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Objective

• Long Term Goal:

Calculation of bulk properties of the nuclei in

a model-independent systematic way.

• How to Generalize Skyrme HF?

For N = Z nuclei, energy density ESK(x) is:
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Variational procedure wrt. ϕα(x) gives :
(
−∇
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2M∗(x)
∇+ U(x) + · · ·

)
ϕα(x) = εαϕα(x)
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α
|ϕα(x)|

2 τ(x) =
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|∇ϕα(x)|
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Plan: Treat Skyrme HF as DFT.

How to go beyond HF systematically?

⇒ DFT in an EFT framework



Need for a Systematic Framework
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Figure 6: Predicted two-neutron separation energies for the even-even Sn isotopes using several 
microscopic models based on effective nucleon-nucleon interactions and obtained with phenomenological 
mass formulas (shown in the inset).  While calculations agree well in the region where experimental data 
are available, they diverge for neutron-rich isotopes with N>82.  It is seen that the position of the neutron 
drip line is uncertain.  Unknown nuclear deformations or as yet uncharacterized phenomena, such as the 
presence of neutron halos or neutron skins, make theoretical predictions highly uncertain.  Experiments for 
the Sn isotopes with N=80–100 will greatly narrow the choice of viable models.   



DFT/EFT

• Kohn-Sham DFT:

E[ρ(x)] = FHK[ρ(x)] +
∫
d3x v(x)ρ(x)

FHK[ρ] = Ts[ρ] + Eint[ρ]

Variational procedure wrt. ρ(x) gives :
(
−
∇2

2M
+ vs(x)

)
ϕα(x) = εαϕα(x)

vs(x) = v(x) +
δEint[ρ]

δρ(x)

Key : Exact ρ(x) =
∑
α |ϕα(x)|

2.

• DFT/EFT calculates vs(x) systematically:

LO : NLO : +

NNLO : + +

+ + + +



EFT Lagrangian

• The first few terms

LEFT = ψ†
[
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The coefficients are given in terms of

effective-range parameters by :

C0 =
4πas

M
, C2 = C0

asrs

2
, and C ′2 =

4πa3p

M
.

• Results for

E
′
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The energy at NNLO has τ dependence . . .

How can we incorporate this in the effective

action formalism?



Effective Action Formalism

• Generating Functional

Z[J, η] = eiW [J,η]

=

∫
DψDψ† ei

∫
d4x [L+ J(x)ψ†ψ+ η(x)∇ψ†·∇ψ]

The effective action is given by :

Γ[ρ, τ ] = W [J, η]−
∫
d4x J(x)ρ(x)−

∫
d4x η(x)τ(x)

ρ(x) ≡ 〈ψ†(x)ψ(x)〉J , η =
δW [J, η]

δJ(x)

τ(x) ≡ 〈∇ψ†(x) · ∇ψ(x)〉J , η =
δW [J, η]

δη(x)
• Variational Procedure gives :
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)
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(ν + 1)

4ν
C
′

2

]
ρ(x)

Looks like the Skyrme equation (for ν = 4)!!

So does the energy density.



Results

• Density for Hard-Sphere interaction

(ap = as, rs = 2as/3)
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• Energy Estimates
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• Effective Mass
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• Compare Energy Spectra for ρ and ρτ-DFT
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Comparison to Actual Spectra

• Introduce a non-local source ξ(x, x′)

coupled to ψ(x)ψ†(x′) :

Z[J, η]→ Z[J, η, ξ]

Compute the effective action :

Γ[ρ, τ ]→ Γ[ρ, τ, ξ]

• Contruct the full Green’s Function :
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• Densities agree by construction...
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• But Single-Particle Spectra differ :

ε
ρ
k − ε

ρτ
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′

2

]
ρ (k2F − k
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Incorporating Spin-Orbit

• Spin-Orbit Lagrangian

LSO = −i
Cσ2
4

σ · (ψ
↔
∇ ψ)†× (ψ

↔
∇ ψ)

The expanded version looks like :

(ψ†∇ψ) · (∇ψ†× σψ) + (∇ψ†ψ) · (ψ†σ × ∇ψ)

−(ψ†ψ)(∇ψ† · σ × ∇ψ) + (ψ†σψ) · (∇ψ†× ∇ψ)

• Contribution to Energy:

EC2
[ρ, τ,J] = −

Cσ2
2

(
1 +

1

νiso

) ∫
d3x ρ∇ · J(x)

iJ(x) = νiso
∑

k

ψ
†
kα(x)(∇ × σαβ)ψkβ(x)

How to incorporate J in the Effective Action

Formalism?



Incorporating J

• Introduce a vector source ξ(x) coupled to
J(x) (spin-orbit density):

Z[J, η]→ Z[J, η, ξ]

The effective action is given by :

Γ[ρ, τ, ξ] = W [J, η, ξ]−
∫
d4x J(x)ρ(x)

−
∫
d4x η(x)τ(x)−

∫
d4x ξ(x) · J(x)

ρ(x) ≡ 〈ψ†(x)ψ(x)〉J , η , ξ =
δW [J, η, ξ]

δJ(x)

τ(x) ≡ 〈∇ψ†(x) · ∇ψ(x)〉J , η , ξ =
δW [J, η, ξ]

δη(x)

J(x) ≡ −i 〈ψ†(x)(∇ × σ)ψ(x)〉J , η , ξ =
δW [J, η, ξ]

δξ(x)
• Variational Procedure gives :

Ĥ ϕα(x) = εαϕα(x)

Ĥ =

(
−∇ ·

1

2M∗(x)
∇+ vs(x) + iξ0 ·∇× σ

)

ξ0(x) = −
δ

δJ(x)
(Eint[ρ, τ,J])

= −

(
νiso + 1

2νiso

)
Cσ2 ∇ρ(x)



Estimating the Spin-Orbit Contribution
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Summary

• Kinetic energy density τ was incorporated in

EFT/DFT through an effective action

formalism. Single-particle Kohn-Sham Eq.

with M∗(x) was solved in a harmonic trap.

• Ground state energy density found to be of

the Skyrme form, with ρτ , ∇ρ and ρ2+α

pieces.

• Energy spectra are different for ρ and ρτ case

even though the total energy and density are

almost the same. The ρτ spectra is closer to

the actual spectra.

• Spin-Orbit density J was incorporated in

EFT/DFT.



Work in Progress

• Gradient corrections to + · · ·

• Include all terms upto two derivatives in spin-

dependent potential

• Include isospin dependence and tensor piece

potential

• Generalize to include pairing

• Include long range forces in the framework to

establish a connection to chiral effective field

theories with pions

• Investigate connection of effective low-momentum

potential approach to DFT approach

• Incorporate time dependence to study collec-

tive modes

• Address issues relating to self-bound systems


