Pseudospin symmetry as a relativistic dynamical symmetry in the nucleus

Manuel Malheiro Universidade Federal Fluminense Niterói - Rio de Janeiro

P

Introduction

- The idea of pseudospin:
 - To explain the quasi-degeneracy:

$$\left(n,l,j=l+rac{1}{2}
ight)$$
 and $\left(n-1,l+2,j=l+rac{3}{2}
ight)$

 These levels have the same "pseudo" orbital angular momentum

$$\widetilde{l} = l + \mathbf{1}$$

and a "pseudo" spin quantum number.

$$\widetilde{\mathbf{s}} = \frac{1}{2}$$

It is exact when doublets with

$$\mathbf{j} = \widetilde{l} \pm \widetilde{\mathbf{s}}$$

are degenerate.

- K. T. Hecht and A. Adler, Nucl. Phys. A137, 129 (1969)
- A Arima, M. Harvey and K. Shimizu, Phys. Lett. **B30**, 517 (1969)

Shell model energy levels with a spin orbit term

Pseudospin symmetry

- uff
- The Hamiltonian of a Dirac particle of mass m in a external scalar, S, and vector, V, potentials is given by

$$\mathbf{H} = \vec{\alpha} \cdot \vec{\mathbf{p}} + \beta (\mathbf{m} + \mathbf{S}) + \mathbf{V}$$

where α and β are the usual Dirac matrices.

We denote the upper and lower components of the Dirac spinor by

$$\Psi_{\pm} = \frac{1}{2} (1 \pm \beta) \Psi$$

$$\vec{\alpha} \cdot \vec{p} \Psi_{+} - (\epsilon + m - \Delta) \Psi_{-} = 0$$

- $\vec{\alpha} \cdot \vec{p} \Psi_{-} (\varepsilon m U) \Psi_{+} = 0$
- The Dirac Hamiltonian is invariant under special SU(2) transformations when:

$$\mathbf{V} - \mathbf{S} = \mathbf{0} = \mathbf{\Delta}$$

or

$\mathbf{S} + \mathbf{V} = \mathbf{0} = \mathbf{U}$

B. Smith and L. J. Tassie, Ann. Phys. 65, 352 (1971)
J. S. Bell and H. Ruegg, Nucl. Phys. B98, 151 (1975)

Particular Case D = 0 (S = V)
$$\Psi_{-} = \frac{1}{\epsilon + m} \vec{\alpha} \cdot \vec{p} \Psi_{+} \qquad E = \epsilon - m$$

$$\frac{p^{2}}{2m + E} \Psi_{+} + U \Psi_{+} = E \Psi_{+}$$

Schroendinger-like equation for the upper component with no spin-orbit coupling - (n,l) basis.

† Particular Case U = 0 (S = -V)

$$\Psi_{+} = \frac{1}{\varepsilon - m} \vec{\alpha} \cdot \vec{p} \Psi_{-}$$
$$\frac{p^{2}}{2m + E} \Psi_{-} + \frac{E}{2m + E} \Delta \Psi_{-} = E \Psi_{-}$$

Schroendinger-like equation for the lower component with no pseudospin-orbit coupling - (\tilde{n}, \tilde{l}) basis.

Pseudospin symmetry is an exact SU(2) symmetry for the Dirac Hamiltonian when U = 0.

$$\Psi'_{-} = \left(1 + \frac{\theta \cdot \sigma}{2i}\right) \Psi_{-} \qquad \qquad \delta \Psi_{-} = \frac{\theta \cdot \sigma}{2i} \Psi_{-}$$

$$\vec{\alpha} \cdot \vec{p} \, \vec{\alpha} \cdot \vec{p} \, \Psi_{-} - (\varepsilon - m) \vec{\alpha} \cdot \vec{p} \, \Psi_{+} = 0$$

$$\Psi_{-} = \frac{\varepsilon - m}{p^{2}} \vec{\alpha} \cdot \vec{p} \Psi_{+}$$
$$\delta \Psi_{-} = \frac{\varepsilon - m}{p^{2}} \frac{\theta \cdot \sigma}{2i} \vec{\alpha} \cdot \vec{p} \Psi_{+}$$

