Compton Scattering from the proton, deuteron, and neutron

DANIEL PHILLIPS

Department of Physics and Astronomy Ohio University, Athens, Ohio

INT Mini-workshop on NN/NNN systems, October 2003 - p.1/39

Outline

- Compton scattering on the proton in chiral perturbation theory for $\omega \sim m_{\pi}$
- An EFT for γp scattering in the Delta region
- Compton scattering on deuterium and the extraction of nucleon polarizabilities
- Conclusions, Future Work, and Shameless Advertising

 $\mathcal{L}(N,\pi)$ constrained by (approximate) $SU(2)_L \times SU(2)_R$ of QCD.

 $\mathcal{L}(N,\pi)$ constrained by (approximate) $SU(2)_L \times SU(2)_R$ of QCD.

Chiral perturbation theory is the most general $\mathcal{L}(N, \pi)$ consistent with the symmetries of QCD and the pattern of their breaking, up to a given order in the small expansion parameter:

$$P \equiv rac{p,m_\pi}{m_
ho,4\pi f_\pi}$$

Unknown coefficients at a given order need to be determined. p/M expansion employed: (usually) useful, not essential.

 $\mathcal{L}(N,\pi)$ constrained by (approximate) $SU(2)_L \times SU(2)_R$ of QCD.

Chiral perturbation theory is the most general $\mathcal{L}(N, \pi)$ consistent with the symmetries of QCD and the pattern of their breaking, up to a given order in the small expansion parameter:

$$P\equiv rac{p,m_{\pi}}{m_{
ho},4\pi f_{\pi}}$$

Unknown coefficients at a given order need to be determined. p/M expansion employed: (usually) useful, not essential.

Model-independent;

 χ PT is:

Systematically improvable.

Many successful applications to A=1 at low energy. (Also A = 0.)

 $\mathcal{L}(N,\pi)$ constrained by (approximate) $SU(2)_L \times SU(2)_R$ of QCD.

Chiral perturbation theory is the most general $\mathcal{L}(N, \pi)$ consistent with the symmetries of QCD and the pattern of their breaking, up to a given order in the small expansion parameter:

$$P \equiv rac{p,m_{\pi}}{m_{
ho},4\pi f_{\pi}}$$

Unknown coefficients at a given order need to be determined. p/M expansion employed: (usually) useful, not essential.

Model-independent;

 χPT is:

Systematically improvable.

Many successful applications to A=1 at low energy. (Also A = 0.) The Δ : to include or not to include? $m_{\pi} \ll \Delta \ll m_{\rho}$?

Jenkins, Manohar, Hemmert, Holstein, ...

Power counting in χ **PT**

Rules:

Pⁿ for a vertex with n powers of p or m_π: L⁽ⁿ⁾;
P⁻² for each pion propagator: 1/(q²-m_π²);
P⁻¹ for each nucleon propagator: 1/(p₀-p²/(2M));
P⁴ for each loop: ∫ d⁴k;

Power counting in χ **PT**

Rules:

 $\square P^n$ for a vertex with n powers of p or m_{π} : $\mathcal{L}^{(n)}$; P^{-2} for each pion propagator: $\frac{1}{a^2 - m_{-}^2}$; P^{-1} for each nucleon propagator: $\frac{1}{p_0 - \mathbf{p}^2/(2M)}$; $\square P^4$ for each loop: $\int d^4k$; Power counting for loops as well as for \mathcal{L} $\Rightarrow \mathcal{A}(\pi s, \gamma s, N) = \sum_{n} \mathcal{F}_{n}\left(\frac{p}{m_{\pi}}\right) P^{n},$ $\mathcal{F}_n \sim O(1)$: "naturalness".

Nucleon Compton Scattering in χ **PT**

Nucleon Compton Scattering in χ **PT**

 ${\cal O}(e^2 P)$:

Powell X-Sn + non-analyticity

from loops

 $\frac{-e^2}{M}\epsilon'\cdot\epsilon$

Nucleon Compton Scattering in χ **PT**

 $\frac{-e^2}{M}\epsilon'\cdot\epsilon$

Powell X-Sn + non-analyticity from loops

Small ω expansion:

$$\mathcal{A}_{\gamma N}(\omega) = \begin{bmatrix} -\frac{e^2}{M} + 4\pi\alpha_N\omega^2 \end{bmatrix} \epsilon' \cdot \epsilon + 4\pi\beta_N\omega^2(\epsilon \times \mathbf{k}) \cdot (\epsilon' \times \mathbf{k}')$$

$$\alpha_N = \frac{5e^2g_A^2}{384\pi^2 f_\pi^2 m_\pi} = 12.2 \times 10^{-4} \text{ fm}^3; \quad \beta_N = 1.2 \times 10^{-4} \text{ fm}^3.$$
Bernard, Kaiser, Meißner (1992)
$$\alpha_p = (12.0 \pm 0.7) \times 10^{-4} \text{ fm}^3;$$

