Pairing schemes for HFB calculations: Results and discussions

K. Bennaceur, IPNL/UCB Lyon-1 – CEA/ESNT

T. Duguet, NSCL - MSU

P. Bonche, CEA/SPhT

- Zero range pairing:
 - density dependence
 - regularization
- Regularization scheme and pairing at low density
- Microscopic zero range pairing force along the Cr isotopic chaine
- Conclusion

Pairing – Density dependence

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

Microscopic pairing Finite range (FR)and zero range (ZFR)

 $\langle \mathbf{k} | \mathcal{D}(k_F, P, 0) | \mathbf{k}' \rangle = \lambda v(k) h(k_F, P, 0) v(k')$

 \rightarrow Density dependence: $h(k_F, P, 0)$

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

Zero range effective interaction

$$V_{\text{eff}}^{pp}(\mathbf{r}) = t'_0 \left[1 - \eta \left(\frac{\rho(\mathbf{r})}{\rho_0} \right)^{\gamma} \right] \delta(\mathbf{r})$$

- $\eta = 0 \longrightarrow$ "volume" pairing
- $\eta = 1 \longrightarrow$ "surface" pairing
- $\eta = 1/2 \rightarrow$ "mixed" pairing
- Divergence of $E \rightarrow cut$ -off E_c

DFT (V, S or M) pairing: mixed with $E_c = 60 \text{ MeV}$ (Dobaczewski, Flocard, Treiner, NPA '84)

ULB pairing: surface with $E_c = \pm 5 \text{ MeV}$

Regularization

Cf. A. Bulgac: nucl-th/0109083, nucl-th/0302007

•
$$V_{\rm pp} \propto \delta(\mathbf{r}) \implies E_p = +\infty \iff \tilde{\rho}(\mathbf{r}_1, \mathbf{r}_2) \propto \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

• Infinite matter

$$\begin{split} \tilde{\rho}(\mathbf{r}_1, \mathbf{r}_2) & \longrightarrow +\infty \\ &= \tilde{\rho}_{\mathrm{reg}}(\mathbf{r}_1, \mathbf{r}_2) + \frac{m\Delta e^{ik_F |\mathbf{r}_1 - \mathbf{r}_2|}}{4\pi\hbar^2 |\mathbf{r}_1 - \mathbf{r}_2|} \\ &< +\infty +\infty \end{split}$$

• Nuclei

$$\Delta(\mathbf{r}) = t'_0 \,\tilde{\rho}_{\rm reg}(\mathbf{r}) \equiv t'_{0,\rm eff}[\rho] \,\tilde{\rho}(\mathbf{r})$$

 $\implies \text{more complex density dependence}$ $\underline{R}_{\text{egularized DFT pairing: "RDFT" (V, S or M)}}$

Link to an effective pairing interaction

• $V \equiv V_{sep}^{1S_0} \rightarrow \dots$ Cf. Thomas(D. & L.)'s presentations ...

Convergence

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

Summary and recipes

• FR $\rightarrow E_{\rm max} \sim 30 {\rm MeV}$

Forces with regularization:

• ULB $\rightarrow E_{\text{max}} \sim E_F + 5 \text{ MeV}$

• DFTx $\rightarrow E_{\text{max}} \sim E_c + 30 \text{ MeV} \sim 90 \text{ MeV} (= E_c \text{ if direct integration})$

• RDFTx $\rightarrow E_{\text{max}} \sim 60 \text{ MeV}$ (staggering)

• ZFR $\rightarrow E_{\text{max}} \sim 90 \text{ MeV}$

Strengths adjusted to minimize $|\langle \Delta_N \rangle_{\kappa} - \langle \Delta_N \rangle^{(5)}|$ for ¹²⁰Sn, ¹⁹⁸Pb and ²¹²Pb.

Computation time

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory – INT-05-3

Microscopic regularizations:

- require modifications of the codes (not too hard...)
- Converge at rather high energy (60 to 90 MeV)

Are they really useful ? Do they change the physics ?

Effect of the different regularization schemes

ULB, **DFT**(**V**,**S**,**M**), **ZFR** \rightarrow different density dependences...

