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Introduction

Simulating lattice QCD directly at
finite baryon/quark-number density or
equivalently at finite chemical potential
1 for quark number, suffers from a sign
problem. This makes the use of stan-
dard simulation methods difficult if not
1mpossible.

We have been studying lattice QCD
at finite chemical potential i for isospin
(I3). This theory has a positive fermion
determinant so standard simulation meth-
ods work. We use hybrid molecular dy-
namics simulations with “noisy” fermions
(quarks).

Although the phase structures of QCD
at finite p and QCD at finite 7 are very
different, we shall argue that at small
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/g their behaviour close to the finite
temperature (deconfinement /chiral) tran-
sition from hadronic matter to a quark-
gluon plasma is (almost) identical. Small
means puy < mg (p < mg/2). To
the extent that this is correct, it of-
fers an alternative to other methods —
series expansion, analytic continuation,
reweighting... —for determining the phase
structure of QCD at small p and finite
T.

The expected phase structure of the
2 theories for Ny = 2 is shown below:
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Figure 1: Proposed phase diagram for
2-flavour QCD at finite quark-number
chemical potential 1 and temperature
T.
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Figure 2: Proposed phase diagram for
2-flavour QCD at finite isospin chemical
potential p7 and temperature T'.
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As indicated in the second figure, we
have been unable to find the expected
critical endpoint in 2-flavour QCD.

In 3-flavour QCD there exists a crit-
ical quark mass m,. below which the
transition is first order at u/uy = 0,
so the critical endpoint is at u/u; = 0.
For m > me, the critical endpoint is
expected to move to finite p/py which
can be kept as small as desired, in par-
ticular to where the u/u; behaviours
are identical.



Lattice QCD at finite uy

The staggered quark action for lat-
tice QCD at finite pg is

1 N
S¢= s XU 73pr) +mlx +ilexmax

sites 2

()
where JD(%Tg,u 7) is the standard stag-
gered quark ID with the links in the +t¢
direction multiplied by exp(%Tg,u 7) and
those in the —t direction multiplied by
eXp(—%Tg,u 7). The X term is an explicit
I3 symmetry breaking term required to
see spontaneous symmetry breaking on

a finite lattice. The determinant

det[lD(;Tg,u])erJri)\ETQ] = det[ATA+)7],
(2)



where

A=Popn)+m )

1s positive allowing us to use standard
hybrid molecular dynamics simulations.
For A = 0 this determinant is just
the magnitude of the determinant for 8-
flavour lattice QCD with quark-number

chemical potential

1

M= 5#[ (4)

We use hybrid molecular-dynamics sim-
ulations and tune the number of flavours
to 2 (or 3).

At zero temperature, this theory un-
dergoes a second order phase transition
with mean-field critical exponents to a
superfluid phase in which the third com-
ponent of isospin I3 is broken sponta-
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neously by a charged pion condensate,
at 7 = my. The orthogonal charged
pion state is the associated Goldstone
boson.



2-flavour lattice QCD at small ;7 and finite T

We simulate the above theory using
the hybrid molecular-dynamics method
with the number of flavours set to 2. Fi-
nite temperature is achieved using a lat-
tice with temporal extent aN; = 1/T
and spatial size alNs >> aNy. From
here on we set @ = 1. Small 7 means
pr < mryr.

We have used an 83 x 4 lattice, and
have performed simulations for quark
masses m = 0.05,0.1,0.2. 8 = 6/¢°
and hence [since a = a(¢?)] T = 1/(aNy),
are varied across the transition (crossover)
from hadronic matter to a quark-gluon
plasma. Since uy < my we were able
to run with A = 0.

