Workshop on experimental and theoretical aspects of NN and NNN forces

INT, Seattle, October 7-10, 2003

H. Sakai Department of Physics / CNS, The University of Tokyo RIKEN

Are there three-nucleon forces(3NF)?

3NF is much weaker than 2NF.

3NF effects are easily masked by 2NF effects.

Equations of motion must be solved exactly. Faddeev eq. 2NF must be reliable.

However, numerical calc. are extremely difficult.

Three-Body Problems in Quantum Mechanics

L.D. Faddeev, Sov. Phys. JETP 12(1961)1014

Faddeev Equation

$$H = H_{0} + V_{12}^{NN} + V_{23}^{NN} + V_{31}^{NN} + V_{123}$$

can be solved exactly!

Characteristics

Independent of reaction models 2.Direct comparison possible between data and inputs **Two nucleon force NF**)

One <u>π</u> Exchange (OPE) model by <u>Hideki Yukawa</u>

(Proc. Phys. Math. Soc. Jpn 17(1935) 48.)

 $m_{\pi}c^2 = 140 \text{ MeV}$ (J^{π}, T)=(0⁻, 1)

$$V_{(1,2)}^{\text{OPE}} = \frac{1}{3} \frac{f_{2}}{\hbar c} m c^{2} (1 - 2) \{ 1 - 2 + \left(1 + \frac{3}{x} + \frac{3}{x^{2}}\right) S_{12} \} \frac{\exp^{-x}}{x}$$

$$S_{12} = \frac{3 \left(\frac{1}{r}r\right) \left(\frac{1}{2}r\right)}{r^{2}} \left(\frac{1}{r}r\right) \left(\frac{1}{2}r\right)$$

$$x \equiv \frac{m c}{\hbar} r$$

Realistic modern 2 nucleon forces available now.

reproduces more than 3,500 exp. NN data with $x^2 \cong 1$.

- **CD Bonn pot**. : strong non-locality
- **AV18 pot**. : OPE + phenom.

Nijmegen I/II/93 pot. : one boson exch.

Main differences are of-shell properties

Three nucleon force

2. Fujita • Miyazawa type 3NF

(Prog. Theor. Phys. 17(1957)360.)

 2π exchange type 3NF

N: proton / neutron $m_N c^2 = 940 \text{MeV}$ $(J,T) = \left(\frac{1}{2}, \frac{1}{2}\right)$

NF)

A excited state of nucleon

$$m_{\Delta}c^2 = 1232 \text{ MeV}$$

 $(J,T) = \left(\frac{3}{2},\frac{3}{2}\right)$

other type of 3NF

BNF based on 2\pi exchange model

TM-3NF

S.A.Coon *et al.*, Nucl. Phys. A317(1979)242. current algebra

4. UR-3NF

J.Carlson *et al.*, Nucl. Phys. A401(1983)59. FM+phenomenological SR term

7. BR-3NF

H.T. Coelho *et al.*, Phys. Rev. C28(1983)1812. chiral Lagrangian + current algebra 10. Texas-3NF

U.van. Kolck *et al.*, Phys. Rev. C49(1994)2932. chiral perturbation theory

Three-Nucleon Force

$$V^{(3)} = \frac{1}{(2\pi)^{6}} \frac{g_{\pi NN}^{2}}{4m^{2}} \frac{F_{\pi NN}^{2}(q^{2})}{(q^{2} + m_{\pi}^{2})} \frac{F_{\pi NN}^{2}(q'^{2})}{(q'^{2} + m_{\pi}^{2})} \vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}' \left[\phi^{\alpha\beta} \tau_{\alpha} \tau_{\beta} \right]$$

$$\phi^{\alpha\beta} = \delta^{\alpha\beta} \left[a + b \vec{q} \vec{q}' + c(q^{2} + q'^{2}) \right] - d(\tau_{3}^{\gamma} \varepsilon^{\alpha\beta\gamma} \vec{\sigma}_{3} \cdot \vec{q} \times \vec{q}')$$

$$F^{2}_{NN}(q^{2}) = \frac{2}{2} \frac{m^{2}}{m^{2}}$$
NN form factor

$$\therefore \text{ cut} \quad \text{off parameter}$$

3NF model	a	b	c	d
FM	0.0	-1.15	0.0	-0.29
TM	1.13	-2.62	1.05	-0.60
Urbana IX	0.0	-1.20	0.0	-0.30
Brazil	1.05	-2.29	1.05	-0.77
Texas	1.87	-3.82	0.0	-1.12
Ruhr	0.51	-1.82	0.0	-0.48
TM'	-0.87	-2.62	0.0	-0.60

Faddeev type calculations

1 Bochum-Cracow-KIT group calculation

- H. Witała, H. Kamada, W. Glöckle,
- **E. Epelbaum**

Input data

NN	3NF
CD Bonn	Tucson-Melbourne
	Urbana IX
AV18	
Niimegen	

2 Hannover group calculation P.U. Sauer, D.Deltuva

Input data

NN	3NF	
CD Bonn	Δ – isobar	

N and Δ on an equal footing! dispersive two-body effects exist.

