EFT and Hypernuclear Decay

Assumpta Parreño Dept. ECM, Universitat de Barcelona, Barcelona, CAT, Spain

in collaboration with:

Cornelius Bennhold and Barry R. Holstein George Washington University, Washington DC, USA University of Massachusetts, USA

Work partially supported by: DGICYT BFM2002–01868 (Spain) DOE DE-FG02-95ER-40907 (US) HPRN-CT-2002-00311 (EU) SGR2001–64 (Catalunya) NSF PHY-02-44801 (US)

Motivation

- Remarkable success in the SU(2) sector ⇒ Successful extension to SU(3)?
- Is it possible to build a model independent (or at least a less model dependent) theory for the $|\Delta S| = 1 \Lambda N$ interaction?
- Can a low order EFT describe the present available data for $\Lambda N \rightarrow NN$ (hypernuclear decay data)? $|\vec{p}| \sim 417 \text{ MeV/c} \Longrightarrow$ Successful low-energy expansion? \Rightarrow Systematic, stable (convergent) expansion
- Is this a valid scenario to learn something new on the $|\Delta S| = 1$ interaction?
 - $\Delta I = 3/2$ transitions?
 - SU(3) breaking?

We will focus on the NM channel for A = 5, 11, 12

$${}^{A}_{\Lambda}Z \to NN + {}^{(A-2)}Z'$$

 $|ec{p}_N|\sim 417~{
m MeV/c}$

neutron-to-proton ratio

$$\frac{\Gamma_n}{\Gamma_p} = \frac{\Lambda n \to nn}{\Lambda p \to np} \longleftrightarrow \quad (FSI) \quad \frac{nn}{np}$$

neutron-to-proton ratio

Study of double coincidence observables: KEK-E462 Garbarino, Parreño, Ramos, PRL 91 112501 (2003)

Parity Violating Asymmetry, A

 $I(\chi) = Tr(\mathcal{M}\rho\mathcal{M}^{\dagger}), \qquad \rho = \frac{1}{2J+1} \left(1 + \frac{3}{J+1}P_yS_y\right)$ $I(\chi) = I_0 (1 + \mathcal{A}), \qquad I_0 = \frac{Tr(\mathcal{M}\mathcal{M}^{\dagger})}{2J+1}$

$$\mathcal{A} = P_y A_p, \qquad \mathcal{A} = P_y \frac{3}{J+1} \frac{Tr(\mathcal{M}S_y \mathcal{M}^{\dagger})}{Tr(\mathcal{M}\mathcal{M}^{\dagger})} = P_y \frac{3}{J+1} \frac{\sum_{M_i} \sigma(M_i) M_i}{\sum_{M_i} \sigma(M_i)}$$

 $2^{\circ} \le \phi_K \le 15^{\circ}$

Parity Violating Asymmetry, A

 $I(\chi) = Tr(\mathcal{M}\rho\mathcal{M}^{\dagger}), \qquad \rho = \frac{1}{2J+1} \left(1 + \frac{3}{J+1}P_yS_y\right)$ $I(\chi) = I_0 (1 + \mathcal{A}), \qquad I_0 = \frac{Tr(\mathcal{M}\mathcal{M}^{\dagger})}{2J+1}$

$$\mathcal{A} = P_y A_p, \qquad \mathcal{A} = P_y \frac{3}{J+1} \frac{Tr(\mathcal{M}S_y \mathcal{M}^{\dagger})}{Tr(\mathcal{M}\mathcal{M}^{\dagger})} = P_y \frac{3}{J+1} \frac{\sum_{M_i} \sigma(M_i) M_i}{\sum_{M_i} \sigma(M_i)}$$

 $\begin{array}{ll} \mathsf{KEK} & n(\pi^+, K^+)\Lambda \\ p_\pi = 1.05 \mathrm{GeV} \\ 2^\circ \leq \phi_K \leq 15^\circ \end{array}$

Theory	Experiment
$_{\Lambda}^{5}$ He ~ -0.7	0.24 ± 0.22
Λ^{12} C ~ -0.07	-0.01 ± 0.10

Models and results for $^5_\Lambda \text{He}$

from W.M. Alberico and G. Garbarino, Phys. Rep. 369 (2002) 1-109				
Work / Weak interaction model	$\Gamma_{1N}/\Gamma_{\Lambda}$	$\Gamma_{ m n}/\Gamma_{ m p}$		
Parreño-Ramos-Bennhold (2001, 1997)	0.317 ± 0.425	$0.3/3 \pm 0.757$		
$\pi + \rho + K + K^* + \eta + \omega$	0.017 . 0.420	0.040 - 0.401		
Jun et al. (2001)	0 496	1 20		
OPE + 4BPI (V - A)	0.420	1.00		
Sasaki et al. (2000)	0 510	0.70		
$\pi + K + DQ$	0.015	0.10		
Itonaga et al. (1998)	0.30	0.17		
$\pi + 2\pi/\rho + 2\pi/\sigma$	0.00	0.11		
Dubach et al. (1996)	0.5	0.48		
OME (nuclear matter)	0.0	0.10		
Oset Salcedo Usmani (1986)	0.54			
PPM	0.01			
Dalitz (1973)	0.5			
Phen. contact				
EXP BNL 1991	0.41 ± 0.14	0.93 ± 0.55		
EXP KEK 1995	0.50 ± 0.07	(0.50 ± 0.10)		