[ will now show the variation of the
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chiral condensate, thermal Wilson line
(Polyakov loop) and isospin (I3) den-
sity. In addition I show the correspond-
ing susceptibilities and that for the pla-
quette. For the chiral condensates and
number density susceptibilities, we use
b noise vectors for each measurement
and discard the noise diagonal contri-
butions, thus obtaining an unbiased es-
timate for these susceptibilities.

xo =V{(0°=(0)%)  (5)

with V' = N;N32. (Note that for the
Wilson line this is really xywiison/T-)
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SU(3) N;=2 m=0.05 A=0 8°x4 lattice
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Figure 3: Chiral condensate as a func-
tion of 5 = 6/¢* for pu; values < 0.55.
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WILSON LINE
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Figure 4: Wilson Line as a function of
b= 6/g2 for puy values < 0.55.
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SU(3) N;=2 m=0.05 A=0 8°x4 lattice
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Figure 5: Isospin density as a function
of B =6/g* for g values < 0.55.
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SU(3) N,=2 m=0.05 A=0 8°x4 lattice
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Figure 6: Chiral susceptibility as a func-
tion of B = 6/g° for iy values < 0.55.
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SU(3) N;=2 m=0.05 A=0 8°x4 lattice
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Figure 7: Wilson Line susceptibility as
a function of § = 6/¢* for p; values
< 0.55.
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Figure 8: Isospin susceptibility as a
function of B8 = 6/¢° for p; values
< 0.55.
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SU(3) N;=2 m=0.05 A=0 8°x4 lattice
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Figure 9: Plaquette susceptibility as a
function of § = 6/¢* for py values <
0.55.
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The graphs for m = 0.1 and m =
0.2 are similar. No sign that this transi-
tion i1s anything but a crossover is seen
for any of the m and pj values used.

Ferrenberg-Swendsen reweighting is
then used to find the peaks (3.) of the
susceptibility curves. In each case we
have several 8s which are close enough
to the maximum to be used. We note
that the estimates from these several Gs
are consistent. What is also reassuring
is that the estimates from the 4 different
susceptibilities are close, indicating that
they provide a reasonable definition of
the position of the crossover. The next
graph shows the positions (5.) of these
susceptibility peaks as functions of uj
for the 3 mass values. We note a slow
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decrease of S, with increasing p7. For
m = 0.05, taking T, ~ 173 MeV at
puy =0, then by uy =~ 381 MeV, Tp(ug) ~
164 MeV.
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Figure 10: (3. determined from the max-
ima of the susceptibilities, as a function
of ,u%. The top points are for m = 0.2
the next are for m = 0.1, and the bot-

tom set are for m = 0.05
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The Bieleteld-Swansea collaboration
have calculated the phase of the fermion
determinant, and find that it is well be-
haved for small 1 in that

(cos ) (6)

where 6 is the phase of the determinant,
decreases smoothly from 1 and has an
appreciable range of 4 over which it is
considerably greater than zero, for a 165 x
4 lattice, which is large enough for sen-
sible studies of the phase diagram.
When this phase is well behaved,
one should be able to calculate expecta-
tion values of gluonic observables using

G0y
<O>,u B iCOSi;Zj;Z (7>
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Then, to the extent that the posi-
tion of the transition is well defined,

Be(p) = Belpr = 2u) (8)

This is in agreement with the observa-

tions of the Bielefeld-Swansea collabo-
ration. A straight line ‘fit’ to the m =
0.05 data gives

Be = 5.322 — 0.143p5 (9)

which 1s in good agreement with what
de Forcrand and Philipsen obtained from
analytic continuations from imaginary
1. We have calculated an unbiased es-
timate of (6%) to lowest non-trivial or-
der in pj using the Bielefeld-Swansea
formula and our p; = 0 simulations:

1 |
0=, Vim{jo)us (10)
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To this order
1
(cosb) ~ 1 — 2<92> (11)

The following table indicates that there
is indeed a considerable range of 7 over
which the phase of the determinant at

the corresponding value of p is well-
behaved.
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3-flavour lattice QCD at small ;; and finite T

We are now extending our studies
of the finite temperature transition for
small p7 to 3 flavours. Clearly this does
not represent a physical theory, since it
has 3/2 up-type flavours and 3/2 down-
type flavours. However, since we are re-
ally interested in this as a model for the
behaviour of 3-flavour QCD at finite u
this should not concern us.