Both calc., *nd* scattering assumed. No Coulomb force effects included.

First Evidence of 3NF Effects

B.E. of ³H: 8.48 MeV

Faddeev calculations

NN force only calc. is underboud by 0.5-1.0 MeV.

3NF fills this gap.(but with Λ)

put constraint on overall strength of 3NF.

FIG. 1. (Color) Energies of ground or low-lying excited states of light nuclei computed with the AV18 and AV18/UIX interactions, compared to experiment. The light shading shows the Monte Carlo statistical errors. The dashed lines indicate the thresholds against breakup for each model or experiment.

To where should we look for 3NF effects?

N*d* **elastic** scattering is very attractive since it is simple and offers a rich set of spin observables.

Low energy *pd* scattering

Faddeev calc.

No parameter !

No need of 3NF !

 A_y (iT₁₁)discrepancy

3NF?

Probably due to deficiency in ³P_J phase shifts of NN.

To where should we look for 3NF effects?

Prediction by H.Witała. PRL 81('98) 1183.

go to nd scatt. at intermediate energy.

Look at $d\sigma/d\Omega$ minimum region.

Let's start with

135 MeV/u (E_d=270 MeV) data at RIKEN by K. Sekiguchi

\mathbf{V}/\mathbf{A}
) Me
70-400
s at
scattering
pu
and
pd

1

d + p at 270 MeV (RIKEN)

_d: various spin(polarization) obs. $d\sigma/d\Omega$, $P^{y'}(=-A_y^p)$, iT_{11} , T_{20} , T_{22} , T_{21}

K. Sekiguchi et al. Phys. Rev. C65 (2002) 034003.

Spin(polarization) transfer exp. by Sekiguchi $\overrightarrow{d} p \rightarrow \overrightarrow{p} d$ at 270 MeV (135 MeV/u) $K_{xx}^{y'}, K_{yy}^{y'}, K_{xz}^{y'}, K_{y}^{y'}$ \longrightarrow K. Sekiguchi: to be published soon.

RIKEN Accelerator Research Facility (RARF)

Directions of polarization of *d* **beams are freely controlled!**

Vector and tensor polarized deuteron beams are provided by the polarized ion source(PIS).
 The Spin axis is controlled by a Wien Filter prior to acceleration.
 Single-turn extraction is available both for the AVF and Ring cyclotrons.

Beam polarizations : 60-80% of the theoretical maximum values

at D-room polarimeter (A) and the Swinger polarimeter (B)

Method of spin rotation

magnetic moment
$$\mu = s \frac{e \hbar}{mc} (1 a)$$

cyclotron frequency in magnetic field B

angular rotation frequency in B

$$c = \frac{eB}{m}$$

 $s = \frac{eB}{m}(-a-1)$

Larmor freq. + Thomas precession (rel. effects)

Dirac particle $(a=0) \Rightarrow _{s} = _{c}$

Method of spin rotation

Spin rotation before injection into cyclotron at low energy spin precession during accel.

Familiar at Tandem VdG accel...

single turn extraction needed at cyclotron

Thanks to RIKEN Accelerator Staff

• spin direction moniter needed after accel. With high efficiency.

SMART: <u>Swinger and Magnetic Analyzer with Rotator and Twister</u>

RIKEN data 270 MeV (135 MeV/u)

Bochum calc. — NN

Measurement Conditions

Parameter

- **D** Beam energy : Ed = 270 MeV
- **Target** : Liq. H (19.8 mg/cm²) , CH_2 (93.4 mg/cm²)
- Beam intensity : 10 60 nA
- Vector and tensor beam polarizations
 : 60 80 % of the theoretical maximum values

Angular Range : $\theta_{c.m.} = 90^{\circ} - 180^{\circ}$

DPOL calibration :

induced polarization of ¹²C(p,p₀) ¹²C

How to extract *d* to *p* polarization transfer coefficients?