Finite nucleus calculation for ${}_{\Lambda}^{5}$ **He**, ${}_{\Lambda}^{11}$ **B**, ${}_{\Lambda}^{12}$ **C**

$$\Gamma = \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \sum_{\substack{M_i \in R \\ \{1\} \{2\}}} (2\pi) \,\delta(M_H - E_R - E_1 - E_2) \frac{1}{(2J+1)} \mid \mathcal{M}_{fi} \mid^2$$

Finite nucleus calculation for ${}^{5}_{\Lambda}$ **He,** ${}^{11}_{\Lambda}$ **B,** ${}^{12}_{\Lambda}$ **C**

$$\Gamma = \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \sum_{\substack{M_i \in R \\ \{1\} \{2\}}} (2\pi) \,\delta(M_H - E_R - E_1 - E_2) \frac{1}{(2J+1)} \mid \mathcal{M}_{fi} \mid^2$$

 $\mathcal{M}_{fi} \sim \langle \vec{k}_1 m_1 \vec{k}_2 m_2; \Psi_{\mathrm{R}}^{A-2} \mid \hat{O}_{\Lambda \mathrm{N} \to \mathrm{NN}} \mid_{\Lambda}^{A} Z \rangle$

Finite nucleus calculation for ${}_{\Lambda}^{5}$ **He,** ${}_{\Lambda}^{11}$ **B,** ${}_{\Lambda}^{12}$ **C**

$$\Gamma = \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \sum_{\substack{M_i \{R\}\\\{1\}\{2\}}} (2\pi) \,\delta(M_H - E_R - E_1 - E_2) \frac{1}{(2J+1)} \mid \mathcal{M}_{fi} \mid^2$$

$$\mathcal{M}_{fi} \sim \langle \vec{k}_1 m_1 \vec{k}_2 m_2; \Psi_{\mathrm{R}}^{A-2} \mid \hat{O}_{\Lambda\mathrm{N}\to\mathrm{NN}} \mid^A_{\Lambda} Z \rangle$$

 $|^A_\Lambda Z
angle o |\Lambda N
angle \otimes |\Psi^{A-2}_R
angle$ Weak coupling scheme for the Λ :

$$\begin{array}{c|c} & |_{\Lambda}^{A} Z \rangle_{T_{I} T_{3}_{I}}^{J_{I} M_{I}} = | \alpha_{\Lambda} \rangle \otimes | A - 1 \rangle \\ & = \sum \langle j_{\Lambda} m_{\Lambda} J_{C} M_{C} | J_{I} M_{I} \rangle | (n_{\Lambda} l_{\Lambda} s_{\Lambda}) j_{\Lambda} m_{\Lambda} \rangle | J_{C} M_{C} T_{I} T_{3}_{I} \rangle \end{array}$$

Technique of coefficients of fractional parentage:

$$\Psi_{\rm as}^{J_C T_C \alpha}(1....N) = \sum_{\substack{J_{R_0} T_{R_0} \alpha_0 j_{\rm N} \\ \times [\Psi_{\rm as}^{J_{R_0} T_{R_0} \alpha_0}(1....N-1) \otimes \phi^{j_{\rm N}}(N)]^{J_C T_C}}$$

Finite nucleus calculation for ${}_{\Lambda}^{5}$ **He,** ${}_{\Lambda}^{11}$ **B,** ${}_{\Lambda}^{12}$ **C**

$$\Gamma = \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \sum_{\substack{M_i \{R\}\\\{1\}\{2\}}} (2\pi) \,\delta(M_H - E_R - E_1 - E_2) \frac{1}{(2J+1)} \mid \mathcal{M}_{fi} \mid^2$$

$$\mathcal{M}_{fi} \sim \langle \vec{k}_1 m_1 \vec{k}_2 m_2; \Psi_{\mathrm{R}}^{A-2} \mid \hat{O}_{\Lambda \mathrm{N} \to \mathrm{NN}} \mid_{\Lambda}^{A} Z \rangle$$

 $|^A_\Lambda \ Z
angle o |\Lambda N
angle \otimes |\Psi^{A-2}_{
m R}
angle$ Weak coupling scheme for the Λ :

$$\begin{array}{c|c} & |_{\Lambda}^{A} Z \rangle_{T_{I} T_{3}_{I}}^{J_{I} M_{I}} = | \alpha_{\Lambda} \rangle \otimes | A - 1 \rangle \\ & = \sum \langle j_{\Lambda} m_{\Lambda} J_{C} M_{C} | J_{I} M_{I} \rangle | (n_{\Lambda} l_{\Lambda} s_{\Lambda}) j_{\Lambda} m_{\Lambda} \rangle | J_{C} M_{C} T_{I} T_{3}_{I} \rangle \end{array}$$

Technique of coefficients of fractional parentage:

$$\Psi_{\rm as}^{J_C T_C \alpha}(1....N) = \sum_{\substack{J_{R_0} T_{R_0} \alpha_0 j_{\rm N} \\ \times [\Psi_{\rm as}^{J_{R_0} T_{R_0} \alpha_0}(1...N-1) \otimes \phi^{j_{\rm N}}(N)]^{J_C T_C}}$$

