The hep and the hen processes in EFT

(hep) ${}^{3}\text{He} + p \rightarrow {}^{4}\text{He} + e^{+} + v_{e}$

(hen) ${}^{3}\text{He} + n \rightarrow {}^{4}\text{He} + \mathbf{g}$

Tae-Sun Park (KIAS)

in collaboration with Y.-H. Song, K. Kubodera, D.-P. Min, M. Rho L.E. Marcucci, R. Schiavilla, M. Viviani, A. Kievsky, S. Rosati

TSP et al., PRC67('03)055206, nucl-th/0208055 Y.-H. Song and TSP, nucl-th/0311055 K. Kubodera and TSP, to appear in Ann. Rev. Nucl. Part. Sci

INT2003 at UW, Seattle: Nov . 26

Among the solar burning processes (4 p $(4 p + 2 e^+ + 2 n_e + g^-))$,

<i>(pp)</i>	$p + p \rightarrow d + e^+ + \nu_e$	$E_v = 0$	$) \sim 0.$	4 MeV
(pep)	$p + e^- + p \longrightarrow d + \nu_e$	$E_{\nu} =$	1.4	MeV

(^{8}B)	$^{8}B \rightarrow ^{8}Be + e^{+} + \nu_{e}$	$E_{v} <$	18 MeV
	Ŭ	v	

(hep) ${}^{3}\text{He} + p \rightarrow {}^{4}\text{He} + e^{+} + \nu_{e} \qquad E_{\nu} < 20 \text{ MeV}$

$$\phi(pp-pep) >> \phi(^{8}B) >> \phi(hep)$$

pp produces the dominant solar neutrinos.

hep produces the highest-energy solar neutrinos. There can be a significa nt distortion of the high-end of the ⁸B neutrino spectrum.

hep history (S-factor in 10⁻²³ MeV-b unit):

Schemetic wave functions

'52 (Salpeter)	630
'67 (Werntz)	3.7
'73 (Werntz)	8.1
'83 (Tegner)	4~25
'89 (Wolfs)	15.3±4.7
'91 (Wervelman)	57

Single particle model Symmetry group consideration Better wave functions (P-wave) D-state & MEC analogy to ³He+n ³He+n with shell-model

Modern wave functions

'91 (Carlson et al.)	1.3
'92 (Schiavilla et al.)	1.4-3.1
\rightarrow	$S_0 = 2.3$
'01 (Marcucci et al)	9.64

VMC with Av14 VMC with Av28 (N+ Δ) ("standard value") CHH with Av18 (N+ Δ) + *p*-wave PRL<u>84</u>('00)5959, PRC<u>63</u>('00)015801

J. Bahcall's challenge:

"... do not see any way at present to determine from experiment or first principle theoretical calculations a relevant, robust upper limit to the hep production cross section." (hep-ex/0002018)

- **Q**: Can effective field theory (EFT) be a breakthrough ?
- A: Yes (naive considerations: BE(⁴He)=28 MeV)
 No (if you know more about the *hep*)... ...
 Yes ! (the 1st half of my presentation)

What's wrong with the *hep* ?

• Leading order (1B **n** is highly suppressed.

 $|^{4}$ He**n** = $|S_{4}$:most symmetric**n** + ... $|^{3}$ He + p**n** = $|S_{31}$:next-to-most symmetric**n** + ...

 $\langle S_4 | g_A \Sigma_i \sigma_i \tau_i | S_{31}$ **n**=0. : (Gamow-Teller)

\rightarrow 1B-LO is small and difficult to evaluate

- \rightarrow We need realistic (not schematic) wave functions.
- → Meson-exchange current (MEC) plays an important rol e.

2. Meson-exchange current (MEC) is *not* dominated by the l ong-ranged one-pion-exchange: short-ranged operators with unknown coefficients plays an important role.

3. There is a substantial cancellation between 1B and MEC. \rightarrow Errors are amplified.

4. Getting realistic/reliable 4-body wave functions is quite n on-trivial. Furthermore we need w.f.s for both scattering st ates as well as bound states.