Induced Polarization

Polarization Transfer Meas. @270MeV(135MeV/u)

Statistical Uncertainty

δ Ρ^{'y'}	$\delta K_y^{y'}$	$\delta K_{yy}^{y'}$	$\delta K_{xx}^{y'}$	$\delta K_{xz}^{y'}$
0.01	0.02	0.02	0.03	0.02

Systematic Uncertainty

Effective Analyzing Power A_y^C	
Beam Polarization	
Bending Angle of the Spectrometer	
Total	3%

- $A_{y}^{p} (= P_{y}^{'})$ data provide almost the same results.
 - This Measurement
 - O Previous Measurement
 - KVI Data

How they look like if the energy is halved ?

140 MeV(70 MeV/u) data at RIKEN

Chiral Effective Field Theory

Relation with QCD

Lagrangian *L*=....

-Scale parameter Λ

expand in power of Q/ Λ (Q=nucl. mom.)

•Chiral symmetry

2N+3N on the same footing !

Results of 270 and 140 MeV

$d\sigma/d\Omega$, iT_{11} : Excellent fits!

 \rightarrow clear **3NF** effects in **Nd** scatt.

 \rightarrow magnitudes of 3NF seem to be O.K.

4. $A_{y}(=-p^{y'}), T_{20}, T_{22}, T_{21}$: Poor fits!

 \rightarrow defects in spin dependent part of 3NF.

- 6. $K_{xx}^{y'}, K_{yy}^{y'}$: reasonable fits! $K_{y}^{y'}, K_{xz}^{y'}$: poor. \rightarrow spin-spin interaction of 3NF is reasonable?
- 9. 3NF: TM'/ Urbana IX does better job. \rightarrow chiral symmetry requires: The *c* term should be zero.
- 12. Chiral Eff. Field Theory calc. does reasonable job for $d\sigma/d\Omega$ but not much analyzing powers.

How they look like if the energy is doubled from 135 MeV/u ($E_d=270$ MeV) ?

250 MeV/u data at RCNP

Coulomb free

direct comparison is possible:

between *nd* data vs. Faddeev calc.

 \vec{n} : secondary beam exp. \rightarrow very difficult.

⁷Li(p,n)⁷Be reaction

Forward angle
: d(n,n)dNTOF+NPOL

D liq. Scintillator(active target)

Backward angle
: d(n,d)n (n,p) facility

recoiled d dectected

All data points are normalized by np scatt.

d(n,n)d NTOF+NPOL

Beam Swinger System

NPOL2

d(n,d)n (n,p) facility

RCNP Osaka University

LAS Spectrometer

n + d at 250 MeV

\vec{p} + d at 250 MeV (RCNP)

by K. Hatanaka

 $d\sigma/d\Omega, A_y$

complete pol. transfer meas.: $K_x^{x'}$, $K_y^{y'}$, $K_z^{z'}$, $K_z^{x'}$, $K_x^{z'}$

proton to proton

3. direct comparison possible: between *nd* vs. *pd*

 $\vec{p} + d \rightarrow \vec{p} + d$ at 250 MeV K. Hatanaka *et al.*, Phys. Rev. C66 (2002) 044002.

$_n$ + d and $_p$ + d at 250 MeV

pd elastic scattering at 250 MeV

Hannover calc. by Arnas Deltuva

(ne/dm) დხ/ob

pd elastic scattering at 250 MeV

Hannover calc. by Arnas Deltuva

Let's look at

•Coulomb effects.

Data-to-data comparison between *nd vs. pd*

$$\frac{\left(\frac{d}{d}\right)_{pd}}{\left(\frac{d}{d}\right)_{nd}}$$

Coulomb effect ! ?

Calculation by Y. Koike.

Nd at 135/u MeV

Coulomb force is approx.

Results at 250 MeV

Hirst \vec{n} measurements at 250 MeV. n and Data-to-data comparison was made: nd vs. pd \rightarrow 10-20 % variation in $d\sigma/d\Omega$ \rightarrow Coulomb effect ! ? direct comparison was made: *nd*. data *vs*. calc. $d\sigma/d\Omega$: 50% disagreement in backward. \rightarrow irrespective of 3NF 3. A_{v} : large deviation in backward. \rightarrow irrespective of 3NF 5. $K_x^{x'}, K_v^{y'}, K_z^{z'}, K_z^{x'}, K_x^{z'}$ (pd vs. calc.) \rightarrow TM 3NF does poor job. \rightarrow almost no FM 3NF(Δ) effects!

These results indicate :

→ defects of 3NF or relativistic effects or both? OR

→ **defects** of nucleon exchange process? OR

defects of NN interactions?

Results from TSL

How they look like if the energy is doubled ?