 $\overline{\mathcal{M}_{fi}} \sim t_{\Lambda N} \rightarrow NN(S, M_S, T, T_3, S_0, M_{S_0}, T_0, T_{3_0}, l_\Lambda, l_N, \vec{P}, \vec{k})$

Incorporate the strong BB interaction

 B_4 B'_3 T-matr1x \mathbf{B}_3 B_4 weak \mathbf{B}_2 B t(r) \mathbf{B}_1 \mathbf{B}_{2} $\Psi_{\Lambda N}(r) = \phi_{\Lambda N}^{ho}(r)$ f(r) $f(r) = \left(1 - e^{-r^2/a^2}\right)^n + br^2 e^{-r^2/c^2}$ $\Psi_{NN}(r)$ a=0.5 fm, b=0.25 fm⁻², c=1.28 fm, n=2 <u>T-matrix \iff NSC97f</u>

Correlation function for the ΛN channel ${}^{1}S_{0}$ (full line) and ${}^{3}S_{1}$ (dashed line) in the case of the hard-core D (a) and the soft-core (b) Nijmegen potential. The dotted line stands for the spin-independent parametrization f(r) used in this work.

Theoretical Situation

Different models for the weak ΛN → NN transition reproduce fairly well the NMD rates long range: π short range: Heavier mesons, QM, ...

Theoretical Situation

- Different models for the weak ΛN → NN transition reproduce fairly well the NMD rates long range: π short range: Heavier mesons, QM, ...
- Supplementing the decay process by Final Sate Interactions and looking to NN coincidence spectra, we get an agreement between theoretical and experimental Γ_n/Γ_p .

Theoretical Situation

- Different models for the weak ΛN → NN transition reproduce fairly well the NMD rates long range: π short range: Heavier mesons, QM, ...
- Supplementing the decay process by Final Sate Interactions and looking to NN coincidence spectra, we get an agreement between theoretical and experimental Γ_n/Γ_p .
- Strong disagreement between experimental and theoretical PV Asymmetries

This is a proton asymmetry \Rightarrow FSI interactions should be properly implemented

Model dependencies:

- Weak interaction mechanism
- Strong interaction:

Shell model, Initial wave functions, Form Factors, Final wave functions...

Model dependencies:

- Weak interaction mechanism
- Strong interaction:

Shell model, Initial wave functions, Form Factors, Final wave functions...

Problems:

- Significant degree of SU(3) breaking.
- Problems facing SU(3) χ PT: weak PC $Y \rightarrow N\pi$ amplitudes
- Energy release in $(\Lambda N \rightarrow NN)_{\rm th} \sim$ 177 MeV $(|\vec{p}| \sim 417$ MeV/c)

Constructing the EFT for the $\Lambda N \rightarrow NN$ **transition**

• The long range behavior must be built into the EFT Include the π ($m_{\pi} \approx 138$ MeV) and the K ($m_{K} \approx 494$ MeV) as dynamical fields.

Constructing the EFT for the $\Lambda N \rightarrow NN$ transition

The long range behavior must be built into the EFT Include the π ($m_{\pi} \approx 138$ MeV) and the K ($m_{K} \approx 494$ MeV) as dynamical fields.

SU(3) $\Rightarrow \eta$? Ignored due to the smaller ηNN coupling

Constructing the EFT for the $\Lambda N \rightarrow NN$ transition

• The long range behavior must be built into the EFT Include the π ($m_{\pi} \approx 138$ MeV) and the K ($m_{K} \approx 494$ MeV) as dynamical fields.

SU(3) $\Rightarrow \eta$? Ignored due to the smaller ηNN coupling

- Add local correction terms to mimic the effect of excluded momenta
- At leading order: $\pi + K + LO$ contact terms

OPE and **OKE** potentials

$$\mathcal{L}_{\Lambda N\pi}^{W} = -iG_{F}m_{\pi}^{2}\overline{\psi}_{N}(A_{\pi} + B_{\pi}\gamma_{5}\gamma^{\mu})\vec{\tau}\cdot\partial_{\mu}\vec{\phi}^{\pi}\psi_{\Lambda} \begin{pmatrix} 0\\1 \end{pmatrix}$$
$$\mathcal{L}_{NN\pi}^{S} = -ig_{NN\pi}\overline{\psi}_{N}\gamma_{5}\gamma^{\mu}\vec{\tau}\cdot\partial_{\mu}\vec{\phi}^{\pi}\psi_{N}$$
$$V_{OPE}(\vec{q}) = -G_{F}m_{\pi}^{2}\frac{g_{NN\pi}}{2M_{S}}\left(A_{\pi} + \frac{B_{\pi}}{2M_{W}}\vec{\sigma}_{1}\vec{q}\right)\frac{\vec{\sigma}_{2}\vec{q}}{\vec{q}^{2} + \mu_{\pi}^{2}}\vec{\tau}_{1}\vec{\tau}_{2}$$