Various possible approaches for the *hep*

- Traditional/conventional, phenomenological or stan dard nuclear physics approach (SNPA) :
 - Chemtob-Rho type current operators (π , ρ , ω , Δ , ...)
 - Phenomenological but very accurate potentials: $c^2 \approx 1$
 - State-of-the-art technique for many-body wave function s
 - Extensively tested for many processes with impressive s uccesses
 - Limitations:
 - Not systematic
 - Uncertainties in the short-range physics

- Effective field theory (EFT) a la Weinberg
 - Consistent and systematic expansion for the current oper ators (and the potential)

 $O = \sum O_n = O_0 + O_1 + O_2 + \cdots$

- Wave functions need infinite summation for a given V, which can be done by solving Schroedinger equation $|\Psi\rangle = |\phi\rangle + G^0 V |\Psi\rangle$ = $(1+G^0 V + G^0 V G^0 V + ...) |\phi\rangle$
- Limitation: As of now, we do not have accurate enough wave functions for the *hep* process, though great efforts and progresses are being made recently. Q: How much t he w.f.'s should be accurate ? (see the Discussion)
- How can we go further ?

Hybrid method (of SNPA & EFT) Yñ: SNPA

- •. **:** EFT
- We can concentrate only on the current operators
- Better accuracy (inherited from SNPA) for the 1B and t he long-ranged contributions
- Problems (limitations)
 - Model dependence
 - Mismatch/inconsistency
 - Poor control over the short-range physics

- *More-effective* EFT (MEEFT, EFT*)
- = Consistent and systematic EFT with the (phenomenological) S NPA wave functions
- = hybrid method + renormalization procedure for the short ranged contributions
 - The whole problem (of SNPA and hybrid-method) lies in th e short-range (SR) physics.
 - In EFT, SR physics is described by the local operators,

$$O_{\text{short}} = \sum_{n} c_{n} \nabla^{2n} \boldsymbol{d}(r) = c_{0} \boldsymbol{d}(r) + \cdots$$

- Up to N⁴LO (Q⁴ compared to the LO), we have only non-de rivative contact term, C_0 , for many cases.
- $\mathbf{\hat{M}}_{\mathbf{f}} | \mathbf{\hat{d}}(\mathbf{r}) | \mathbf{Y}_{\mathbf{i}} \mathbf{\tilde{n}} : model(potential)-dependent$

- We can then fix the value of C_0 so as to reproduce other known experimental data (in many cases in a system wit h different A).
- The value of C_0 is model-dependent, which cancels out t he model-dependence of $\mathbf{A}_f | \mathbf{d}(\mathbf{r}) | \mathbf{Y}_i \mathbf{\tilde{n}}$ so as to have m odel-independent $\langle \Psi_f | O_{short} | \Psi_i \rangle$, which is the renormal ization condition.

MEEFT Strategy for $M(hep) = \mathbf{A} \mathbf{Y}_{f} | \mathbf{0} | \mathbf{Y}_{i} \mathbf{\tilde{n}}$

Yñ: Correlated-hyperspherical-harmonics (CHH) with Argonne Av18 potential

+ Urbana-IX three-nucleon interactions

1: Up to N³LO in heavy-baryon chiral-perturbation theory (H BChPT)

Pertinent degrees of freedom: pions and nucleons.

Expansion parameter = Q/Λ_{γ}

Q : typical momentum scale and/or m_{π} ,

 Λ_{χ} : m_N and/or $4\pi f_{\pi}$

Weinberg's power counting rule for irreducible diagrams.

There is no soft-OPE (which is N²LO) contributions

$$\vec{A}_{ij}^{\text{OPE}} = -\frac{g_A}{2m_N f_p^2} \frac{1}{m_p^2 + q^2} \left[-\frac{i}{2} (\boldsymbol{t}_i \times \boldsymbol{t}_j) \vec{p} (\vec{\boldsymbol{s}}_i - \vec{\boldsymbol{s}}_j) \cdot \vec{q} \right. \\ \left. + 4\hat{c}_3 \vec{q} \vec{q} \cdot (\boldsymbol{t}_i \vec{\boldsymbol{s}}_i + \boldsymbol{t}_j \vec{\boldsymbol{s}}_j) \right. \\ \left. + \left(\hat{c}_4 + \frac{1}{4} \right) (\boldsymbol{t}_i \times \boldsymbol{t}_j) \vec{q} \times \left[(\vec{\boldsymbol{s}}_i \times \vec{\boldsymbol{s}}_j) \times \vec{q} \right] \right]$$

