three-body scattering problem: $$H(\boldsymbol{r},\boldsymbol{R})\Psi(\boldsymbol{r},\boldsymbol{R})=E_T\Psi(\boldsymbol{r},\boldsymbol{R}),$$ with $$H(\mathbf{r}, \mathbf{R}) = T_R + H_0(\mathbf{r}) + V_{cT}(R_{cT}) + V_{fT}(R_{fT})$$ #### **CDCC** In Continuum Discretised Coupled Channels method wave function is expanded over H_0 eigenstates: $$\Psi^{ ext{CDCC}}(m{r},m{R}) = \sum_{lpha} \phi_{lpha}(m{r}) \chi_{lpha}(m{R})$$ where $$H_0\phi_lpha(m{r})=\epsilon_lpha\phi_lpha(m{r})$$ Continuum states ($\epsilon_{\alpha} > 0$) discretised in energy bins \Rightarrow resolution of coupled equations $$[T_R + V_{\alpha\alpha}(\mathbf{R}) + E_T - \epsilon_{\alpha}] \chi_{\alpha}(\mathbf{R}) = -\sum_{\beta \neq \alpha} V_{\beta\alpha}(\mathbf{R}) \chi_{\beta}(\mathbf{R})$$ the coupling interactions are $$V_{\alpha\beta}(\mathbf{R}) = \langle \phi_{\alpha} | V_{cT}(R_{cT}) + V_{fT}(R_{fT}) | \phi_{\beta} \rangle$$ ## Time-dependent The Time-dependent method: semiclassical approx. Target follows classical trajectory $\boldsymbol{R}(t)$ (straight lines) P-T interaction modelled by time-dependent potential \Rightarrow Resolution of TDSE: $$i\frac{\partial}{\partial t}\Psi^{\text{TDSE}}(\boldsymbol{r},t) = \left[H_0 + V_{cT}(t) + V_{fT}(t)\right]\Psi^{\text{TDSE}}(\boldsymbol{r},t)$$ TDSE has been improved to the dynamical eikonal approximation Baye, PC, Goldstein PRL 95, 082502 (2005) (see Daniel Baye's seminar) ## $^{8}\mathbf{B}$ ⁸B: Candidate one-p halo nucleus -----modelled as 7 Be($3/2^{-}$)+p $_{2^{+}$ -0.137 0p3/2 Its Coulomb breakup used to infer S_{17} Its breakup on 58 Ni at 26 MeV measured at ND Guimarães *et al.* PRL 84, 1862 (2000) CDCC calculation in good agreement with experiment Tostevin, Nunes, Thompson PRC 63, 024617 (2001) Sensitivity of the calculation to ⁷Be-*p* potential? Calculations within CDCC approach 5 potentials based on Esbensen, Bertsch NPA 600, 37 (1996) WS with different a (T1–T5) reproducing only the gs they also exhibit an unfitted p1/2 resonance ## ⁸B breakup on ⁵⁸Ni @ 26MeV σ_{bu} approximately \propto ANC² \Rightarrow peripheral reaction But bumps above 0.5 MeV If Coulomb waves describe the continuum, - No bumps - $\sigma_{\rm bu}$ exactly $\propto {\rm ANC}^2$ - ⇒ continuum plays a role ## 8B: partial-wave contributions - Dominant $p3/2 \propto \text{ANC}^2$ - Bumps only in p1/2 due to unfitted resonance - Same in DWBA ⇒explained by 1-step transitions ⇒little influence of couplings in the continuum ## 8B: first-order analysis Differences in $\sigma_{\rm bu}$ explained by gs and continuum ## ¹¹**Be** 11 Be: best known one-n halo nucleus modelled as 10 Be(0^+)+n $$\frac{5/2^{+} \ 1.274 \quad d5/2}{\frac{1/2^{-} -0.184 \quad 0p1/2}{1/2^{+} -0.504 \quad 1s1/2}}$$ Breakup on Pb and C at 70AMeV measured at RIKEN Fukuda et al. PRC 70, 054606 (2004) They find $C^2S(^{10}\text{Be}(0^+)\otimes s1/2)=0.7$ Sensitivity of this figure to ${}^{10}\text{Be-}n$ potential? Calculations with time-dependent model 5 potentials [WS with different r_0 and a (V1–V5)] they reproduce the first 3 states + potential of Fukuda et al. (V6) it reproduces only the ground state # ¹¹Be breakup on Pb @ 69AMeV Large differences $\Rightarrow C^2S$ questionable $\sigma_{\rm bu}$ NOT \propto to ANC² Bump at 1.3 MeV due to d5/2 resonance Using plane waves $\Rightarrow \sigma_{\rm bu} \propto \rm ANC^2$ \Rightarrow influence of continuum # ¹¹Be: partial-wave contributions - Dominant p3/2 contains the difference in V1–V5 - p1/2 approximatively $\propto ANC^2$ but for V6 - Same result at first-order ⇒ explained by 1-step transition # ¹¹Be: first-order analysis - gs \propto ANC above 5 fm $\sigma_{\rm bu} \propto$ ANC² when plane waves \Rightarrow peripheral $\Rightarrow C^2S$ questionable - p3/2: large differences in phase shift - p1/2: V1–V5 small differences but V6 very different due to p1/2 bound state Differences in σ_{bu} explained by differences in δ_{lj} \Rightarrow breakup probes ground state and the continuum ## Constraining the continuum Breakup of loosely bound nuclei is peripheral $\Rightarrow \sigma_{bu}$ sensitive to ANC of gs AND to phase-shifts Adjusting the potential to gs is not sufficient Need to constrain the continuum description Adjusting excited states constrains phase-shifts Is this accurate? Unfortunately scattering data are scarce - ⇒other observables (angular distributions,...)? - ⇒other reactions (nuclear breakup,...) ? # ¹¹Be: angular distribution - Same shape for all potentials - Change in amplitude similar to $\sigma_{\rm bu}$ - ⇒Angular distribution does not constrain continuum ## ¹¹Be breakup on C @ 68AMeV Measured at RIKEN Fukuda *et al.* PRC 70, 054606 (2004) Calculated in PC, Goldstein, Baye PRC 70, 064605 (2004) - Breakup is nuclear dominated \Rightarrow sensitive to V_{PT} - Breakup on light target is also sensitive to V_{cf} but same difference \Rightarrow no additional information - Sensitivity to V_{cf} smaller than to V_{PT} # ¹¹Be + C: angular distribution - Large sensitivity to optical potentials - All V_{cf} potentials lead to similar angular distribution: small difference in amplitude - ⇒Angular distribution on light target does not constrain the continuum But can constrain V_{PT} ### **Conclusion** - Analysis of the sensitivity of breakup calculations on V_{cf} for $^{11}\mathrm{Be}$ and $^{8}\mathrm{B}$ - $\sigma_{\rm bu}$ depends significantly on the potential choice even if fitted on same levels - Influence of both bound and scattering states - ⇒ Continuum must be constrained to extract information from breakup measurements Since direct measurement is difficult perhaps other observables/reactions can be used?