ZFR very strong at low density

 \rightarrow use of the **same** density dependence $V_{\text{eff}}^{pp} \equiv$

$$\delta_{\mathrm{ff}}^{\rho p} \equiv t_0' \left[1 - \eta \left(\frac{\rho(\mathbf{r})}{\rho_0} \right)^{\gamma} \right] \delta(\mathbf{r})$$

for each regularization scheme:

ULB = cut off (narrow window) DFT = cut off (wide window) "R" = Bulgac & Yu. " $2v^{2"}$ = same as ZFR

 $\rightarrow \gamma < 1 \Rightarrow$ pairing enhancement at low density

Density dependences $-\eta = 1/2$

 $\eta = 1/2$ (mixed pairing):

 \rightarrow the main part of the gap in nuclei comes from the inside

 \rightarrow the strength can not be very strong at low density (surface)

Density dependences $-\eta = 1$

Density dependence – Isospin

Density dependence – Isospin

Surface pairing $-\gamma = 1$

Effect of the regularization scheme:

Gaps in tin isotopes

Effect of the regularization scheme: Pairing fields

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

Effect of the regularization scheme: 170 Sn

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

... So, the question is:

DFTS leads to a more extended pairing field. (cut off at 60 MeV)

Is it a **bug** or a **feature** ?

What happens if we eventually go to a stronger interaction at low density ?

- $\rightarrow \gamma$ from 1 to 1/6 (stronger pairing at low density)
- \rightarrow the cut off E_c from a ULB type (5 MeV above E_F) to 60 MeV

¹⁷⁰**Sn** $\gamma = 1/2$

The strength of the pairing is readjusted for larger E_c

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

¹⁷⁰**Sn** $\gamma = 1/6$

The strength of the pairing is reduced for larger E_c

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

¹⁷⁰Sn $\gamma = 1/6$

The strength of the pairing is reduced for larger E_c

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

170 Sn – Pairing fields Vs. R_{box}

Surface pairing with $\rho^{1/6}$, cut off $E_F \pm 5 \text{ MeV}$

- same behaviour with $\rho^{1/2}$
- worse if the pairing active space is enlarged...

 170 Sn, $E_c = 5 \text{ MeV}$

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

 170 Sn, $E_c = 5$ MeV

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

 170 Sn, $E_c = 10 \text{ MeV}$

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

 170 Sn, $E_c = 20 \text{ MeV}$

Nuclear Structure Near the Limits of Stability - Nuclear density-functional theory - INT-05-3

 170 Sn, $E_c = 40 \text{ MeV}$

Nuclear Structure Near the Limits of Stability - Nuclear density-functional theory - INT-05-3

ZFR density dependence and cut off $E_c = \pm 5$ MeV

Surface pairing with $\gamma = 1$

not a feature...

ZFR Vs. schematic surface forces

ZFR: Strong enhancement of the pairing field at the nucleus surface

ZFR Vs. schematic surface forces

• The usual regularization methods can not handle a pairing force which is strong at low density.

- Even the "standard" surface pairing $(\gamma = 1)$ is strong at low density.
- The two microscopic regulators presented here do the job.

• The " $2v^2$ " regulator comes with a density dependence without free parameter and which is strong at low density.

Results for exotic nuclei

Exotic nucleus with "halo" + strong pairing at low density + microscopic regularization ($2v^2$ or Bulgac & Yu)

 \Rightarrow Density more diffuse at the surface

 \Rightarrow Increase the pairing fields at the surface

- \Rightarrow Drawback: Pairing correlations tend to reduce the halo
- \Rightarrow Regularization confine the pairing density

 \implies Highly non trivial effect...

Cr isotopes

Nuclear Structure Near the Limits of Stability - Nuclear density-functional theory - INT-05-3

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

Neutron radii in Cr

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

Neutron radii in Cr

Nuclear Structure Near the Limits of Stability — Nuclear density-functional theory - INT-05-3

• Microscopic finite range pairing (FR) and its zero range limit (ZFR) lead to a strong pairing interaction at low density.

• Microscopic regulators and cut offs are not equivalent tools.

• Cut offs can not handle the strong intensity of the pairing interaction at low density.

• A pairing stronger at low density hardly modify the density but has a dramatic effect on the anomalous density.