For u = py = 0 we know that the
finite temperature transition is first or-
der for m < m,, second order with
Ising critical exponents for m = mc
and a crossover without an actual phase
transition for m > me. It is believed
that as m is increased above m (with
py = 0), this critical endpoint moves
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continuously from u© = 0 to p > 0.
Presumably if p is fixed at zero and
(07 18 varied, this critical endpoint will
move to 7y > 0. If the phase of the
determinant is as well behaved as for 2
flavours, then for m sufficiently close to
me we would expect that these critical
endpoints are related by

He = KT c/ 2 (12>
giving us a way of determining this end-
point.

We are performing simulations on
an 8 x 4 lattice with m > me, and
y < mg. Since an 83 x 4 lattice is
too small to determine the precise na-
ture of the phase transition, we have
commenced simulations with the same
masses and chemical potentials on a 16° %
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4 lattice. For Ny = 4, the Bielefeld
eroup find m. ~ 0.033. Since we want
m close to m., we have been simulat-
ing at m = 0.035 and m = 0.04. The
behaviours of the Wilson line (Polkakov
loop) as functions of § for several prs
are graphed below.

We have started simulations at m =
0.035 and g7 = 0.375 on a 163 x 4 lat-
tice to see whether the transition is first
order. On an 8 x 4 lattice there was
evidence of a 2-state signal which would
suggest that the transition was first or-
der, even at pu;j = 0 where we know it
to be a mere crossover.
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Figure 11: Wilson Line as a function of
B =6/¢* for m = 0.035 and p; values
< 0.375.
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WILSON LINE
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Figure 12: Wilson Line as a function of
B =6/¢g° for m = 0.04 and p values
<0.4.
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£
I

1000

800

600

Events

400

200

O | | | | | | | | | | | | | | | |
0.0 0.2 0.4 0.6

WILSON LINE

Figure 13: Histogram of Wilson Line
‘time’ evolution at § = 5.1475, m =
0.035 and p; = 0, on an 8° x 4 lattice
with Nf = 3.
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Figure 14: Histogram of Wilson Line
‘time’ evolution at 8 = 5.1425, m =
0.035 and p7 = 0.2, on an 83 x 4 lattice
with Nf = 3.
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8°x4 LATTICE N;=3 B=5.125 ;=0.375
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Figure 15: Histogram of Wilson Line
‘time’ evolution at 8 = 5.125, m =
0.035 and 7 = 0.375, on an 8° x 4
lattice with Ny = 3.
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8%x4 LATTICE N,=3 =5.13 u;=0.375
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Figure 16: Histogram of Wilson Line
“time’ evolution at 8 = 5.13, m = 0.035
and 7 = 0.375, on an 83 x 4 lattice with
Ny =3.
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Discussion and Conclusions

e We have studied the finite temper-
ature transition for 2-flavour lattice
QCD at small p7. The dependence
on B and hence T, on uy appears
to be the same as their dependence
on u. This appears to be due to the
fact that the phase of the fermion de-
terminant for small g (and modest
lattice size) is well behaved.

e For the masses we considered the fi-
nite temperature transition appears
to be a crossover for all uy < mr.
We found no sign of a critical end-
point. If the relation between the pu
and p7 behaviour of this transition
extends to its nature, and is valid
over this range, then the critical end-
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point (if it exists) must be at u >
My /2.

e We are now extending these simu-
lations to 3 flavours, where choos-
ing m to be just above m, should
move the critical endpoint as close to
1 = 0 as we desire, in particular with
te << mg/2. Then there should be
a critical endpoint in our pj simula-
tions with ur. =~ 2uc.. We are cur-
rently searching parameter space on
an 8% x 4 lattice. Simulations just
started on a 16% x 4 lattice will be
needed to determine the nature of
the transition.

e Could these simulations at finite uy
form the basis for a reweighting scheme
to get more results at finite u?
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e We will use our lattice QCD action
with extra chiral 4-fermion interac-
tions to extend the range of our sim-
ulations beyond puy = ms.

e These simulations are performed on

the IBM SP, Seaborg, at NERSC,

the Jazz cluster at the LCRC, Ar-

ogonne National Laboratory, the Tung-
sten cluster at NCSA, and Linux PCs

in the HEP division at Argonne Na-

tional Laboratory.
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