Unbound exotic nuclei studied by projectile fragmentation

G. Blanchon^(a), A. Bonaccorso^(a), D.M. Brink^(b) & N. Vinh-Mau^(c)

(a)Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, and Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy.
(b) Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, U. K. (c) Institut de Physique Nucléaire, F-91406, Orsay Cedex, France.

Seattle 2005

Plan of the Presentation Reactions to study halo nuclei

Transfer to the continuum Fragmentation reaction

2 Simple time dependent model

Inelastic excitation

General wave functions (asymptotic form)

Simple time dependent model

Comparison to the transfer to the continuum

Cross section.

Determination of the S-matrix.

Potential correction

3 Results

Comparison between time dependent and sudden approximation Dependence on the binding energy of the initial state Strength of every transition Dependence on the scattering length of the final s-state Add of a complex part to the potential Reactions to study halo nuclei

Transfer to the continuum reaction

G. Blanchon^(a), A. Bonaccorso^(a), D.M. BrinUnbound exotic nuclei studied by projectile fr

э.

Fragmentation reaction

 \otimes

G. Blanchon^(a), A. Bonaccorso^(a), D.M. Brin<mark>Unbound exotic nuclei studied by projectile fr</mark>

Transfer to the continuum

Figure: ¹²Be (d,p) RIKEN (Korsheninnikov) (1995)

Fragmentation reaction.

Figure: (a) LPC GANIL (Lecouey, Orr) (2002).

1.6 do/dE^{*}[mb/MeV] $^{13}\text{Be} \rightarrow ^{12}\text{Be} + \pi$ 1.4 Eo το 1.2 0.75+0.01 1.07 ± 0.01 2.5+0.21 0.43+0.93 0.8 0.6 0.4 0.2 10 12 0 14 Erel [MeV]

Figure: (b) GSI (U Datta Pramanik) (Surrey conference Jan.2005).

Figure: (a) GSI (Simon Nucl. Phys. A734 (2004) 323-326.

Figure: (b) RIKEN (Nakamura)(ECT* 2004)unpublished.

Inelastic excitation.

Inelastic-like excitations can be described by the first order time dependent perturbation theory amplitude:

$$egin{aligned} \mathsf{A}_{\mathit{fi}} &= rac{1}{i\hbar} \int_{-\infty}^{\infty} dt \langle \psi_{\mathit{f}}(t) | V_2(\mathbf{r}) | \psi_{\mathit{i}}(t)
angle \end{aligned}$$

In order to obtain a simple analytical formula we consider the special case in which $V_2(r) = v_2 \delta(x) \delta(y) \delta(z)$.

$$A_{fi} = \frac{v_2}{i\hbar v} \int_{-\infty}^{\infty} dz \ \psi_f^*(b_c, 0, z) \psi_i(b_c, 0, z) e^{iqz}$$

General wave functions (asymptotic form).

For the initial state:

$$\psi_i(b_c, 0, z) = -C_i i' \gamma h_{l_i}^{(1)}(i \gamma r) P_{l_i}(z/r).$$

For the final continuum state:

$$\psi_f(b_c, 0, z) = C_f k \frac{i}{2} (h_{l_f}^{(+)}(kr) - S_{l_f} h_{l_f}^{(-)}(kr)) P_{l_f}(z/r).$$

Simple time dependent model.

$$A_{fi} = \frac{v_2}{i\hbar v} \int_{-\infty}^{\infty} dz \ \psi_f^*(b_c, 0, z) \psi_i(b_c, 0, z) e^{iqz}$$

$$I(k,q) = I_R + iI_I = |I|e^{i\alpha}$$

$$\bar{S} = Se^{2i\alpha} = e^{2i(\delta + \alpha)}$$

$$|A_{fi}|^2 = C^2 |I|^2 |1 - \bar{S}|^2.$$

Comparison to the transfer to the continuum.

Fragmentation:

$$rac{dP_{in}}{darepsilon_{f}} = rac{2}{\pi} rac{v_2^2}{\hbar^2 v^2} C_i^2 rac{m}{\hbar^2 k} \Sigma_{I_f} (2I_f+1) |1-ar{S}_{I_f}|^2 |I_{I_f}|^2.$$

Transfer:

$$rac{dP_t(b_c)}{darepsilon_f}~pprox~rac{4\pi}{k^2}\Sigma_{l_f}(2l_f+1)|1-S_{l_f}|^2B_{l_f,l_i}$$

(G. Blanchon, A. Bonaccorso and N. Vinh Mau, Nucl. Phys. A739 (2004) 259.) \otimes

Cross section.

$$\frac{d\sigma}{d\varepsilon_f} = C^2 S \int_0^\infty d\mathbf{b_c} \frac{dP_{in}(b_c)}{d\varepsilon_f} P_{ct}(b_c),$$

The core survival probability:

$$P_{ct}(b_c) = |S_{ct}|^2$$

Determination of the S-matrix.

$$\begin{array}{rcl} h &=& t + U. \\ U(r) &=& V_{WS} + \delta V. \\ \delta V(r) &=& 16 \alpha e^{2(r-R)/a} / (1 + e^{(r-R)/a})^4. \end{array}$$

 V_{WS} = Woods-Saxon potential plus spin-orbit. δV = correction which originates from particle-vibration couplings. (*N. Vinh Mau and J. C. Pacheco, Nucl. Phys. A607 (1996) 163.*) \otimes

Potential correction.

G. Blanchon^(a), A. Bonaccorso^(a), D.M. BrinUnbound exotic nuclei studied by projectile fr

Comparison between time dependent and sudden approximation.

Dependence on the binding energy of the initial state.

Strength of every transition.

Dependence on the scattering length of the final s-state.

Introduction of an imaginary part to the potential.

Conclusions and outlooks

- ¹³Be is a signature of the halo state of the neutron.
- Possibility to use s resonances.
- One or two step calculation.