 $\beta_p = (1.6 \pm 0.6) \times 10^{-4} \text{ fm}^3.$

PDG average:

N²**LO:** $O(e^2P^2)$

 γN amplitude at $O(e^2 P^2)$

J. McGovern, Phys. Rev. C 63, 064608 (2001)

N²LO: $O(e^2P^2)$

 γN amplitude at $O(e^2 P^2)$

J. McGovern, Phys. Rev. C 63, 064608 (2001)

Short-distance physics via contact terms, with coefficients which should be fit to data:

$$4\pi\Delta\alpha_N \mathbf{E}^2, 4\pi\Delta\beta_N \mathbf{B}^2 \sim \omega^2 e^2$$

N²LO: $O(e^2P^2)$

 γN amplitude at $O(e^2 P^2)$

J. McGovern, Phys. Rev. C 63, 064608 (2001)

Short-distance physics via contact terms, with coefficients which should be fit to data:

$$4\pi\Delta\alpha_N \mathbf{E}^2, 4\pi\Delta\beta_N \mathbf{B}^2 \sim \omega^2 e^2$$

Experiments: SAL/Illinois, LEGS, MAMI, Kinematic restriction (Δ -less χ PT): ω , $\sqrt{|t|} \le 200$ MeV. Fits with explicit Δ : R. Hildebrandt *et al.*, nucl-th/0307070.

Results

Results

S. R. Beane, J. McGovern, M. Malheiro, D. P., U. van Kolck, Phys. Lett. B, 567, 200 (2003).

Washington-Arizona-Rio-Manchester-Ohio: WARMO

Washington-Arizona-Rio-Manchester-Ohio: WARMO Fluminense-Ohio-Arizona-Manchester-INT: FOAMI

Washington-Arizona-Rio-Manchester-Ohio: WARMO Fluminense-Ohio-Arizona-Manchester-INT: FOAMI

COMPTON

Washington-Arizona-Rio-Manchester-Ohio: WARMO Fluminense-Ohio-Arizona-Manchester-INT: FOAMI

COMPTON

Computing One Much-discussed Process That Occurs in Nature

Washington-Arizona-Rio-Manchester-Ohio: WARMO Fluminense-Ohio-Arizona-Manchester-INT: FOAMI

COMPTON

Computing One Much-discussed Process That Occurs in Nature Calculating the Outcome of Many Photons Targetted On a Nucleus

Washington-Arizona-Rio-Manchester-Ohio: WARMO Fluminense-Ohio-Arizona-Manchester-INT: FOAMI

COMPTON

Computing One Much-discussed Process That Occurs in Nature Calculating the Outcome of Many Photons Targetted On a Nucleus Collaboration Of Many Physicists: Theorists or Nincompoops?

Washington-Arizona-Rio-Manchester-Ohio: WARMO Fluminense-Ohio-Arizona-Manchester-INT: FOAMI

COMPTON

Computing One Much-discussed Process That Occurs in Nature Calculating the Outcome of Many Photons Targetted On a Nucleus Collaboration Of Many Physicists: Theorists or Nincompoops?

Manchester-Athens-Fluminense-INT-Arizona: MAFIA

Baldin Sum Rule

Baldin Sum Rule

With Baldin Sum Rule constraint: $\alpha_p + \beta_p = (13.8 \pm 0.4) \times 10^{-4} \text{ fm}^3$

INT Mini-workshop on NN/NNN systems, October 2003 - p.9/39

Baldin Sum Rule

With Baldin Sum Rule constraint: $\alpha_p + \beta_p = (13.8 \pm 0.4) \times 10^{-4} \text{ fm}^3$ $\alpha_p = (11.0 \pm 0.5 \pm 0.2)^{+0.5}_{-0.5} \times 10^{-4} \text{ fm}^3;$ $\beta_p = (2.8 \pm 0.5 \mp 0.2)^{+0.1}_{-0.1} \times 10^{-4} \text{ fm}^3$