OPE and **OKE** potentials

$$\mathcal{L}_{\Lambda N\pi}^{W} = -iG_{F}m_{\pi}^{2}\overline{\psi}_{N}(A_{\pi} + B_{\pi}\gamma_{5}\gamma^{\mu})\vec{\tau}\cdot\partial_{\mu}\vec{\phi}^{\pi}\psi_{\Lambda}\begin{pmatrix}0\\1\end{pmatrix}$$
$$\mathcal{L}_{NN\pi}^{S} = -ig_{NN\pi}\overline{\psi}_{N}\gamma_{5}\gamma^{\mu}\vec{\tau}\cdot\partial_{\mu}\vec{\phi}^{\pi}\psi_{N}$$
$$W_{OPE}(\vec{q}) = -G_{F}m_{\pi}^{2}\frac{g_{NN\pi}}{2M_{S}}\left(A_{\pi} + \frac{B_{\pi}}{2M_{W}}\vec{\sigma}_{1}\vec{q}\right)\frac{\vec{\sigma}_{2}\vec{q}}{\vec{q}^{2} + \mu_{\pi}^{2}}\vec{\tau}_{1}\vec{\tau}_{2}$$

$$\mathcal{L}_{\text{NNK}}^{\text{W}} = -\mathrm{i} \, G_F m_{\pi}^2 \left[\overline{\psi}_{\text{N}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \left(C_{\text{K}}^{\text{PV}} + C_{\text{K}}^{\text{PC}} \gamma_5 \, \gamma^{\mu} \, \partial_{\mu} \right) (\phi^{\text{K}})^{\dagger} \psi_{\text{N}} \right. \\ \left. + \overline{\psi}_{\text{N}} \psi_{\text{N}} \left(D_{\text{K}}^{\text{PV}} + D_{\text{K}}^{\text{PC}} \gamma_5 \, \gamma^{\mu} \, \partial_{\mu} \right) (\phi^{\text{K}})^{\dagger} \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] \right. \\ \left. \mathcal{L}_{\text{ANK}}^{\text{S}} = -\mathrm{i} \, g_{\text{ANK}} \, \overline{\psi}_{\text{N}} \gamma_5 \, \gamma^{\mu} \, \partial_{\mu} \, \phi^{\text{K}} \psi_{\text{A}} \right.$$

 $g_{_{
m NN\pi}} o g_{_{\Lambda
m NK}}$, $\overline{\mu_\pi o \mu_{_{
m K}}}$

 $\hat{A}_{\pi} \to \left(\frac{C_{\mathrm{K}}^{\mathrm{PV}}}{2} + D_{\mathrm{K}}^{\mathrm{PV}} + \frac{C_{\mathrm{K}}^{\mathrm{PV}}}{2}\vec{\tau_{1}}\vec{\tau_{2}}\right) \frac{M_{\mathrm{S}}}{M_{\mathrm{W}}}, \ \hat{B}_{\pi} \to \left(\frac{C_{\mathrm{K}}^{\mathrm{PC}}}{2} + D_{\mathrm{K}}^{\mathrm{PC}} + \frac{C_{\mathrm{K}}^{\mathrm{PC}}}{2}\vec{\tau_{1}}\vec{\tau_{2}}\right)$

- **PV** $\Lambda N \rightarrow NN$ transitions:
- ${}^3S_1 \rightarrow {}^3P_1$
- ${}^{3}S_{1} \rightarrow {}^{1}P_{1},$ ${}^{1}S_{0} \rightarrow {}^{3}P_{0},$

PV $\Lambda N \rightarrow NN$ transitions:

${}^{3}S_{1} \rightarrow {}^{3}P_{1}, \quad A\left(\sigma_{1} + \sigma_{2}\right)\left\{p_{1} - p_{2}, \, \delta(\vec{r})\right\} + B\left(\sigma_{1} + \sigma_{2}\right)\left[p_{1} - p_{2}, \, \delta(\vec{r})\right]$

³S₁ $\rightarrow^{1} P_{1}$, $C(\sigma_{1} - \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + D(\sigma_{1} - \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$ ¹S₀ $\rightarrow^{3} P_{0}$, $+E i (\sigma_{1} \times \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + F i (\sigma_{1} \times \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$

PV $\Lambda N \rightarrow NN$ transitions:

 ${}^{3}S_{1} \rightarrow {}^{3}P_{1}, \quad A\left(\sigma_{1} + \sigma_{2}\right)\left\{p_{1} - p_{2}, \, \delta(\vec{r})\right\} + B\left(\sigma_{1} + \sigma_{2}\right)\left[p_{1} - p_{2}, \, \delta(\vec{r})\right]$

³S₁ $\rightarrow^{1} P_{1}$, $C(\sigma_{1} - \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + D(\sigma_{1} - \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$ ¹S₀ $\rightarrow^{3} P_{0}$, $+E i (\sigma_{1} \times \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + F i (\sigma_{1} \times \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$

PC $\Lambda N \rightarrow NN$ transitions:

 ${}^1S_0 \rightarrow {}^1S_0$ ${}^3S_1 \rightarrow {}^3S_1$

PV $\Lambda N \rightarrow NN$ transitions:

 ${}^{3}S_{1} \rightarrow {}^{3}P_{1}, \quad A\left(\sigma_{1}+\sigma_{2}\right)\left\{p_{1}-p_{2},\,\delta(\vec{r})\right\}+B\left(\sigma_{1}+\sigma_{2}\right)\left[p_{1}-p_{2},\,\delta(\vec{r})\right]$

³S₁ $\rightarrow^{1} P_{1}$, $C(\sigma_{1} - \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + D(\sigma_{1} - \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$ ¹S₀ $\rightarrow^{3} P_{0}$, $+E i (\sigma_{1} \times \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + F i (\sigma_{1} \times \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$

PC $\Lambda N \rightarrow NN$ transitions:

