Hyper-Spherical Approach to the 3-Body problem

On the Path to 3-Body Potentials

Outline

- Introduction to 3-body problem
 - Jacobi coordinates
 - Hyper-Spherical coordinates
- Separation of variables
 - Bound state calculation
- Adiabatic representation
 - Bound state calculation
- Eigenchannel R-matrix approach for scattering
 - Separation of variables
 - Adiabatic representation
- Review of results and conclusions

Introduction

$$H = \frac{1}{2m}(p_1^2 + p_2^2 + p_3^2) + V(|x_1 - x_2|) + V(|x_1 - x_3|) + V(|x_2 - x_3|).$$
Jacobi coordinates:

$$X = \frac{1}{\sqrt{3}}(x_1 + x_2 + x_3); \xi_1 = \frac{1}{\sqrt{2}}(x_1 - x_2); \xi_2 = \frac{1}{\sqrt{6}}(x_1 + x_2 - 2x_3).$$
Hyper-spherical coordinates:

$$\xi_1 = \rho \cos \theta; \xi_2 = \rho \sin \theta.$$

$$\rho^2 = \xi_1^2 + \xi_2^2$$

$$\varphi_1$$

Schrodinger Equation

$$x_1 - x_2 = \sqrt{2}\xi_1$$
 $x_2 - x_3 = \frac{3}{\sqrt{6}}\xi_2 - \frac{\xi_1}{\sqrt{2}}$ $x_1 - x_3 = \frac{3}{\sqrt{6}}\xi_2 + \frac{\xi_1}{\sqrt{2}}$

 $U(\rho,\theta) = 2m(V(\sqrt{2}\rho|\cos(\theta)|) + V(\sqrt{2}\rho|\cos(\theta + \pi/3)|) + V(\sqrt{2}\rho|\cos(\theta - \pi/3)|)).$

Polar Coordinates!

$$\{\frac{1}{\rho}\partial_{\rho}(\rho\partial_{\rho})+\frac{1}{\rho^{2}}\partial_{\theta}^{2}+k^{2}-U(\rho,\theta)\}\psi(\rho,\theta)=0$$

- 1. This potential is EVEN in theta.
- 2. This potential has 6-FOLD PERIODICITY in theta.

Back to optimized moments

Back to cosine moments

Configuration Space

Back to potential

Separation of Variables

$$\psi(
ho, heta) = F(heta)G(
ho) \qquad G(
ho) = \sum_n g_n(
ho) \qquad U=U(
ho, heta)$$

 $F(heta) = \sum_n a_n \exp in heta. \qquad The SE will not fully separate!$

$$\int_{0}^{2\pi} \frac{d\theta}{2\pi} \cos(n\theta) \cos(m\theta) = \frac{1}{2} (\delta_{n,m} + \delta_{n,0} \delta_{m,0})$$

$$U_0(\rho) = \int_0^{2\pi} \frac{d\theta}{2\pi} U(\rho, \theta) \qquad \qquad U_{n\neq 0}(\rho) = 2 \int_0^{2\pi} \frac{d\theta}{2\pi} U(\rho, \theta) \cos(6n\theta)$$

$$\begin{split} &\sum_{n=0}^{\infty} \frac{1}{2} (\delta_{l,n} + \delta_{l,0} \delta_{n,0}) (g_n'' + \frac{1}{\rho} g_n' - \frac{n^2}{\rho^2} g_n + k^2 g_n) \\ &- \sum_{n=0,m=0}^{\infty} \frac{1}{4} U_m (\delta_{m+n,6l} + \delta_{|m-n|,6l} + \delta_{m+n,0} \delta_{l,0} + \delta_{|m-n|,0} \delta_{l,0}) g_n = 0 \end{split}$$

Boundary condition at origin?

Cont.

$$\begin{split} \sum_{n=0}^{N_c} [\hat{T}_{l,n} + \hat{U}_{l,n}] f_n(\rho) &= k^2 \sum_{n=0}^{N_c} \frac{1}{2} (\delta_{l,n} + \delta_{l,0} \delta_{n,0}) f_n(\rho) \\ \hat{T}_{l,n} &= -\frac{1}{2} (\delta_{l,n} + \delta_{l,0} \delta_{n,0}) \partial_{\rho}^2 \\ \hat{U}_{l,n} &= \frac{1}{2} (\delta_{l,n} + \delta_{l,0} \delta_{n,0}) (\frac{36n^2 - 1/4}{\rho^2}) + \sum_{m=0}^{2N_c} \frac{1}{4} U_m (\delta_{m+n,6l} + \delta_{|m-n|,6l} + \delta_{m+n,0} \delta_{l,0} + \delta_{|m-n|,0} \delta_{l,0}) \end{split}$$

Now let's apply this to some models!

The Bare 2-Body Potential

$$V(x) = V_{
m s} \; e^{-m_{
m s} |x|} + V_{
m v} \; e^{-m_{
m v} |x|}$$

Extracting Low Energy Physics

Back to R-Matrix

Effective 2-Body Potential

$$V_{\text{eff}}(x) = \frac{1}{a} \left(c + d \frac{\partial^2}{\partial \xi^2} + e \frac{\partial^4}{\partial \xi^4} + \dots \right) \exp(-\xi^2) \; ; \quad \xi \equiv x/a \qquad a = 1.16 \; \text{fm}.$$

Cosine Moments of the Effective Potential

<u>SE</u>

Three-Body Ground State Energy

3-Body Wavefunctions (Bare Potential)

(8 Coupled Channels)

3-Body Wavefunctions (Effective Potential)

(5 Coupled Channels)