Cutoff dependence of γ **p fit**

INT Mini-workshop on NN/NNN systems, October 2003 - p.10/39

Going higher for $\gamma \mathbf{p}$

Breakdown scale set by first omitted degree of freedom: Δ isobar. $\mathcal{L}(N,\pi) \to \mathcal{L}(N,\pi,\Delta)$

Breakdown scale set by first omitted degree of freedom: Δ isobar. $\mathcal{L}(N,\pi) \to \mathcal{L}(N,\pi,\Delta)$ But how to count m_{π} c.f. Δ ?

Breakdown scale set by first omitted degree of freedom: Δ isobar. $\mathcal{L}(N,\pi) \rightarrow \mathcal{L}(N,\pi,\Delta)$ But how to count m_{π} c.f. Δ ? 'Small-scale expansion'' (Hemmert, Holstein, et al.), count:

$$\frac{m_{\pi}}{\Lambda} \sim \frac{\Delta}{\Lambda} \equiv \epsilon$$

Breakdown scale set by first omitted degree of freedom: Δ isobar. $\mathcal{L}(N,\pi) \rightarrow \mathcal{L}(N,\pi,\Delta)$ But how to count m_{π} c.f. Δ ? 'Small-scale expansion'' (Hemmert, Holstein, et al.), count:

 $\frac{m_{\pi}}{\Lambda} \sim \frac{\Delta}{\Lambda} \equiv \epsilon$

" δ -expansion" (Pascalutsa and D.P.):

$$\frac{m_{\pi}}{\Delta} \sim \frac{\Delta}{\Lambda} \equiv \delta.$$

Breakdown scale set by first omitted degree of freedom: Δ isobar. $\mathcal{L}(N,\pi) \rightarrow \mathcal{L}(N,\pi,\Delta)$ But how to count m_{π} c.f. Δ ? 'Small-scale expansion'' (Hemmert, Holstein, et al.), count:

 $\frac{m_{\pi}}{\Lambda} \sim \frac{\Delta}{\Lambda} \equiv \epsilon$

" δ -expansion" (Pascalutsa and D.P.):

$$\frac{m_{\pi}}{\Delta} \sim \frac{\Delta}{\Lambda} \equiv \delta.$$

We should consider two distinct kinematic regions for γp scattering;

 $= m_{\pi}$'s and Δ 's must be kept track of separately, then to get overall counting index of graph set $m_{\pi} \sim \delta^2$, $\Delta \sim \delta$.

Diagrams with no Δ 's: count as in HB χ PT but with $P \sim \delta^2$.

Diagrams with no Δ 's: count as in HB χ PT but with $P \sim \delta^2$.

 $O(e^2\delta^3)$:

 $\leq \sim e^2 \frac{\omega^2}{\Delta} \sim e^2 \delta^3$ if $\omega \sim m_{\pi} \sim \delta^2$.

$\omega \sim \Delta$: O Δ R diagrams

Diverges for $\omega = \Delta$. Problem with all O Δ R diagrams.

$\omega \sim \Delta$: O Δ R diagrams

Diverges for $\omega = \Delta$. Problem with all O Δ R diagrams. Solution: Dyson equation

Σ begins with $\Sigma^{(3)}$

$\omega \sim \Delta$: O Δ R diagrams

Diverges for $\omega = \Delta$. Problem with all O Δ R diagrams. Solution: Dyson equation

Dressing the Δ propagator

$$S_{\mu\nu}^{(0)}(p) = -\frac{\mathcal{P}_{\mu\nu}^{(3/2)}(p)}{\not p - M_{\Delta}} + \text{non spin} - 3/2 \text{ pieces}$$

$$\Sigma_{\mu\nu} = \Sigma_{\mu\nu}^{(3)} + \Sigma_{\mu\nu}^{(4)} + \dots$$

Treat $\Sigma^{(4)}$ etc. in perturbation theory

Dressing the Δ propagator

$$S_{\mu\nu}^{(0)}(p) = -\frac{\mathcal{P}_{\mu\nu}^{(3/2)}(p)}{\not p - M_{\Delta}} + \text{non spin} - 3/2 \text{ pieces}$$

$$\Sigma_{\mu\nu} = \Sigma_{\mu\nu}^{(3)} + \Sigma_{\mu\nu}^{(4)} + \dots$$

Treat $\Sigma^{(4)}$ etc. in perturbation theory Consistent couplings $\Rightarrow \Sigma_{\mu\nu}(p) = \Sigma(p) \mathcal{P}^{(3/2)}_{\mu\nu}(p)$

