Do we need a three-nucleon force? Nuclear structure with modern two- & three-body interactions

Petr Navratil (LLNL*)

Collaborators:

W. E. Ormand (LLNL^{*}), E. Caurier (Strasbourg), A. Nogga (INT), A. C. Hayes (LANL), J. P. Vary (ISU), B. R. Barrett (UA), S. A. Coon (DOE)

- Why we think we need a three-nucleon force
- Ab initio no-core shell model (NCSM)
 - Calculations with realistic two-nucleon interactions for *p*-shell nuclei
- Inclusion of a realistic three-nucleon interaction in the NCSM
 - ▶ NCSM results for *p*-shell nuclei using two- plus three-nucleon interaction
- Do we really need a three-nucleon interaction?
 - Calculations with realistic coordinate-space non-local two-body interaction
- Conclusions

*This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Why we think we need a three-nucleon interaction

Division

- Realistic two-nucleon potentials highly accurate
 - Configuration space potentials
 - Local: AV18, AV8', Nijmegen II
 - Non-local: Nijmegen I
 - Momentum space non-local potentials
 - Boson-exchange potentials: CD-Bonn
 - Effective field theory potentials: N³LO
- Exact few-body calculations with these potentials show that ³H, ³He, ⁴He underbound by 5-10%
- Problems in A=3 scattering: p+d, n+d A_v puzzle
- Nuclear structure calculations with realistic two-nucleon potentials in the *p*-shell
 - ► GFMC, NCSM, CCM
 - Underbinding
 - Level spacing not quite right
 - Ordering of lowest states not correct for some nuclei

Regardless of which current realistic two-nucleon potential used

problems remain:

Need to include a three-nucleon interaction

No-Core Shell-Model Approach

Goal: Solution of nuclear structure problem for light nuclei

- Many-body Schroedinger equation
 - ► A-nucleon wave function
- Hamiltonian

$$H^{\Omega} = \sum_{i=1}^{A} \left[\frac{\vec{p}_{i}^{2}}{2m} + \frac{1}{2} m \Omega^{2} \vec{r}_{i}^{2} \right] + \sum_{i< j}^{A} \left[V_{NN} (\vec{r}_{i} - \vec{r}_{j}) - \frac{m \Omega^{2}}{2A} (\vec{r}_{i} - \vec{r}_{j})^{2} \right] \left(+ \sum_{i< j< k}^{A} V_{ijk}^{3b} \right)$$

 $H|\Psi\rangle = E|\Psi\rangle$

Realistic nucleon-nucleon (NN) potentials

- Configuration space - Argonne V18, AV8', (three-body chiral-sym.-based Tucson-Melbourne')

- Momentum space - CD-Bonn, EFT chiral-perturbation theory N³LO

Modification by center-of-mass HO potential

• Finite harmonic-oscillator basis

- Complete N_{\max} h Ω basis space \leftrightarrow defines the model space P, Q=1-P
- Truncated basis + nature of NN potentials \rightarrow Effective interaction must be derived
 - Unitary transformation of H^{Ω} such that
 - Effective Hamiltonian then

$$QXHX^{-1}P = 0$$
$$H_{eff} = PXHX^{-1}P$$

- ► A-nucleon solutions needed to find X ⇒ Applied in *n*-body cluster approximation, $2 \le n \le A$
- Need *n*-nucleon solutions to find $H_{eff}^{(n)}$

Test of convergence

NCSM calculations with two-nucleon interactions in the *p*-shell

⁶Li with accurate NN potential at fourth order of chiral-perturbation theory (N³LO)

¹⁰B ground-state spin

Realistic three-nucleon interaction in the NCSM

The lowest possible approximation $n=3 \leftrightarrow$ three-body effective interaction