The values of *c*'s are determined from the π -N data

$$\hat{c}_3 = -3.66 \pm 0.08, \quad \hat{c}_4 = 2.11 \pm 0.08$$

$$\vec{A}_{ij}^{4F} = -\frac{g_A}{m_N f_p^2} \Big[2\hat{d}_1(\boldsymbol{t}_i \boldsymbol{\vec{s}}_i + \boldsymbol{t}_j \boldsymbol{\vec{s}}_j) + \hat{d}_2(\boldsymbol{t}_i \times \boldsymbol{t}_j)(\boldsymbol{\vec{s}}_i \times \boldsymbol{\vec{s}}_j) \Big]$$

Thanks to Pauli principle and the fact that the contact terms are effective only for L=0 states, only one combination is relevant:

$$\hat{d}^{R} \equiv \hat{d}_{1} + 2\hat{d}_{2} + \frac{1}{3}\hat{c}_{3} + \frac{2}{3}\hat{c}_{4} + \frac{1}{6}$$

 \hat{d}^R corresponds to L_{1A} in PDS scheme (Butler et al, PLB549(' 02)26))

The same combination enters into *pp, hep*, tritium- β decay (TBD), *m-d* capture, *n-d* scattering, We use the experimental value of T BD to fix \hat{d}^R , then all the others can be predicted ! To control the short-range physics consistently, we apply the same (Gaussian) regulator

$$j^{\mu}_{\Lambda}(\vec{r}) = \int \frac{d^3\vec{k}}{(2\pi)^3} e^{i\vec{k}\cdot\vec{r}} \exp\left(-\frac{\vec{k}^2}{\Lambda^2}\right) J^{\mu}(\vec{k})$$

for all the A=2,3 and 4 systems, with

$$\Lambda = [500, 600, 800] \text{ MeV}$$

 \hat{d}^R is a function of Λ , and determined for each value of Λ to reproduce experimental value of TBD rate

(Warming up) Results: $M_{\Lambda}(pp)$

Λ (MeV)	\hat{d}^{R}	$\langle 1B \rangle$	$\langle 2B \rangle$
500	1.00	4.85	$0.076 - 0.035 \hat{d}^{R} = 0.041$
600	1.78	4.85	$0.097 - 0.031 \hat{d}^{R} = 0.042$
800	3.90	4.85	$0.129 - 0.022 \hat{d}^{R} = 0.042$

with \hat{d}^{R} -term, Λ -dependence has gone !!!

the astro S-factor (at threshold) $S_{pp} = 3.94 (1 \pm 0.15 \% \pm 0.10 \%) 10^{-25} \text{ MeV-barn}$

Results: $M_{\Lambda}(pp)$

Results: M_{Λ} (*hep*)

Results: M_{Λ} (*hep*)

Λ (MeV)	<1B>	<2B>	<1B+2B>
500	-0.81	$1.35 - 0.85 \hat{d}^{R} = 0.49$	-0.32
600	-0.81	$1.76 - 1.22 \hat{d}^{R} = 0.52$	-0.29
800	-0.81	$2.38 - 1.78 \hat{d}^{R} = 0.59$	-0.22

 \hat{d}^R -term removes the major Λ -dependence. The small Λ -dependence in 2B is however amplified due to the cancellation between 1B & 2B.

Sizable but still reasonable Λ -dependence in net amplitude.

hep S-factor in 10⁻²³ MeV-barn:

 S_{hep} (theory)=(8.6 ± 1.3)

hep neutrino flux in 10^3 cm⁻² s⁻¹:

 $\phi_{hep}(\text{theory}) = (8.4 \pm 1.3)$

 $\phi_{hep}(experiment) < 40$ Super-Kamiokande data, hep-ex/0103033

The *hen* (${}^{3}\text{He} + n \rightarrow {}^{4}\text{He} + g$) process

- Both *pp* and *hep* process have **not been confirmed by ex periments**
- Accurate experimental data are available for the *hen*
- The *hen* process has much in common with *hep* :
 - The leading order 1B contribution is strongly suppres sed due to pseudo-orthogonality.
 - A cancellation mechanism between 1B and 2B occurs.
 - Trivial point: both are 4-body processes that involve ³ He + N and ⁴He.
- **Q**: Can we test our *hep* MEEFT calculation by apply ing the same method to the *hen* process ?

hen history

 $\sigma(\exp) = (55 \pm 3) \mu b, (54 \pm 6) \mu b$

2-14 μ b : ('81) Towner & Kanna 50 μ b : ('91) Wervelman (112, 140) μ b : ('90: VMC) Carlson et al (86, 112) μ b : ('92: VMC) Schiavilla et al