Resum *renormalized* third-order self-energy

$$\tilde{S}_{\mu\nu}(p) = -\frac{Z(p^2)}{\not p - M(p^2)} \mathcal{P}^{(3/2)}_{\mu\nu}(p)
= -\frac{Z(M_{\Delta}^2)}{\not p - M_{\Delta} - i \operatorname{Im} M(p^2)} \mathcal{P}^{(3/2)}_{\mu\nu}(p) + O\left(\frac{1}{\Lambda}\right)$$

Consistent couplings

\mathcal{L} invariant under $\Delta_{\mu} \to \Delta_{\mu} + \partial_{\mu} \epsilon$ $\Rightarrow \Delta$ has correct number of spin degrees of freedom

Consistent couplings

 \mathcal{L} invariant under $\Delta_{\mu} \to \Delta_{\mu} + \partial_{\mu} \epsilon$ $\Rightarrow \Delta$ has correct number of spin degrees of freedom

Spin-3/2 gauge invariance $\Rightarrow p_{\mu}\Gamma^{\mu}(p,...) = 0$

Consistent couplings

 \mathcal{L} invariant under $\Delta_{\mu} \to \Delta_{\mu} + \partial_{\mu} \epsilon$ $\Rightarrow \Delta$ has correct number of spin degrees of freedom

Spin-3/2 gauge invariance $\Rightarrow p_{\mu}\Gamma^{\mu}(p,...) = 0$

$$\Gamma^{\mu}S_{\mu\nu}(p)\Gamma^{\nu} = -\frac{\Gamma^{\mu}\mathcal{P}^{(3/2)}_{\mu\nu}(p)\Gamma^{\nu}}{\not p - M_{\Delta}}$$

Unphysical spin-1/2 degrees of freedom do not enter any physical amplitude

$\omega \sim \Delta$: power counting

LO and NLO O Δ R diagrams:

These + Thomson term define NLO calculation: $O(e^2\delta^{-1}) + O(e^2)$

$\omega \sim \Delta$: power counting

LO and NLO O Δ R diagrams:

These + Thomson term define NLO calculation: $O(e^2\delta^{-1}) + O(e^2)$ N²LO, $O(e^2\delta)$:

$\omega \sim \Delta$: power counting

LO and NLO O Δ R diagrams:

(a)

These + Thomson term define NLO calculation: $O(e^2\delta^{-1}) + O(e^2)$

 $\Sigma^{(4)} =$

(b)

V. Pascalutsa and D. R. Phillips Phys. Rev. C 67, 0552002 (2003).

 $\omega \sim m_{\pi}$, as in χ PT, pole graphs + pion loops \Rightarrow LETs;

V. Pascalutsa and D. R. Phillips Phys. Rev. C 67, 0552002 (2003).

- $\omega \sim m_{\pi}$, as in χ PT, pole graphs + pion loops \Rightarrow LETs;
- $\omega \sim \Delta$, dominated by dressed Δ with energy-dependent width:

$$\Gamma(s) = \frac{h_A^2}{2f_\pi^2} \frac{s + M^2 - m_\pi^2}{24\pi M_\Delta^2} k^3 \theta(k)$$

V. Pascalutsa and D. R. Phillips Phys. Rev. C 67, 0552002 (2003).

- $\omega \sim m_{\pi}$, as in χ PT, pole graphs + pion loops \Rightarrow LETs;
- $\omega \sim \Delta$, dominated by dressed Δ with energy-dependent width:

$$\Gamma(s) = \frac{h_A^2}{2f_\pi^2} \frac{s + M^2 - m_\pi^2}{24\pi M_\Delta^2} k^3 \theta(k)$$

To describe $0 < \omega \leq \Delta$ amplitude includes all mechanisms which are NLO in *either region*;

V. Pascalutsa and D. R. Phillips Phys. Rev. C 67, 0552002 (2003).

- $\omega \sim m_{\pi}$, as in χ PT, pole graphs + pion loops \Rightarrow LETs;
- $\omega \sim \Delta$, dominated by dressed Δ with energy-dependent width:

$$\Gamma(s) = \frac{h_A^2}{2f_\pi^2} \frac{s + M^2 - m_\pi^2}{24\pi M_\Delta^2} k^3 \theta(k)$$

- To describe $0 < \omega \leq \Delta$ amplitude includes all mechanisms which are NLO in *either region*;
- Tools of field theory: Ward-Takahashi identities, consistent number of spin d.o.f., ...