 ${}^{1}S_{0} \rightarrow {}^{1}S_{0}, \qquad A' \,\hat{1}\,\delta(\vec{r}) + B'\,\sigma_{1}\sigma_{2}\,\delta(\vec{r}) \\ {}^{3}S_{1} \rightarrow {}^{3}S_{1}, \qquad "$

PV $\Lambda N \rightarrow NN$ transitions:

 ${}^{3}S_{1} \rightarrow {}^{3}P_{1}, \quad A\left(\sigma_{1} + \sigma_{2}\right)\left\{p_{1} - p_{2}, \, \delta(\vec{r})\right\} + B\left(\sigma_{1} + \sigma_{2}\right)\left[p_{1} - p_{2}, \, \delta(\vec{r})\right]$

³S₁ $\rightarrow^{1} P_{1}$, $C(\sigma_{1} - \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + D(\sigma_{1} - \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$ ¹S₀ $\rightarrow^{3} P_{0}$, $+E i (\sigma_{1} \times \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + F i (\sigma_{1} \times \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$

PC $\Lambda N \rightarrow NN$ transitions:

 ${}^{1}S_{0} \rightarrow {}^{1}S_{0}, \qquad A' \,\hat{1}\,\delta(\vec{r}) + B'\,\sigma_{1}\sigma_{2}\,\delta(\vec{r}) \\ {}^{3}S_{1} \rightarrow {}^{3}S_{1}, \qquad "$

partial wave	operator	order	isospin
$^1S_0 \rightarrow ^1S_0$	$\hat{1},ec{\sigma}_1ec{\sigma}_2$	1	1
$^1S_0 \rightarrow ^3P_0$	$(ec{\sigma}_1-ec{\sigma}_2)ec{q}$, $(ec{\sigma}_1 imesec{\sigma}_2)ec{q}$	q/M_N	1
$^{3}S_{1} \rightarrow ^{3}S_{1}$	$\hat{1},ec{\sigma}_1ec{\sigma}_2$	1	0
$^{3}S_{1} \rightarrow^{1} P_{1}$	$(ec{\sigma}_1-ec{\sigma}_2)ec{q}$, $(ec{\sigma}_1 imesec{\sigma}_2)ec{q}$	q/M_N	0
$^{3}S_{1} \rightarrow ^{3}P_{1}$	$(ec{\sigma}_1+ec{\sigma}_2)ec{q}$	q/M_N	1
$^{3}S_{1} \rightarrow ^{3}D_{1}$	$(ec{\sigma}_1 imesec{q})(ec{\sigma}_2 imesec{q})$	$q^2/{M_N}^2$	0

4P potential

$$V_{4P}(\vec{q}\,) =$$

Isospin part for the 4-fermion interaction: $\hat{O} \sim C_{IS} \hat{1} + C_{IV} \vec{\tau_1} \vec{\tau_2}$ Note that the $\Delta I = 1/2$ rule is assumed.

to LO PC: 2 + 2 = 4 parameters

4P potential

Isospin part for the 4-fermion interaction: $\hat{O} \sim C_{IS} \hat{1} + C_{IV} \vec{\tau_1} \vec{\tau_2}$ Note that the $\Delta I = 1/2$ rule is assumed.

> to LO PC: 2 + 2 = 4 parameters to LO PV: 7 parameters

4P potential

 $V_{4P}(\vec{q}) = \begin{cases} -C_0^0 + C_0^1 \vec{\sigma}_1 \vec{\sigma}_2 & \text{LO PC} \\ +C_1^0 \frac{\vec{\sigma}_1 \vec{q}}{2M} + C_1^1 \frac{\vec{\sigma}_2 \vec{q}}{2M} + iC_1^2 \frac{(\vec{\sigma}_1 \times \vec{\sigma}_2) \vec{q}}{2\tilde{M}} & \text{LO PV} \\ +C_2^0 \frac{\vec{\sigma}_1 \vec{q} \cdot \vec{\sigma}_2 \vec{q}}{4M\tilde{M}} + C_2^1 \frac{\vec{\sigma}_1 \vec{\sigma}_2 \cdot \vec{q}^{-2}}{4M\tilde{M}} + C_2^2 \frac{\vec{q}^2}{4M\tilde{M}} & \text{NLO PC} \end{cases}$

Isospin part for the 4-fermion interaction: $\hat{O} \sim C_{IS} \hat{1} + C_{IV} \vec{\tau_1} \vec{\tau_2}$ Note that the $\Delta I = 1/2$ rule is assumed.

> to LO PC: 2 + 2 = 4 parameters to LO PV: 7 parameters to NLO PC: 10 parameters (Method: Migrad minimizer (Minuit, CERN))

$$V(\vec{q}) \Rightarrow F.T. \Rightarrow V(\vec{r})$$
 at Lowest Order

OME :
$$V_{\mu}(\vec{r}) = \sum_{\mu\alpha} V^{\alpha}_{\mu}(r) \mathcal{O}^{\alpha}(\hat{r}) \hat{I}_{\mu}$$