 $a(^{3}\text{He} - n) = (3.50, 3.25) \text{ fm}$

• Accurate recent exp: $a(^{3}\text{He} - n) = 3.278(53)$ fm

VMC wave functions with Av14 + Urbana VIII

- Predictions for the binding energy
 - BE(³H)=8.21 MeV (exp=8.48 MeV)
 - BE(⁴He)=27.23 MeV (exp=28.30 MeV)
- Prediction for the ³He-n scattering length:
 - Variational : $a_n = 3.5 \text{ fm} (\exp = 3.278(53) \text{ fm})$
 - In our work, we have fit the Woods-Saxon potential param eters to reproduce $a_n=3.278$ fm and the low-E ³He-n phase s hifts.

³He-n phase shift [deg] wrt E_{cm} [MeV]

solid line = Woods-Saxon potential

dots= *R*-matrix analysis by Fofmann & Hale, NPA613('97)

Remarks on the *hen* process

- The *hen* process is governed by isoscalar and isovector M 1 operators.
- Contrary to GT, there is soft-OPE contribution to the isov ector M1, which is NLO compared to 1B.
- The N3LO of Isovector M1 corresponds to 1-loop.
- At N³LO, there appear two 4F contact counter-terms, g_{4S} and g_{4V} , which we can fix by imposing the condition t o reproduce the magnetic moments of ³H and ³He

 $\vec{V}_{12}^{4F} = \frac{i}{2m_p} \vec{q} \times [g_{4S}(\vec{\sigma}_1 + \vec{\sigma}_2) + g_{4V}(\vec{\tau}_1 \times \vec{\tau}_2)^z (\vec{\sigma}_1 \times \vec{\sigma}_2)]$

Results: M_{Λ} (*hen*)

Results: M_{Λ} (*hen*)

Λ (MeV)	<1B>	<2B>	<1B+2B>
500	-1.76	5.24 + 1.80 = 7.04	5.29
600	-1.76	6.79 + 0.35 = 7.14	5.39
800	-1.76	8.31 - 0.99 = 7.32	5.57

Contact terms remove the major Λ -dependence. $\sigma(\text{theory}) = (60 \pm 3 \pm 1) \,\mu\text{b}$, which is in reasonable agreement with the exp., $(55 \pm 3) \,\mu\text{b}$, $(54 \pm 6) \,\mu\text{b}$.

A caveat: we have not included the so-called fixed-term contribution, which is expected-to-be small but hard-to-evaluate.

MEEFT in other processe s

n-d scattering cross section: the Λ -dependence is less than 0.4 %.

Nakamura et al, NPA707('02)561, Ando et al, PLB472('03)49

µ–d capture rate: Ando et al, PLB533('02)25)

Λ (MeV)	\hat{d}^R	$\Gamma^{L=0}_{\mu d} [s^{-1}]$
500	1.00 ± 0.07	$254.7 - 9.85 \ \hat{d}^R + 0.159 \ (\hat{d}^R)^2 = 245.0 \pm 0.7$
600	1.78 ± 0.08	$261.1 - 9.09 \ \hat{d}^R + 0.132 \ (\hat{d}^R)^2 = 245.3 \pm 0.7$
800	3.90 ± 0.10	$271.0 - 6.76 \ \hat{d}^R + 0.070 \ (\hat{d}^R)^2 = 245.7 \pm 0.6$

Isoscalar M1 in np -> $d\gamma$

with respect to $r_{C}[fm]$: Park et al, PLB472('00)232

Discussion

Numerically, the results of MEEFT and the latest SNPA agre e each other for the Gamow-Teller channel (*pp* and *hep*). But in the M1 channel, MEEFT can explain the *hen* cross section, while SNPA could not yet.

MEEFT allows us to reduce theoretical uncertainties dramatic ally.

- Other successful applications of MEEFT:isoscalar and isovector M1 in $n + p \rightarrow D + g$ m dcapture rate, n d scattering.m d
 - The PDS scheme also has been successfully applied t o 2B systems.

We can go up to N⁴LO w/o having new parameters.

- Possibility to have *pure*-EFTs for the *hep* and *hen* in near future ?
 - Low-energy amplitudes are very sensitive to the scattering l ength. To guarantee to reproduce the exp. value of it, we ne ed 4-nucleon contact interaction, which is N⁶LO (N⁵LO in Epelbaum's lang.) !
- Possibility to have MEEFT for more complicated syst ems ?
- Thank you !