400 MeV/u data at RCNP \vec{p} + d at 400 MeV (RCNP)

by Tamii

A.Tamii: $\vec{p} + d \rightarrow \vec{d} + p$ at 400 MeV $d\sigma/d\Omega$, A_y^p , A_y^d (= $-P^{y'}$), $K_y^{y'}$

Limited angular range

Very preliminary calc. by Kamada

- 2NF : CD Bonn
- 3NF : TM

NN

Results at 400 MeV

Calc. by H. Kamada are very preliminary!

 $d\sigma/d\Omega$: agreement?

 A_{y}^{p} , $(= -P^{y'})$, iT_{II} : large deviation.

 $K_{y}^{y'}$: large disagregment(opposite sign!) $p + d \rightarrow d + p$

Experimental Summary

Precise data on p + d elastic scattering at $\mathbf{E}_p = 70 - 400$ MeV become available now, not only $d\sigma/d\Omega$, A_y^p , $(= -P^{y'})$, iT_{11} , T_{20} , T_{22} , T_{21} but also various Polarization Transfer Observables.

A lot of data expected at 135 MeV/u.

- * Spin-correl. data from IUCF.
- * Breakup data from KVI and may be from RIKEN 135 MeV/u will be the most extensive data set.

Present status of 3NF study

3NF established firmly ?

Yes and No.

Magnitudes seem to be O.K.

Spin dependence? Chaotic.

6. Defects of 3NF ?

Yes, definitely in TM.

The *c* term violates chiral symmetry.

Need to include, $\pi\rho$ and $\rho\rho$ exch. 3NF and more.

 11. New development of Chiral Eff. Field Theory calc. is extremely interesting.
 13. Relativistic effects must be studied. Are 2NFs reliable?

Questionable in terms of off-shell properties. No need of 3NF in BE(³H) by Y. Fujiwara! PHYSICAL REVIEW C 66, 021001(R) (2002)

Triton binding energy calculated from the SU₆ quark-model nucleon-nucleon interaction

²Department of Applied Physics, Okayama Science University, Okayama 700-0005, Japan Y. Fujiwara,¹ K. Miyagawa,² M. Kohno,³ Y. Suzuki,⁴ and H. Nemura⁵ ⁵Institute of Particle and Nuclear Physics, KEK, Tsukuba 305-0801, Japan ³Physics Division, Kyushu Dental College, Kitakyushu 803-8580, Japan ⁴Department of Physics, Niigata University, Niigata 950-2181, Japan Department of Physics, Kyoto University, Kyoto 606-8502, Japan (Received 23 May 2002; published 2 August 2002)

model nucleon-nucleon interaction is explicitly incorporated to calculate the off-shell T matrix. The most = -8.514 MeV in the 34 channel calculation, when the np interaction is used for the nucleon-nucleon including the finite size correction of the nucleons. These values are the closest to the experiments among Properties of the three-nucleon bound state are examined in the Faddeev formalism, in which the quarkrecent version, fss2, of the Kyoto-Niigata quark-model potential yields the ground-state energy $E(^{3}H)$ interaction. The charge root mean square radii of the ³H and ³He are 1.72 fm and 1.90 fm, respectively, many results obtained by detailed Faddeev calculations employing modern realistic nucleon-nucleon interaction models. Are 2NFs reliable?

Questionable in terms of off-shell properties.

No need of 3NF in BE(3H) by Y. Fujiwara!

Should be tested by scatt. data.

Exchange term might be problematic.

Finnaly,

Recent **3NF studies** have reached a new era of **'the Renaissance'**.

This is due to recent harmonious development of both experiments and theories.

But I think more theory inputs are needed.

Some experimental concern.

Results from KVI

Sakamoto et al., Phys. Lett B367 (1996) 60

d+p : counter meas.

Sakai et al., Phys. Rev. Lett. 84 (2000) 5288

Sekiguchi et al., Phys. Rev. C65 (2002) 34002

d+p : SMART spectr.

Sekiguchi et al., to be published. d+p & p+d : SMART spectr.

Sakamoto et al., Phys. Lett B367 (1996)60

d+p : counter meas.

Sakai et al., Phys. Rev. Lett. 84(2000)5288

Sekiguchi et al., Phys. Rev. C65 (2002)34002

d+p : SMART spectr.

Sekiguchi et al., to be published. d+p & p+d : SMART spectr.

KVI data to be published.

p+d : counter meas.

Experiments were carried out under the collaboration of researchers from University of Tokyo, RIKEN, CNS, RCNP, Saitama University, CYRIC and TIT.

This talk is supported by Kimiko Sekiguchi Yukie Maeda for preparing figures.