$$\mathcal{O}^{\alpha}(\hat{r}) = \begin{cases} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \\ S_{1}^{2}(\hat{r}) = 3(\vec{\sigma}_{1} \cdot \hat{r})(\vec{\sigma}_{2} \cdot \hat{r}) - \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \\ \vec{\sigma}_{2} \cdot \hat{r} \end{cases} \quad \hat{I}_{\mu} = \begin{cases} \pi : \ \vec{\tau}_{1} \cdot \vec{\tau}_{2} \\ K : \ (\hat{1}, \vec{\tau}_{1} \cdot \vec{\tau}_{2}) \end{cases}$$

$$V(\vec{q}) \Rightarrow \text{F.T.} \Rightarrow V(\vec{r})$$
 at Lowest Order

OME :
$$V_{\mu}(\vec{r}) = \sum_{\mu\alpha} V^{\alpha}_{\mu}(r) \mathcal{O}^{\alpha}(\hat{r}) \hat{I}_{\mu}$$

$$\mathcal{O}^{\alpha}(\hat{r}) = \begin{cases} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \\ S_{12}(\hat{r}) = 3(\vec{\sigma}_{1} \cdot \hat{r})(\vec{\sigma}_{2} \cdot \hat{r}) - \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \\ \vec{\sigma}_{2} \cdot \hat{r} \end{cases} \quad \hat{I}_{\mu} = \begin{cases} \pi : \ \vec{\tau}_{1} \cdot \vec{\tau}_{2} \\ K : \ (\hat{1}, \vec{\tau}_{1} \cdot \vec{\tau}_{2}) \end{cases}$$

$$V_{4P}(\vec{r}) = \begin{cases} -\frac{2r}{\delta^2} \left[C_1^0 \frac{\vec{\sigma}_1 \hat{r}}{2\overline{M}} + C_1^1 \frac{\vec{\sigma}_2 \hat{r}}{2M} + C_1^2 \frac{(\vec{\sigma}_1 \times \vec{\sigma}_2) \hat{r}}{2\overline{M}} \right] & \text{LO PV} \\ -\frac{r^2}{\delta^2} \left[\frac{r^2}{\delta^2 \pi^{3/2}} \times \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \cdot \vec{\tau}_2 \right] \right] \\ \delta \sim \rho \text{ meson range } \sqrt{2}m_o^{-1} \approx 0.36 \text{ fm} \end{cases}$$

Experimental data used in the fit (10 points)

	Г	$\Gamma_{ m n}/\Gamma_{ m p}$	$\Gamma_{ m p}$	${\cal A}$
$^5_\Lambda$ He	0.41 ± 0.14 [B91]	0.93 ± 0.55 [B91]	0.21 ± 0.07 [B91]	0.24 ± 0.22 [K00]
	0.50 ± 0.07 [K95]	1.97 ± 0.67 [K95]		
		0.50 ± 0.10 [K02]		
$^{11}_{\Lambda}{\sf B}$	0.95 ± 0.14 [K95]	$1.04^{+0.59}_{-0.48}$ [B91]	$0.30^{+0.15}_{-0.11}$ [K95]	-0.20 ± 0.10 [K92]
		$2.16 \pm 0.58^{+0.45}_{-0.95}$ [K95]		
		$0.59^{+0.17}_{-0.14}$ [B74]		
$^{12}_{\Lambda}$ C	0.83 ± 0.11 [K98]	$1.33^{+1.12}_{-0.81}$ [B91]	$0.31^{+0.18}_{-0.11}$ [K95]	-0.01 ± 0.10 [K92]
	0.89 ± 0.15 [K95]	$1.87 \pm 0.59^{+0.32}_{-1.00}$ [K95]		
	1.14 ± 0.2 [B91]	$0.59^{+0.17}_{-0.14}$ [B74]		
		0.87 ± 0.23 [K02]		

RESULTS

	π	+K	+ LO	+ LO	EXP:
			PC	PC+PV	
$\Gamma(^{5}_{\Lambda}\text{He})$	0.42	0.23	0.43	0.44	0.41 ± 0.14 [B91]
					0.50 ± 0.07 [K95]
$n/p(^{5}_{\Lambda}\mathrm{He})$	0.09	0.50	0.56	0.55	0.93 ± 0.55 [B91]
					0.50 ± 0.10 [K02]
$\mathcal{A}(^{5}_{\Lambda}\mathrm{He})$	-0.25	-0.60	-0.80	0.15	0.24 ± 0.22 [K00]

RESULTS

	π	+K	+ LO	+ LO	EXP:
			PC	PC+PV	
$\Gamma(^{5}_{\Lambda}\text{He})$	0.42	0.23	0.43	0.44	0.41 ± 0.14 [B91]
					0.50 ± 0.07 [K95]
$n/p(^{5}_{\Lambda}{ m He})$	0.09	0.50	0.56	0.55	0.93 ± 0.55 [B91]
					0.50 ± 0.10 [K02]
$\mathcal{A}(^{5}_{\Lambda}\mathrm{He})$	-0.25	-0.60	-0.80	0.15	0.24 ± 0.22 [K00]
$\Gamma(^{11}_{\Lambda}{ m B})$	0.62	0.36	0.87	0.88	0.95 ± 0.14 [K95]
$n/p(^{11}_{\Lambda}{ m B})$	0.10	0.43	0.84	0.92	$1.04^{+0.59}_{-0.48}$ [B91]
$\mathcal{A}(^{11}_{\Lambda}\mathrm{B})$	-0.09	-0.22	-0.22	0.06	-0.20 ± 0.10 [K92]
$\Gamma(^{12}_{\Lambda}{ m C})$	0.74	0.41	0.95	0.93	$1.14\pm0.2\text{[B91]}$
					0.89 ± 0.15 [K95]
					0.83 ± 0.11 [K98]
$n/p(^{12}_{\Lambda}{ m C})$	0.08	0.35	0.67	0.77	0.87 ± 0.23 [K02]
$\mathcal{A}(^{12}_{\Lambda}\mathrm{C})$	-0.03	-0.06	-0.05	0.02	-0.01 ± 0.10 [K92]
$\hat{\chi}^2$			0.98	1.50	