Bound State Spectrum

Bare potential spectrum 10 coupled moments [MeV] Effective potential spectrum 10 coupled moments [MeV]

> (9.09 %) (51.06 %)

- 1 -6.27330 1 -6.84463
- 2 -1.31846
- 3 0.079382
- 4 0.279674
- 5 0.660249
- 6 0.897652
- 4 -0.59962

2 -1.99181

3 -1.14805

- 5 -0.22500
 - 6 0.28711

Three-Body Ground State Energy

SE

$$\begin{array}{l} \mbox{Adiabatic Approach: Bound} \\ \mbox{States} \\ \psi(\rho,\theta) &= \sum_{n} f_{n}(\rho,\theta)g_{n}(\rho). \quad \{\frac{1}{\rho}\partial_{\rho}(\rho\partial_{\rho}) + \frac{1}{\rho^{2}}\partial_{\theta}^{2} + k^{2} - U(\rho,\theta)\}\psi(\rho,\theta) = 0 \\ (\frac{1}{\rho^{2}}\partial_{\theta}^{2} + k_{n}^{2}(\rho) - U(\rho,\theta))f_{n}(\rho,\theta) = 0 = (k_{n}^{2}(\rho) - H^{ad}(\rho,\theta))f_{n}(\rho,\theta) \\ (\mathbf{T} + \mathbf{U})\mathbf{g} = k^{2}\mathbf{g}. \\ (\mathbf{T} + \mathbf{U})\mathbf{g} = k^{2}\mathbf{g}. \\ T_{m,n} &= -\delta_{m,n}(\partial_{\rho}^{2} + \frac{2}{\rho}\partial\rho + \frac{1}{4\rho^{2}}) - P_{m,n}(2\partial_{\rho} + \frac{2}{\rho}) - W_{m,n} \\ U_{m,n} &= \delta_{m,n}(k_{m}^{2}(\rho) - \frac{1}{4\rho^{2}}) \\ P_{m,n} &= < f_{m}|\partial_{\rho}f_{n} >, \qquad < f_{m}|\partial_{\rho}f_{n} > = \frac{< f_{m}|\frac{\partial H}{\partial \rho}|f_{n} >}{E_{n}(\rho) - E_{m}(\rho)} \\ W_{m,n} &= < f_{m}|\partial_{\rho}^{2}f_{n} > \end{array}$$

Single channel results

Symmetries

 $\rho = 10 fm$ 600 $\rho = 20 \text{fm}$. ρ=30fm ρ=40fm 400 MeV 200 0 0.2 0.4 0.8 0 0.6 1 $\theta/(2\pi)$

Bare Potential

Configuration space

Eigenenergies of Had

The Deuteron Channel

Ground State Channel Function

Single Channel Results

$(\mathbf{T} + \mathbf{U})\mathbf{g} = k^2 \mathbf{g}$	$U_{m,n}=\delta_{m,n}(k_m^2)$	$U_{m,n} = \delta_{m,n}(k_m^2(\rho) - \frac{1}{4\rho^2})$		
. , , , , , , , , , , , , , , , , , , ,	$T_{m,n} = -\delta_{m,n}(\delta)$	$\partial_{\rho}^2 + \frac{2}{\rho}\partial\rho + \frac{1}{4\rho^2}$	$)-P_{m,n}(2\partial_{ ho}+rac{2}{ ho})-W_{m,n}$	
Ignoring W ₀₀	Bare potential spectrum [MeV]	Ignoring W ₀₀	Effective potential spectrum [MeV]	
1 -6.437203 2 -2.211188 3 -2.046865 4 -1.739340 5 -1.295678 6 -0.721156 7 -0.019101 8 0.808193 9 1.759033	1 -6.260069 2 -2.184120 3 -2.020407 4 -1.712684 5 -1.267052 6 -0.689651 7 0.015689 8 0.846597 9 1.801393	1 -7.024662 2 -2.220957 3 -2.058565 4 -1.755386 5 -1.316991 6 -0.748449 7 -0.052924 8 0.767348 9 1.710658	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
10 2.832133	10 2.878232	10 2.775663	10 2.821656	

Adiabatic rep. Back to conclusions

Eigenchannel R-Matrix

$$\begin{split} k^2 &= \frac{\int_V \psi^*(-\nabla^2 + U)\psi dV}{\int_V \psi^* \psi dV} \qquad \qquad b_n = -\frac{\partial \ln(\psi)}{\partial \hat{n}} \\ b &= \frac{\int_V dV [-\nabla \vec{\psi}^* \cdot \nabla \vec{\psi}] + \psi^* (k^2 - U)\psi}{\int_{\Sigma} \psi^* \psi dS} \end{split}$$

ERT for 2-Body System

	$k \tan(\delta)$	$k an(\delta)$
$k^2[fm^{-2}]$	R-matrix	Numerov
0.0000000000	0.1905975587	0.1906002044
0.0241149081	0.1722587089	0.1722620450
0.0482298162	0.1540006399	0.1540047025
0.0723447243	0.1358380297	0.1358428543
0.0964596323	0.1177858558	0.1177914786
0.1205745404	0.0998593571	0.0998658142
0.1446894485	0.0820739920	0.0820813204
0.1688043566	0.0644453944	0.0644536291
0.1929192647	0.0469893260	0.0469985028
0.2170341728	0.0297216267	0.0297317808

Back to conclusions

Single Channel Scattering Solutions

Back to conclusions

Conclusions

Bound state calculations seem to show more consistency in the adiabatic representation. see bound state spectrum (SOV) (ad)

R-Matrix theory can be used to tune effective 3-Body potentials (2B) (1CH)