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Motivation

Nucleosynthesis: r process

• rapid neutron capture in high neutron flux;

• involves nuclei far from stability, to the neutron dripline;

• simulations: good knowledge of half-lives, neutron capture rates,

separation energies;

• challenging to experiment.

Tests of nuclear forces in heavier systems.
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Present Methods for Nuclear Masses and
Transitions

• Extended Thomas-Fermi with Strutinsky Integral;

• Finite Range Droplet Model;

• Mean-Field (HFB);

• Shell Model.



In theory...
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Tests of HF+RPA in “toy” models
value of the NV/e (20.2), in the case of the systems with
N58 and N540. For comparison, the exact results are
drawn on each figure besides the pnTDA and pnRPA re-
sults. One notices that the results obtained with the pnTDA
and pnRPA methods are quite different from each other, the
pnTDA result being constant and deviating substantially
from the exact result. Contrary to this, the pnRPA result
closely follows the exact one both for the b2 as well as the
b1 type of transition. Another important conclusion emerg-
ing from our model is the following: the competition be-
tween the particle-particle– and particle-hole–type residual
interactions leads to the characteristic behavior of the transi-
tion amplitudes of the charge-changing operators first dis-
cussed in @2# in the case of a realistic proton-neutron quan-
tum ~RPA! (pnQRPA) model using delta-force interaction.
Similar behavior was observed in @3# in the case of the
pnQRPA with realistic forces. This feature in the realistic
cases refers to the fact that the suppression of the NME’s is
in agreement with the experimental value only if the both
kinds of residual interactions ~i.e., particle-particle and
particle-hole type! are included. Their strengths do not differ
very much in realistic calculations. Our model also shows
that only when both types of such interactions are taken into
account does one obtain the best agreement between exact
and RPA result. Also, the results are very closed when the
values of their strengths ~i.e., NVpn /e and NWpn /e) do not
differ much.

Figures 3 displays the same transitions ~at the same values
of the model parameters! as Fig. 2, but for the M̂ 2 operator,
simulating b1 decay. Similar conclusions as in the case of
the M̂ 1 operator emerge.

Concluding, we have extended the LMG model to the
case of an N-nucleon system composed of two subsystems,
one consisting of Np protons the other of Nn neutrons. The
nucleons inside the two subsystems interact in the same man-
ner as in the original LMG model but in proton-neutron
space. The two terms simulate the particle-particle and the
particle-hole forces of the more realistic models. Our model
is exactly solvable in an SU(2) ^ SU(2) basis and the energy
spectrum of the model Hamiltonian is obtained by an exact
diagonalization. The first excited state of the spectrum was
obtained also by the pnRPA method, and its behavior was
studied as function of the model parameters. The pnRPA

result deviates considerably from the exact one for small N,
while for bigger N, when the collective effects manifest
stronger, the pnRPA result comes close to the exact one.

We also show how charge-changing transitions can be
treated within our model by defining model charge-changing
transition operators simulating nuclear b6 decay and their
action on eigenfunctions of the model Hamiltonian. Transi-
tion amplitudes of these operators were first calculated using
exact wave functions and then using the pnTDA and pnRPA
wave functions. The agreement between the pnRPA and ex-
act results is good while for the pnTDA the agreement is
poor. This demonstrates the importance of the presence of
correlations in the ground state. Finally, our model can simu-
late the competition between the particle-hole and particle-
particle interactions in the transition amplitudes of the
charge-changing operators analogously to the realistic calcu-
lations @2,3#. All these features emerging from the study of
charge-changing transitions in the framework of our exactly
solvable Lipkin-type model encourage us to use it further, to
test the limits of applicability of higher-order RPA-type ap-
proaches.
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How well does RPA work in more complex systems?



Interacting Shell-Model

• reduced number of neutrons interact;
• restricted available single-particle space;
• effective nucleon-nucleon interaction;
• basis states: Slater determinants.

��������
���������������������
���������������
���������������
���������������

	�	�		�	�		�	�	

�
�

�
�

�
�

������������
�
�


�
�

����������

Inert Core

} Valence Space

SM



Mean-Field
• Particles assumed to be independent;
• Mean one-body potential due to other particles.
• One Slater Determinant which minimizes the energy;
• Neglects particle-hole correlations;
• Can break Hamiltonian Symmetries.

Fermi level

HF

H = h + Vres

[H,J2] = 0 ; [h, J2] = 0 and [Vres, J
2] = 0



RPA

• 2p2h correlations on top of Hartree-Fock (HF) solution;

• the excited states are linear combinations of 1p1h configurations;

• Quasi-boson approximation ⇒ Pauli principle violation.