RESULTS

	π	+K	+ LO	+ LO	EXP:
			PC	PC+PV	
$\Gamma(^{5}_{\Lambda}\text{He})$	0.42	0.23	0.43	0.44 (0.44)	0.41 ± 0.14 [B91]
					0.50 ± 0.07 [K95]
$n/p(^{5}_{\Lambda}{ m He})$	0.09	0.50	0.56	0.55 (0.55)	0.93 ± 0.55 [B91]
					0.50 ± 0.10 [K02]
$\mathcal{A}(^{5}_{\Lambda}\mathrm{He})$	-0.25	-0.60	-0.80	0.15 (0.24)	0.24 ± 0.22 [K00] \Leftarrow
$\Gamma(^{11}_{\Lambda}{ m B})$	0.62	0.36	0.87	0.88 (0.88)	0.95 ± 0.14 [K95]
$n/p(^{11}_{\Lambda}{ m B})$	0.10	0.43	0.84	0.92 (0.92)	$1.04^{+0.59}_{-0.48}$ [B91]
$\mathcal{A}(^{11}_{\Lambda}\mathrm{B})$	-0.09	-0.22	-0.22	0.06 (0.09)	-0.20 ± 0.10 [K92]
$\Gamma(^{12}_{\Lambda}C)$	0.74	0.41	0.95	0.93 (0.93)	1.14 ± 0.2 [B91]
					0.89 ± 0.15 [K95]
					0.83 ± 0.11 [K98]
$n/p(^{12}_{\Lambda}{ m C})$	0.08	0.35	0.67	0.77 (0.77)	0.87 ± 0.23 [K02]
$\mathcal{A}(^{12}_{\Lambda}\mathrm{C})$	-0.03	-0.06	-0.05	0.02 (0.03)	-0.01 ± 0.10 [K92]
$\hat{\chi}^2$			0.98	1.50 (1.15)	

Low-Energy Coefficients

	+ LO PC	+LO PC+PV
C_0^0	-1.51 ± 0.38	-1.09 ± 0.36
C_0^1	-0.86 ± 0.24	-0.63 ± 0.35
C_1^0		-0.45 ± 0.42
C_1^1		0.17 ± 0.22
C_1^2		-0.48 ± 0.20
C_{IS}	5.08 ± 1.27	5.69 ± 0.74
C_{IV}	1.47 ± 0.39	1.49 ± 0.23
$\hat{\chi}^2$	0.98	1.50

Low-Energy Coefficients

	+ LO PC	+LO PC+PV		
C_0^0	-1.51 ± 0.38	-1.09 ± 0.36	(-1.02 ± 0.35)	
C_0^1	-0.86 ± 0.24	-0.63 ± 0.35	(-0.57 ± 0.29)	
C_1^0		-0.45 ± 0.42	(-0.47 ± 0.17)	
C_1^1		0.17 ± 0.22	(0.20 ± 0.19)	
C_1^2		-0.48 ± 0.20	(-0.48 ± 0.22)	
C_{IS}	5.08 ± 1.27	5.69 ± 0.74	(5.83 ± 0.82)	
C_{IV}	1.47 ± 0.39	1.49 ± 0.23	(1.52 ± 0.24)	
$\hat{\chi}^2$	0.98	1.50	(1.15)	

Strong interaction model dependence: Final NN wf.

$\pi + K + LO PC + LO PV$					
	NSC97f	NSC97a			
$\Gamma(^{5}_{\Lambda}\text{He})$	0.44	0.44			
$n/p(^{5}_{\Lambda}\text{He})$	0.55	0.55			
$\mathcal{A}(^{5}_{\Lambda}\mathrm{He})$	0.24	0.24			
$\Gamma(^{11}_{\Lambda}\mathrm{B})$	0.88	0.88			
$n/p(^{11}_{\Lambda}\mathrm{B})$	0.92	0.92			
$\mathcal{A}(^{11}_{\Lambda}\overline{\mathrm{B}})$	0.09	0.11			
$\Gamma(^{12}_{\Lambda}C)$	0.93	0.93			
$n/p(^{12}_{\Lambda}\mathrm{C})$	0.77	0.78			
$\mathcal{A}(^{12}_{\Lambda}C)$	0.03	0.03			
C_{0}^{0}	-1.02 ± 0.35	-0.87 ± 0.46			
C_{1}^{0}	-0.57 ± 0.29	-0.53 ± 0.37			
C_0^1	-0.47 ± 0.17	-0.53 ± 0.22			
C_1^1	0.20 ± 0.19	0.25 ± 0.16			
C_{2}^{1}	-0.48 ± 0.22	-0.57 ± 0.17			
C_{IS}	5.83 ± 0.82	5.76 ± 0.74			
C_{IV}	1.52 ± 0.24	1.50 ± 0.22			
$\hat{\chi}^2$	1.15	1.15			