V. Pascalutsa and D. R. Phillips Phys. Rev. C 67, 0552002 (2003).

- $\square \omega \sim m_{\pi}$, as in χ PT, pole graphs + pion loops \Rightarrow LETs;
- $\omega \sim \Delta$, dominated by dressed Δ with energy-dependent width:

$$\Gamma(s) = \frac{h_A^2}{2f_\pi^2} \frac{s + M^2 - m_\pi^2}{24\pi M_\Delta^2} k^3 \theta(k)$$

- To describe $0 < \omega \leq \Delta$ amplitude includes all mechanisms which are NLO in *either region*;
- Tools of field theory: Ward-Takahashi identities, consistent number of spin d.o.f., ...
- **Power counting** \Rightarrow error estimates

Fit to γp data from threshold to ~ 300 MeV Free parameters: h_A, g_M, g_E $\Gamma(M^2_{\Delta}) = 111 \text{ MeV} \rightarrow h_A = 2.81$ $g_M = 2.6 \pm 0.2, g_E = -6.0 \pm 0.9$ Errors: estimate of N²LO effect

Fit to γp data from threshold to ~ 300 MeV Free parameters: h_A, g_M, g_E $\Gamma(M_{\Delta}^2) = 111 \text{ MeV} \rightarrow h_A = 2.81$ $g_M = 2.6 \pm 0.2, g_E = -6.0 \pm 0.9$ Errors: estimate of N²LO effect c.f. large- $N_c, h_A = \frac{3}{\sqrt{2}}g_A \approx 2.67, g_M = \frac{2\sqrt{2}}{3}(1 + \kappa_p) \approx 2.63;$

Fit to γp data from threshold to ~ 300 MeV Free parameters: h_A, g_M, g_E $\Gamma(M_{\Delta}^2) = 111 \text{ MeV} \rightarrow h_A = 2.81$

$$g_M = 2.6 \pm 0.2, g_E = -6.0 \pm 0.9$$

Errors: estimate of N²LO effect

c.f. large- N_c , $h_A = \frac{3}{\sqrt{2}}g_A \approx 2.67$, $g_M = \frac{2\sqrt{2}}{3}(1+\kappa_p) \approx 2.63$;

Reference	α_p	eta_p
NLO HB χ PT	12.2	1.2
NLO δ	$10.2^{+4.2}_{-2.0}$	$3.9^{+2.7}_{-0.4}$
NLO SSE	16.4	9.1
PDG average	12.0 ± 0.7	1.6 ± 0.6
Beane <i>et al</i> .	12.1 ± 1.6	3.2 ± 1.2

Fit to γp data from threshold to ~ 300 MeV Free parameters: h_A, g_M, g_E

$$\Gamma(M_{\Delta}^2) = 111 \text{ MeV} \rightarrow h_A = 2.81$$

 $g_M = 2.6 \pm 0.2, g_E = -6.0 \pm 0.9$

Errors: estimate of N²LO effect

c.f. large- N_c , $h_A = \frac{3}{\sqrt{2}}g_A \approx 2.67$, $g_M = \frac{2\sqrt{2}}{3}(1+\kappa_p) \approx 2.63$;

Reference	α_p	eta_p
NLO HB χ PT	12.2	1.2
NLO δ	$10.2^{+4.2}_{-2.0}$	$3.9^{+2.7}_{-0.4}$
NLO SSE	16.4	9.1
PDG average	12.0 ± 0.7	1.6 ± 0.6
Beane <i>et al</i> .	12.1 ± 1.6	3.2 ± 1.2

Large Δ/M corrections to spin polarizabilities (especially γ_{π}), Pascalutsa and D.P., PRC, in press.

INT Mini-workshop on NN/NNN systems, October 2003 - p.20/39

 $|\psi\rangle$: calculated from chiral NN potential,

 $|\psi\rangle$: calculated from chiral NN potential, or from a potential model.

 $|\psi\rangle$: calculated from chiral NN potential, or from a potential model. \hat{O} : also has a χ PT expansion. (Weinberg, van Kolck)

fer.