***
• Estimation for excited states;

• Better description of the ground state and correction to the HF

energy;

• Introduce corrections to ground state observables;

• “Restoration” of Symmetries broken by the mean-field solution

(zero frequency RPA modes).



Model Space and Hamiltonian

Purpose: test of HF+RPA against exact diagonalization in full
0~ω shell-model space.

• Active space restricted to valence orbits (interacting shell-model

space);

• No radial degrees of freedom;

• Use separate Slater Determinants for protons and neutrons;

• Identical orbits for protons and neutrons;

• Realistic interactions: Wildenthal Hamiltonian for sd shell, KB3

Hamiltonian for pf shell;

• Transition operators tested: isoscalar and isovector quadrupole

(E2), spin flip (SF) and Gamow-Teller (GT).



HF+RPA vs. SM: questions to answer

Transitions

• Is RPA reliable for all transitions?

• Can we learn something about symmetry restoration in

RPA?

• What is important to treat, what can we leave out?



Brown-Bolsterli Model for Transitions

• Simplified model: s.p. energies + separable two-body interaction.

• In RPA all transition strength goes into one collective state:

? low-lying collectivity if the two-body interaction is attractive;
? high-lying collectivity if the two-body interaction is repulsive.

Expect low-lying collectivity to be more sensitive to symmetry

restoration.



Sum rules and global properties

H|i〉 = Ei|i〉

Sk =
∑

f

(Ef − E0)k|〈0|F |f〉|2

S0 = 〈0|F †F |0〉

S1 =
∑

ν

(Eν − E0)|〈0|F |ν〉|2 =
1
2
〈0|[F †, [H,F ]]|0〉

Ikeda Sum Rule (Gamow-Teller) : S0(β−)− S0(β+) = 3(N − Z)

S̄ =
S1

S0
(centroid), ∆S =

√
S2

S0
− S̄2 (width)



RPA for high-lying collectivity
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Total strength S0, centroid S̄ and width ∆S for GT transitions.

S0 S̄ (MeV) ∆S (MeV)

Nucleus SM RPA SM RPA SM RPA
20Ne 1.05 1.33 16.32 12.53 4.35 2.42
22Ne 3.87 4.85 12.00 9.37 4.48 3.16
24Mg 4.26 4.85 14.46 11.74 4.24 2.42
22Na 5.51 5.47 9.96 9.28 4.35 3.18
24Na 7.43 7.71 10.32 9.29 4.87 3.48
46V 10.60 7.85 4.93 8.15 4.37 2.28
21Ne 4.25 3.55 7.87 8.67 5.97 3.98
25Mg 7.12 6.76 11.02 10.00 6.05 4.21
29Si 9.42 8.63 12.28 10.39 5.41 4.99



RPA for low-lying collectivity
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Total strength, centroid and width for isoscalar E2 transitions.

S0 S̄ (MeV) ∆S (MeV)

Nucleus SM RPA SM RPA SM RPA
20Ne 7.86 0.19 2.12 9.81 1.92 2.30
22Ne 9.36 0.89 2.01 5.52 2.19 2.79
24Mg 12.57 0.51 2.13 7.99 2.09 2.75
22Na 9.53 7.49 1.47 1.27 2.63 1.82
24Na 8.81 6.33 2.10 1.81 2.85 1.88
46V 15.21 15.20 1.62 0.87 1.94 1.63
21Ne 8.74 13.27 1.53 0.64 2.82 1.35
25Mg 10.71 12.49 2.25 1.08 2.66 1.62
29Si 9.70 1.38 2.72 4.66 2.62 4.25



Symmetry restoration?
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Energy-Weighted Sum Rule S1

S1 =
∑

ν

(Eν − E0)|〈0|F |ν〉|2 =
1
2
〈0|[F †, [H,F ]]|0〉

SRPA
1 =

∑
ν

Ων|〈RPA|F |ν〉|2 =
1
2
〈HF |[F †, [H,F ]]|HF 〉

[Ring and Schuck, The Nuclear Many-Body Problem, Eq. (8.154),

p. 331]



S1: numerical comparison

Isovector E2 Isoscalar E2

Nucleus SSM
1 SRPA

1 SHF
1 SSM

1 SRPA
1 SHF

1
20Ne 14.27 13.74 13.74 16.63 1.82 7.43
22Ne 19.28 14.34 14.40 18.84 4.92 10.51
24Ne 21.89 14.89 15.06 20.87 8.42 11.99
24Mg 27.09 23.28 23.28 26.71 4.08 14.87
36Ar 17.24 14.72 14.72 17.32 2.21 8.64
28Si 32.66 26.22 26.22 30.22 5.58 17.67
28Si† 40.13 35.76 35.76 34.31 28.26 28.26
22O 11.46 8.56 8.56 11.46 8.56 8.56
22O 10.42 7.99 7.99 10.42 7.99 7.99



