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Chiral perturbation theory

� � ��� � � constrained by (approximate)

�� �	 ��
 � � � �	 �� of QCD.

Chiral perturbation theory is the most general consistent
with the symmetries of QCD and the pattern of their breaking, up to
a given order in the small expansion parameter:

Unknown coefficients at a given order need to be determined.
expansion employed: (usually) useful, not essential.

PT is:
Model-independent;

Systematically improvable.

Many successful applications to A=1 at low energy. (Also .)

The : to include or not to include? ?
Jenkins, Manohar, Hemmert, Holstein, . . .
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Power counting in PT

Rules:

��

for a vertex with � powers of � or ��� :
� � � �

;

��� �

for each pion propagator:

�
	 
 � � 
� ;

��� �

for each nucleon propagator:
�

�� � � 
� � � � � ;

� �

for each loop:

� ���

;

Power counting for loops as well as for

,

: “naturalness”.
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Nucleon Compton Scattering in PT

� ��� �� �

� � � ��� � �

Powell X-Sn +

non-analyticity

from loops

Small expansion:

.
Bernard, Kaiser, Meißner (1992)

PDG average:
;

.
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Bernard, Kaiser, Meißner (1992)

PDG average:
� � �
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� �
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N

�

LO: �
� �

� amplitude at

��� � � �

J. McGovern, Phys. Rev. C 63, 064608 (2001)

Short-distance physics via contact terms , with coefficients which
should be fit to data:

Experiments: SAL/Illinois, LEGS, MAMI, . . . .
Kinematic restriction ( -less PT): MeV.

Fits with explicit : R. Hildebrandt et al., nucl-th/0307070.

INT Mini-workshop on NN/NNN systems, October 2003 – p.6/39



N

�

LO: �
� �

� amplitude at

��� � � �

J. McGovern, Phys. Rev. C 63, 064608 (2001)

Short-distance physics via contact terms , with coefficients which
should be fit to data:

� � � � � � � � � � � � � � � � 	 ��� �

Experiments: SAL/Illinois, LEGS, MAMI, . . . .
Kinematic restriction ( -less PT): MeV.

Fits with explicit : R. Hildebrandt et al., nucl-th/0307070.

INT Mini-workshop on NN/NNN systems, October 2003 – p.6/39



N

�

LO: �
� �

� amplitude at

��� � � �

J. McGovern, Phys. Rev. C 63, 064608 (2001)

Short-distance physics via contact terms , with coefficients which
should be fit to data:

� � � � � � � � � � � � � � � � 	 ��� �

Experiments: SAL/Illinois, LEGS, MAMI, . . . .
Kinematic restriction (

�
-less �PT): 	 � ��� � � 	 � �

MeV.

Fits with explicit
�

: R. Hildebrandt et al., nucl-th/0307070.

INT Mini-workshop on NN/NNN systems, October 2003 – p.6/39



Results
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S. R. Beane, J. McGovern, M. Malheiro, D. P., U. van Kolck, Phys. Lett. B, 567, 200 (2003).
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What’s in a name?

Washington-Arizona-Rio-Manchester-Ohio: WARMO

Fluminense-Ohio-Arizona-Manchester-INT: FOAMI

COMPTON
Computing One Much-discussed Process That Occurs in Nature

Calculating the Outcome of Many Photons Targetted On a Nucleus
Collaboration Of Many Physicists: Theorists or Nincompoops?

Manchester-Athens-Fluminense-

INT-Arizona: MAFIA
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Baldin Sum Rule
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With Baldin Sum Rule constraint:
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Cutoff dependence of p fit

200 MeV 180 MeV 165 MeV

140 MeV 120 MeV 100 MeV

1Σ contour example with HΧ2Lmin=1
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Going higher for p

Breakdown scale set by first omitted degree of freedom:
�

isobar.� � �� � � � � � �� � � � �

But how to count c.f. ?

“Small-scale expansion” (Hemmert, Holstein, et al.), count:

“ -expansion” (Pascalutsa and D.P.):

We should consider two distinct kinematic regions for p

scattering;

’s and ’s must be kept track of separately, then to get

overall counting index of graph set , .
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Power counting for � �

� ��� ����
� ��� �
	 ����

� �
��� 


� �

� �
� � �

if 	 � �� � � �

.

Diagrams with no ’s: count as in HB PT but with .

if .
: loops with insertions from , loops too.

Counterterms: , .
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� : O R diagrams

k k’

p

k k’

p

� �
��� �

Diverges for � � �

. Problem with all O

�

R diagrams.

Solution: Dyson equation

begins with

all terms Use dressed propagator.
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 ��� � 
� � ��� � all terms ��� � � Use dressed

�

propagator.
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Dressing the propagator

� � � ��� � � � � 
� � �� � ��� � � �

��  �

��� �� �� 	�  � �	 � 	�
� 
 �

 �� �  � � � �� �  � � � �� �� � �
Treat

 � � �

etc. in perturbation theory

Consistent couplings

Resum renormalized third-order self-energy
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Consistent couplings

�

invariant under

� � � � � � � �


� �

has correct number of spin degrees of freedom

Spin-3/2 gauge invariance

k k’

p

k k’

p

Unphysical spin-1/2 degrees of freedom do not enter any
physical amplitude
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� : power counting

LO and NLO O

�

R diagrams:

��� � �� � ��� � �� �

��� � �	 � ��
 � �� �

These + Thomson term define NLO calculation:

� �� ����� � �

+

� �� � �

N LO, :

V. Pascalutsa and D. R. Phillips, Phys. Rev. C 67, 0552002 (2003).
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Results: I

Fit to �p data from threshold to � � � �

MeV
Free parameters:

� �� � �� ���� � � � �� � � �

MeV � � � =2.81

� �� �
 � � � 
 �� � � � 	 � 
 � � � 
 	

Errors: estimate of N

�

LO effect

c.f. large- , , ;

Reference

NLO HB PT 12.2 1.2

NLO

NLO SSE 16.4 9.1

PDG average

Beane et al.