- Calculations performed in four steps
 - ▶ 1) Three-nucleon solutions for all relevant $n=3 J^{\pi}T$ channels with and without V^{3b}

$$H^{\Omega} = \sum_{i=1}^{3} \left[\frac{\vec{p}_{i}^{2}}{2m} + \frac{1}{2}m\Omega^{2}\vec{r}_{i}^{2} \right] + \sum_{i

$$- \text{ Jacobi coordinate HO basis up to } N_{3max} = 30$$

$$\stackrel{7.0}{-7.4} \stackrel{7.6}{-7.8} \stackrel$$$$

- ▶ 3) Effective interaction in Jacobi coordinate HO basis, *p*-shell nuclei calculations more efficient in Cartezian coordinate Slater determinant basis
 → transformation must be performed
- 4) A-nucleon calculation performed by a shell model code with a three-body capability
 MFD, REDSTICK

$$h_{1} + h_{2} + h_{3} + V_{12} + V_{13} + V_{23} + V_{123} \rightarrow X_{3} \rightarrow P_{3} \left[h_{1} + h_{2} + h_{3} + V_{3eff,123}^{2b+3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{2b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{2b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{2b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{2b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{2b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3} \rightarrow P \left[\sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b}$$

⁶Li with the Tucson-Melbourne force

¹⁰B and ¹¹B with the Tucson-Melbourne force

¹²C with the Tucson-Melbourne force

- Binding energy increase by 6 MeV
- Improved level ordering
 - ► $1^+ 0 \leftrightarrow 4^+ 0$
 - ► T=1 states

¹²N and ¹²B correct ground-state spin only when the three-nucleon interaction included

Neutrino scattering on ¹²C

Do we really need a three-body interaction?

Division

P. Doleschall, I. Borbely, Z. Papp and W. Plessas:

Non-local *NN* interaction that fits two-nucleon data and ³H, ³He binding energies Phys. Rev. C **67**, 064005 (2003)

- Two-nucleon interaction in coordinate space
 - Local at long ranges: Yukawa tail
 - Non-local at shorter distances (up to 3 fm)
- Published version: Non-local ${}^{1}S_{0}$, ${}^{3}S_{1}$ - ${}^{3}D_{1}$ channels
 - Remaining channels taken from AV18
 - Denoted as IS S
- Two more (not yet published) versions:
- i) Non-local in all channels containing S, P and D waves
 - Remaining channels taken from AV18
 - Denoted as IS SPD
- ii) Non-local in all channels containing S, P and D waves
 - Triplet P waves modified to reproduce three-nucleon analysing powers
 - Remaining channels taken from AV18
 - Denoted as IS SmodPD

Straightforward to use in the NCSM and apply to *p*-shell nuclei

NCSM binding energy calculations with IS NN potentials

⁶Li with the IS non-local NN potentials

Nuclear Theory & Modeling Group

N Division

¹⁰B with the IS SmodPD non-local NN potential

Spin-orbit interaction strength sensitive transitions in ¹²C

- B(M1;0⁺ 0 \rightarrow 1⁺1) stronger than with standard *NN* potentials but still weaker than in experiment
- AV8'+TM'(99) seems to do better for ${}^{12}C$
- *However*: Convergence of ¹²C NCSM calculations incomplete

Conclusions

- Ab initio no-core shell model is now capable to include realistic three-nucleon interactions
- First application for the *p*-shell nuclei: Chiral-symmetry-based **Tucson-Melbourne-prime**
 - Increase of binding energies
 - Increased strength of spin-orbit interaction
 - In general an improvement for the low-lying levels
 - \rightarrow Correct ground-state spin in ^{10,11,12}B, ¹²N
 - Significant improvement of $0^+ 0 \rightarrow 1^+ 1$ transitions and neutrino cross sections on ${}^{12}C$
- New non-local *NN* potentials that fit *NN* data and A=3 binding energies
 - Ab initio no-core shell model calculations with these potentials straightforward
 - Increase of binding energies close to experiment for p-shell nuclei
 - ► IS SmodPD version with modified triplet *P*-wave channels to fit *A*=3 analysing powers
 - Increase of spin-orbit interaction strenght: Improvement of nuclear spectra and transitions \rightarrow Correct ground-state spin in ¹⁰B, improvement of 0⁺ 0 \rightarrow 1⁺ 1 transitions in ¹²C
- Do we need a three nucleon interaction? <u>Yes</u>
 - However, at least a part of the three-nucleon interaction effects can be built into non-local *NN* interaction
 - Such interaction much easier to use in many-body ab initio calculations
- <u>A thing to do:</u> Use transformations discussed by B. Desplanques *et al.*, W.N. Polyzou and W. Gloeckle to develop a non-local *NN* interaction from the two- plus three-nucleon interaction derived by the chiral perturbation theory

Possibility to learn about the form and parametrization of the three-nucleon interaction

and/or non-local NN interaction from nuclear structure calculations