Strong interaction model dependence: Initial Λ N wf

. – p.21/25

Strong interaction model dependence: Initial Λ N wf

$\pi + K + LO PC + LO PV$					
	bessel	parametrization	gaussian	exponential	
$\Gamma(^{5}_{\Lambda}\text{He})$	0.44	0.44	0.44	0.44	
$n/p(^{5}_{\Lambda}\mathrm{He})$	0.55	0.55	0.54	0.54	
$\mathcal{A}(^{5}_{\Lambda}\overline{\mathrm{He}})$	0.24	0.24	0.24	0.24	
$\Gamma(^{11}_{\Lambda}{ m B})$	0.88	0.88	0.88	0.88	
$n/p(^{11}_{\Lambda}\mathrm{B})$	0.93	0.92	0.94	0.94	
$\mathcal{A}(^{11}_{\Lambda}\mathrm{B})$	0.09	0.09	0.07	0.08	
$\Gamma(^{12}_{\Lambda}{ m C})$	0.93	0.93	0.93	0.93	
$n/p(^{12}_{\Lambda}{ m C})$	0.78	0.77	0.80	0.80	
$\mathcal{A}({}^{12}_{\Lambda}\mathrm{C})$	0.03	0.03	0.02	0.02	
C_0^0	-0.94 ± 0.28	-1.02 ± 0.35	-1.44 ± 0.35	-0.94 ± 0.21	
C_1^0	-0.52 ± 0.22	-0.57 ± 0.22	-0.75 ± 0.28	-0.50 ± 0.16	
C_0^1	-0.43 ± 0.15	-0.47 ± 0.17	-0.50 ± 0.21	-0.37 ± 0.15	
C_{1}^{1}	0.19 ± 0.19	0.20 ± 0.19	0.23 ± 0.31	0.17 ± 0.22	
C_2^1	-0.43 ± 0.23	-0.48 ± 0.22	-0.49 ± 0.38	-0.36 ± 0.28	
\overline{C}_{IS}	5.68 ± 0.75	5.83 ± 0.82	6.10 ± 0.83	5.62 ± 0.65	
\overline{C}_{IV}	1.51 ± 0.23	1.52 ± 0.24	1.63 ± 0.25	1.54 ± 0.20	
$\hat{\chi}^2$	1.14	1.15	1.13	1.12	

Dependence on the smearing (δ) **function**

	$\deltapprox 0.3 { m fm}$	$\deltapprox 0.36 { m fm}$	$\delta pprox 0.4 { m fm}$
	($pprox 900 { m MeV}$)	($pprox 770 { m MeV}$)	($\approx 500 { m MeV}$)
$\Gamma(^{5}_{\Lambda}\text{He})$	0.44	0.44	0.44
$n/p(^{5}_{\Lambda}\mathrm{He})$	0.55	0.55	0.55
$\mathcal{A}(^{5}_{\Lambda}\mathrm{He})$	0.24	0.24	0.24
$\Gamma(^{11}_{\Lambda}{ m B})$	0.88	0.88	0.88
$n/p(^{11}_{\Lambda}\mathrm{B})$	0.93	0.92	0.94
$\mathcal{A}(^{11}_{\Lambda}\overline{\mathrm{B}})$	0.08	0.09	0.06
$\Gamma(^{12}_{\Lambda}{ m C})$	0.93	0.93	0.93
$n/p(^{12}_{\Lambda}{ m C})$	0.78	0.77	0.78
$\mathcal{A}(^{12}_{\Lambda}\mathrm{C})$	0.02	0.03	0.02
C_0^0	-1.91 ± 0.56	-1.02 ± 0.35	-0.73 ± 0.19
C_0^1	-1.08 ± 0.52	-0.57 ± 0.29	-0.73 ± 0.16
C_{1}^{0}	-0.61 ± 0.28	-0.47 ± 0.17	-0.39 ± 0.26
C_{1}^{1}	0.24 ± 0.35	0.20 ± 0.19	0.17 ± 0.26
C_{1}^{2}	-0.60 ± 0.46	-0.48 ± 0.22	-0.25 ± 0.23
C_{IS}	6.45 ± 0.66	5.83 ± 0.82	5.83 ± 0.96
C_{IV}	1.79 ± 0.26	1.52 ± 0.24	$\overline{1.48\pm0.29}$
$\hat{\chi}^2$	1.15	1.15	1.15

Summary

- We have presented our study of the nonmesonic weak decay using an EFT framework to describe the weak interaction.
- The long-range components were described with pion and kaon exchange.
- The short-range part is parametrized in leading-order PV and PC contact terms.
- We find coefficients of natural size with significant error bars, reflecting the level of experimental uncertainty.
- The largest contact term corresponds to an isoscalar, spin-independent central operator.
- There is no indication of any contact terms violating the $\Delta I = 1/2$ rule.

- We have not speculated on the dynamical origin of these contact contributions. Our aim was to ascertain their size and verify the validity of the EFT framework for the weak decay.
- The next generation of data from recent high-precision weak decay experiments currently under analysis holds the promise to provide much improved constraints for studies of this nature.
- Work in progress: • Go to NLO? \implies 10 LEC's. Need of more independent data. ($np \rightarrow \Lambda p$, RCNP, Osaka, \Rightarrow 2005-2007?)