 $|\psi\rangle$: calculated from chiral NN potential, or from a potential model. \hat{O} : also has a χ PT expansion. (Weinberg, van Kolck)

Description of observables which should be: model independent, systematically improvable, and accurate at low momentum/energy trans-

Naive dimensional analysis for \hat{O}

$$\hat{O} = \sum_{n} c_n \frac{(p, m_\pi)^n}{\Lambda^n}$$

Rules:

- Pⁿ for a vertex with n powers of p or m_{π} : $\mathcal{L}^{(n)}$;
- P^{-2} for each pion propagator: $\frac{1}{q^2 m_{\pi}^2}$;
- P^{-1} for each NN propagator: $\frac{1}{E-\mathbf{p}^2/M}$;
- P^4 for each loop: $\int d^4k$;
 - P^3 for a two-body diagram: $\delta^{(3)}(p'_2 p_2)$ absent.

Naive dimensional analysis for \hat{O}

$$\hat{O} = \sum_{n} c_n \frac{(p, m_\pi)^n}{\Lambda^n}$$

Rules:

 P^n for a vertex with *n* powers of *p* or m_{π} : $\mathcal{L}^{(n)}$;

 P^{-2} for each pion propagator: $\frac{1}{q^2 - m_{\pi}^2}$;

 P^{-1} for each NN propagator: $\frac{1}{E-\mathbf{p}^2/M}$;

P⁴ for each loop: $\int d^4k$;

 P^3 for a two-body diagram: $\delta^{(3)}(p'_2 - p_2)$ absent.

Loops, many-body effects, and vertices from $\mathcal{L}^{(2,3)}$ etc. suppressed by powers of P.

Deuteron wave functions

Same at long distances: $B, A_S, A_D, f_{\pi NN}, m_{\pi}$. Some differences at two-pion range.

Want to determine α_N and β_N . Naive idea:

Want to determine α_N and β_N . Naive idea:

Want to determine α_N and β_N . Naive idea:

Want to determine α_N and β_N . Naive idea:

Possible to extract α_N and β_N from $\gamma d \rightarrow \gamma d$ data, but need to treat 2B effects SYSTEMATICALLY.
$\gamma \mathbf{d} \ \mathbf{ex} \mathbf{periments}$

Illinois (1994): M. Lucas, Ph.D. thesis, $\omega = 49,69$ MeV;

SAL (2000): D. Hornidge et al., PRL 84, 2334 (2000), $\omega = 85 - 105$ MeV;

Lund (2003): M. Lundin et al., PRL 90, 192501 (2003), $\omega = 55, 65$ MeV.

 γd in χPT to $O(e^2 P)$

S. R. Beane, M. Malheiro, D. P., U. van Kolck, Nucl. Phys. A656, 367 (1999)

$\gamma d in \chi PT to O(e^2 P)$

S. R. Beane, M. Malheiro, D. P., U. van Kolck, Nucl. Phys. A656, 367 (1999)

 γd in χPT to $O(e^2 P)$

S. R. Beane, M. Malheiro, D. P., U. van Kolck, Nucl. Phys. A656, 367 (1999)

No free parameters at this order \implies PREDICTION

Results

Wave-function dependence gives est timate of theory error.

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, Phys. Lett. B, in press

Ingredients:

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, Phys. Lett. B, in press

- Ingredients:
- 1. γN amplitude at $O(e^2 P^2)$;

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, Phys. Lett. B, in press

Ingredients:

1. γN amplitude at $O(e^2 P^2)$; boosted to γd centre-of-mass frame.

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, Phys. Lett. B, in press

Ingredients:

- 1. γN amplitude at $O(e^2 P^2)$; boosted to γd centre-of-mass frame.
- 2. γd two-body pieces at $O(e^2 P)$.

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, Phys. Lett. B, in press

Ingredients:

- 1. γN amplitude at $O(e^2 P^2)$; boosted to γd centre-of-mass frame.
- 2. γd two-body pieces at $O(e^2 P)$.
- 3. γd two-body pieces at $O(e^2 P^2)$.

Calculable in terms of f_{π} , g_A , κ_V , m_{π} , and M.

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, Phys. Lett. B, in press

Ingredients:

- 1. γN amplitude at $O(e^2 P^2)$; boosted to γd centre-of-mass frame.
- 2. γd two-body pieces at $O(e^2 P)$.
- 3. γd two-body pieces at $O(e^2 P^2)$.