Large corrections to spin polarizabilities (especially ), Pascalutsa and D.P., PRC, in press.
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Results: II
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Results: III
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Reactions on deuterium

: calculated from chiral NN potential, or from a potential model.

: also has a PT expansion. (Weinberg, van Kolck)

Description of observables which should be: model independent, sys-

tematically improvable, and accurate at low momentum/energy trans-

fer.
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Naive dimensional analysis for

�

�

�

�
� �

� ��� �	� 
 �
�

Rules:��

for a vertex with  powers of � or � � :

� � � �
;�  �

for each pion propagator:

���  � ��� ;�  �

for each

� �

propagator:

�� � ��� ;� 	

for each loop:

�� 	 �

;

� !

for a two-body diagram:

� � ! � � � " �� � � #
absent.

Loops, many-body effects, and vertices from etc.

suppressed by powers of .
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Deuteron wave functions
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Same at long distances:
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,

��� ,

��� ,

�
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Some differences at

two-pion range.
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Compton scattering on deuterium

Want to determine ��� and � . Naive idea:

�

���� � ��

INCORRECT

Possible to extract and from d d data, but

need to treat 2B effects SYSTEMATICALLY.
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d experiments

Illinois (1994): M. Lucas, Ph.D. thesis, � � � ��
�

� �

MeV;

SAL (2000): D. Hornidge et al., PRL 84, 2334 (2000), � � ��� �� �
MeV;

Lund (2003): M. Lundin et al., PRL 90, 192501 (2003), � � � � �
��

MeV.
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d in PT to �
�

S. R. Beane, M. Malheiro, D. P., U. van Kolck, Nucl. Phys. A656, 367 (1999)

� ��� ���
	

No free parameters at this order PREDICTION
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Results
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d scattering at �
� �

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, Phys. Lett. B, in press

Ingredients:

1. N amplitude at ; boosted to d centre-of-mass frame.

2. d two-body pieces at .

3. d two-body pieces at .

Calculable in terms of , , , , and .

4. Resummation to deal with very-low-energy region
(relevant only for lower-energy data sets).

Only free parameters are and .
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Convergence
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Very-low-energy resummation

� � � �� � ��� �

Diagrams (b) and (c) crucial for recovery of �d Thomson limit:

� � �� � �� 	 � �
�	�
� 
�� �

Also crucial is to use: NOT

Modification of power-counting necessary for ;

Leading effect [in EFT ] comes from diagrams (b) and (c);

Significant effects at 49 and 55 MeV. Negligible at 95 MeV.
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Very-low-energy resummation effect
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Dependence of cross section on
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Polarizability extractions

Wave function � �

��� � �� � ��  	�� � ! # �� � ��  	� � ! # � � /d.o.f.

NLO �PT < 160 MeV 9.0 1.7 1.48

NLO �PT < 200 MeV 8.2 3.1 1.58

Nijm93 < 160 MeV 12.6 1.1 2.95

Including backward-angle SAL points increases
markedly. ? dynamics.

Results for and rather different with Nijm93 wave function:
differential cross section larger by about 10%, shape similar.

Isoscalar polarizabilities from low-energy d d:
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Results
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Conclusions and Future Work

�p scattering:
N

�

LO HB �PT calculation yields � �� � � ��

��� � � �� �

MeV�

-expansion: � �

� � � dressed

� � � � � �

MeV

d scattering:
[NLO]: Parameter-free predictions: MeV.
[N LO]: Extraction of and

Future work:
Other processes in -expansion

degrees of freedom in d (in progress with R. Hildebrandt, T. Hemmert, H. Grießhammer);

Better understanding of dependence;

More data on d d!

(Kossert et al. Phys. Rev. Lett. 88, 162301 (2002)).

Thanks to the U.S. Department of Energy for financial support.
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d with explicit ’s

R. Hildebrandt, H. Grießhammer, T. Hemmert, D.P.

Calculation to N

�

LO—

� ��� � � � �

—in

�

-counting;

� � � and

� � � promoted by one order, and (here) fixed at

values extracted from fit to �p data:

� � � � ��
�

� � � � �� � � �
�
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�
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2004 Photonuclear GRC
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2004 Gordon Research Conference
on Photonuclear Reactions
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Tilton School, Tilton, NH

Organizers: D. Phillips (Ohio), A. Sarty (St. Mary’s), B. Krusche (Basel)

Topics:

Chiral dynamics and the Delta

Nucleon resonances

Theory: present and future

Z

�

-nuclear physics

The transition to the scaling regime

Strong interactions at the Standard Model frontier

Photonuclear interactions in the nuclear medium

Electromagnetic probes of few-nucleon systems
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