Energy-Weighted Sum Rule, Revisited

SRPA
1 +

∑
µ(Ωµ=0)

1
2Mµ

∣∣∣∣∣∑
mi

(fmiPmi,µ − fimP ∗
mi,µ)

∣∣∣∣∣
2

=
1
2
〈HF |[F †, [H,F ]]|HF 〉



Energy-Weighted Sum Rule, Revisited

SRPA
1 +

∑
µ(Ωµ=0)

1
2Mµ

∣∣∣∣∣∑
mi

(fmiPmi,µ − fimP ∗
mi,µ)

∣∣∣∣∣
2

=
1
2
〈HF |[F †, [H,F ]]|HF 〉

lim
Ωµ→0

Ωµ|〈0|F |µ〉|2 =
1

2Mµ

∣∣∣∣∣∑
mi

(fmiPmi,µ − fimP ∗
mi,µ)

∣∣∣∣∣
2

[Stetcu and Johnson, Phys. Rev. C 67, 044315 (2003)]



EWSR: Harmonic Oscillator

H = − 1
2m

d2

dx2
+

1
2
mω2x2

H|n〉 = ω

(
n +

1
2

)
|n〉

〈0|x|n〉 =
1√

2mω
δn,1

S1 =
∑

n

nω|〈0|x|n〉|2 =
1

2m
=⇒ lim

ω→0
S1 = finite



Comments EWSR
Two types of excitations [Rowe, Collective Nuclear Motion]:

• intrinsic - described by RPA;

• rotational - not described in RPA.

For low-lying transitions:
• associated with transitions in the rotational band;

• contribution from zero excitation energy to sum rule → g.s.-to-g.s.

transitions.

Conclusion I: RPA g.s.-to-g.s. transitions associated with
transitions in the g.s. band.

Conclusion II: symmetries are not restored by RPA.



Gamow-Teller β+ decays
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Gamow-Teller β decays

6 8 10 12 14 16 18 20
E (MeV)

0

1

2

3

4

Σ 
B

(G
T

)
SM
pnRPA
pnQRPA

-5 0 5 10 15 20 25
E (MeV)

0

2

4

6

8

Σ 
B

(G
T

)

β+

β−

26
Mg

10 20 30
E (MeV)

0.0

0.5

1.0

1.5

Σ 
B

(G
T

)

−10 0 10 20
E (MeV)

0

3

6

9

Σ 
B

(G
T

)

β+

β−

25
Na



Deformation effects
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Global properties of strength distributions

S0 Ē (MeV) ∆E (MeV)
Nucleus SM RPA SM RPA SM RPA

20Ne β+/β− 0.55 0.69 15.81 12.20 4.22 2.42
22Ne β+ 0.50 0.63 19.71 16.17 3.81 1.33

β− 6.50 6.63 4.48 4.75 5.64 3.79
24Mg β+/β− 2.33 2.73 13.40 10.92 3.86 2.33
24Na β+ 1.67 1.92 14.59 12.34 3.53 2.65

β− 7.67 7.92 6.67 6.15 4.87 3.72
26Al β+/β− 4.28 4.28 11.86 10.37 3.43 2.87
21Ne β+ 0.63 0.67 15.85 13.96 4.49 2.82

β− 3.63 3.67 6.49 5.82 5.05 4.17
25Na β+ 1.39 1.50 15.96 14.06 3.27 1.95

β− 10.39 10.50 5.27 4.92 5.13 3.97

[Stetcu and Johnson, nucl-th/0309043]



Summary

Transitions

• Good description of high-lying collective states;

• Bad description for low-lying collective states (suggests incomplete

symmetry restoration);

• Not very good description of low individual states;

• contribution from zero modes to the EWSR for deformed HF

(associated with broken symmetries);

• Treatment of deformation looks more important than treatment of

pairing.



RPA ground state

Fermi level
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RPA excited states
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RPA Equations

(
A B
−B∗ −A∗

) (
X

Y

)
= Ω

(
X

Y

)
β†

ν =
∑
mi

(
Xν

mic
†
mci − Y ν

mic
†
icm

)
Back



RPA correlation energy

ERPA = EHF −
1
2

Tr A +
1
2

∑
ν

Ων

back



Ω

R
H

S
0

λ>0

λ<0

1
λ

= 2
∑
mi

|Qmi|2εmi

ε2
mi − Ω2

Back



Collapse Problem

-5.5 -5 -4.5 -4 -3.5
εd/2 (MeV)

0
1
2
3
4
5
6
7
Fi

rs
t E

xc
ite

d 
St

at
e

Spherical HF
Deformed HF