Calculable in terms of f_{π} , g_A , κ_V , m_{π} , and M.

4. Resummation to deal with very-low-energy region $\omega \sim m_{\pi}^2/M$ (relevant only for lower-energy data sets).

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, Phys. Lett. B, in press

Ingredients:

- 1. γN amplitude at $O(e^2 P^2)$; boosted to γd centre-of-mass frame.
- 2. γd two-body pieces at $O(e^2 P)$.
- 3. γd two-body pieces at $O(e^2 P^2)$.

Calculable in terms of f_{π} , g_A , κ_V , m_{π} , and M.

4. Resummation to deal with very-low-energy region $\omega \sim m_{\pi}^2/M$ (relevant only for lower-energy data sets). Only free parameters are α_N and β_N .

Convergence

Very-low-energy resummation

Diagrams (b) and (c) crucial for recovery of γd Thomson limit: $T(\omega = 0) = -\frac{e^2}{M_d} \epsilon' \cdot \epsilon$

Very-low-energy resummation

Diagrams (b) and (c) crucial for recovery of γd Thomson limit: $T(\omega = 0) = -\frac{e^2}{M_d} \epsilon' \cdot \epsilon$ Also crucial is to use: $\frac{1}{\omega - p^2/M} \operatorname{NOT} \frac{1}{\omega}$

Very-low-energy resummation

Diagrams (b) and (c) crucial for recovery of γd Thomson limit: $T(\omega = 0) = -\frac{e^2}{M_d} \epsilon' \cdot \epsilon$ Also crucial is to use: $\frac{1}{\omega - p^2/M} \operatorname{NOT} \frac{1}{\omega}$

Modification of power-counting necessary for ω ~ m²_π/M;
Leading effect [in EFT(π)] comes from diagrams (b) and (c);
Significant effects at 49 and 55 MeV. Negligible at 95 MeV.

Very-low-energy resummation effect

Dependence of cross section on $|\psi angle$

W	Vave function	$\omega,\sqrt{ t }$	$\alpha_N(10^{-4} \text{ fm}^3)$	$\beta_N (10^{-4} \text{ fm}^3)$	χ^2 /d.o.f.
	NLO χ PT	< 160 MeV	9.0	1.7	1.48
	NLO χ PT	< 200 MeV	8.2	3.1	1.58
	Nijm93	< 160 MeV	12.6	1.1	2.95

W	ave function	$\omega, \sqrt{ t }$	$\alpha_N(10^{-4} \text{ fm}^3)$	$\beta_N (10^{-4} \mathrm{fm}^3)$	χ^2 /d.o.f.
	NLO χ PT	< 160 MeV	9.0	1.7	1.48
	NLO χ PT	< 200 MeV	8.2	3.1	1.58
	Nijm93	< 160 MeV	12.6	1.1	2.95

Including backward-angle SAL points $\implies \alpha - \beta$ increases markedly. $?\Delta$ dynamics.

W	ave function	$\omega,\sqrt{ t }$	$\alpha_N(10^{-4} \text{ fm}^3)$	$\beta_N(10^{-4} \text{ fm}^3)$	χ^2 /d.o.f.
	NLO χ PT	< 160 MeV	9.0	1.7	1.48
	NLO χ PT	< 200 MeV	8.2	3.1	1.58
	Nijm93	< 160 MeV	12.6	1.1	2.95

Including backward-angle SAL points $\implies \alpha - \beta$ increases markedly. $?\Delta$ dynamics.

Results for α and β rather different with Nijm93 wave function: differential cross section larger by about 10%, shape similar.

W	ave function	$\omega,\sqrt{ t }$	$\alpha_N(10^{-4} \text{ fm}^3)$	$\beta_N (10^{-4} \mathrm{fm}^3)$	χ^2 /d.o.f.
	NLO χ PT	< 160 MeV	9.0	1.7	1.48
	NLO χ PT	< 200 MeV	8.2	3.1	1.58
	Nijm93	< 160 MeV	12.6	1.1	2.95

Including backward-angle SAL points $\implies \alpha - \beta$ increases markedly. $?\Delta$ dynamics.

Results for α and β rather different with Nijm93 wave function: differential cross section larger by about 10%, shape similar.

Isoscalar polarizabilities from low-energy $\gamma d \rightarrow \gamma d$: $\alpha_N = (9.0 \pm 1.5)^{+3.6}_{-0.8} \times 10^{-4} \text{ fm}^3$ $\beta_N = (1.7 \pm 1.5)^{+1.4}_{-0.6} \times 10^{-4} \text{ fm}^3$

Results

Fit to data with $\omega, \sqrt{|t|} \le 160 \text{ MeV}$ shown.

Conclusions and Future Work

γp scattering: N²LO HBχPT calculation yields $\alpha_p, \beta_p \quad \sqrt{\omega}, \sqrt{|t|} \leq 200 \text{ MeV}$ δ-expansion: $m_\pi \ll \Delta \ll \Lambda \Rightarrow \text{dressed } \Delta \quad \sqrt{\omega} \leq 300 \text{ MeV}$

Conclusions and Future Work

 $\begin{array}{l} \gamma \text{p scattering:} \\ \text{N}^2 \text{LO HB}_{\chi} \text{PT calculation yields } \alpha_p, \beta_p \quad \sqrt{-\omega}, \sqrt{|t|} \leq 200 \text{ MeV} \\ \delta \text{-expansion: } m_{\pi} \ll \Delta \ll \Lambda \Rightarrow \text{dressed } \Delta \quad \sqrt{-\omega} \leq 300 \text{ MeV} \\ \hline \gamma \text{d scattering:} \\ O(e^2 P) \text{ [NLO]: Parameter-free predictions: } \sqrt{-\omega} \leq 80 \text{ MeV.} \\ O(e^2 P^2) \text{ [N^2 LO]: Extraction of } \alpha_N \text{ and } \beta_N \end{array}$

Conclusions and Future Work

 γp scattering: N²LO HB χ PT calculation yields $\alpha_p, \beta_p \quad \sqrt{\omega}, \sqrt{|t|} \leq 200 \text{ MeV}$ δ -expansion: $m_{\pi} \ll \Delta \ll \Lambda \Rightarrow \text{dressed } \Delta \quad \sqrt{\omega} \leq 300 \text{ MeV}$ γd scattering:

 $O(e^2 P)$ [NLO]: Parameter-free predictions: $\sqrt{\omega} \le 80$ MeV. $O(e^2 P^2)$ [N²LO]: Extraction of α_N and β_N

Future work:

- Other processes in δ -expansion
- Δ degrees of freedom in γ d (in progress with R. Hildebrandt, T. Hemmert, H. Grießhammer);
- **Bet**ter understanding of $|\psi\rangle$ dependence;
- **More data on \gamma d \rightarrow \gamma d!**
- $\checkmark \gamma d \rightarrow \gamma np$ (Kossert *et al.* Phys. Rev. Lett. **88**, 162301 (2002)).

Thanks to the U.S. Department of Energy for financial support.

$\gamma \mathbf{d}$ with explicit Δ 's

R. Hildebrandt, H. Grießhammer, T. Hemmert, D.P.

Calculation to N²LO— $O(e^2\delta^3)$ —in δ -counting;

• $\Delta \alpha_N$ and $\Delta \beta_N$ promoted by one order, and (here) fixed at values extracted from fit to γp data:

 $\alpha_N = 11.04 \times 10^{-4} \text{ fm}^3, \quad \beta_N = 2.76 \times 10^{-4} \text{ fm}^3$

$\gamma \mathbf{d}$ with explicit Δ 's

R. Hildebrandt, H. Grießhammer, T. Hemmert, D.P.

Calculation to N²LO— $O(e^2\delta^3)$ —in δ -counting;

 $\Delta \alpha_N$ and $\Delta \beta_N$ promoted by one order, and (here) fixed at values extracted from fit to γp data:

 $\alpha_N = 11.04 \times 10^{-4} \text{ fm}^3, \quad \beta_N = 2.76 \times 10^{-4} \text{ fm}^3$

2004 Photonuclear GRC

MARK YOUR CALENDARS!

2004 Gordon Research Conference on Photonuclear Reactions

August 1–6, 2004 Tilton School, Tilton, NH

Organizers: D. Phillips (Ohio), A. Sarty (St. Mary's), B. Krusche (Basel)

Topics:

- Chiral dynamics and the Delta
- Nucleon resonances
- Theory: present and future
- Z⁰-nuclear physics

- The transition to the scaling regime
- Strong interactions at the Standard Model frontier
- Photonuclear interactions in the nuclear medium
- Electromagnetic probes of few-nucleon systems