$$\vec{\alpha} \cdot \vec{p} \, \delta \, \Psi_{-} - (\epsilon - m) \delta \, \Psi_{+} = 0$$

$$\delta \Psi_{+} = \frac{1}{\epsilon - m} \vec{\alpha} \cdot \vec{p} \, \delta \Psi_{-}$$
$$\delta \Psi_{+} = \frac{\vec{\alpha} \cdot \vec{p}}{p} \, \frac{\theta \cdot \sigma}{2i} \, \frac{\vec{\alpha} \cdot \vec{p}}{p} \Psi_{+}$$

J. N. Ginocchio, Phys. Rev. Lett. **78**, 436 (1997); ibid, Phys. Rept. **315**, 231 (1999) J. N. Ginocchio and A. Leviatan, Phys. Lett. **B245**, 1 (1998) € SU(2)generatorsofthePseudospinSymmetry

$$\hat{\overline{S}} = \frac{\vec{\alpha} \cdot \vec{p}}{p} s_i \frac{\vec{\alpha} \cdot \vec{p}}{p} \frac{(1+\beta)}{2} + s_i \frac{(1-\beta)}{2}$$

$$\widehat{\overline{\mathbf{S}}} = \begin{pmatrix} \mathbf{U}_{\mathbf{p}} \, \widehat{\mathbf{s}}_{\mathbf{i}} \, \mathbf{U}_{\mathbf{p}} & \mathbf{0} \\ \mathbf{0} & \widehat{\mathbf{s}}_{\mathbf{i}} \end{pmatrix} = \begin{pmatrix} \widehat{\overline{\mathbf{s}}}_{\mathbf{i}} & \mathbf{0} \\ \mathbf{0} & \widehat{\mathbf{s}}_{\mathbf{i}} \end{pmatrix}$$

where
$$\mathbf{U}_{\mathbf{p}} = \frac{\vec{\boldsymbol{\sigma}} \cdot \vec{\mathbf{p}}}{\mathbf{p}}$$

is the momentum helicity operator.

† SU(2) algebra
$$\left[\overline{S}_{i}, \overline{S}_{j}\right] = i\epsilon_{ijk}\overline{S}_{k}$$

Pseudospin
$$\hat{\overline{s}} = U_p \hat{s}_i U_p = 2 \frac{s \cdot p}{p^2} p_i - s_i$$

† Hamiltonian commutator

$$\begin{bmatrix} \mathbf{H}_{\mathbf{D}}, \overline{\mathbf{S}} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} \mathbf{U}, \overline{\mathbf{S}} \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

J. N. Ginocchio, Phys. Rev. Lett. **78**, 436 (1997); ibid, Phys. Rept. **315**, 231 (1999) J. N. Ginocchio and A. Leviatan, Phys. Lett. **B245**, 1 (1998)

Harmonic Oscillator with Pseudospin symmetry

1. First case – no spin orbit

 $U = \frac{1}{2} m \omega_1^2 r^2; \quad \Delta = 0$

Eigenvalue

$$(\varepsilon - m)\sqrt{\frac{\varepsilon + m}{2m}} = \overline{\omega}_1\left(2n + l + \frac{3}{2}\right)$$

Spectrum

2. Second case – no pseudospin orbit

$\Delta = \frac{1}{2} m \omega_1^2 r^2$; U = 0

Exact Pseudospin symmetry

Eigenvalue

$$(\varepsilon + m)\sqrt{\frac{\varepsilon - m}{2m}} = \sigma_1 \left(2\widetilde{n} + \widetilde{l} + \frac{3}{2} \right)$$

• In the non-relativistic limit the energy is zero for corrections in 1a. order in ω_1/m (the nature of the theory is intrinsically relativistic).

$$E = \varepsilon - m$$
$$E = \frac{\omega_1^2}{2m} \left(2\widetilde{n} + \widetilde{1} + \frac{3}{2} \right)^2$$

Fig.a shows the degenerascy (2ñ + Ĩ): the states with the same (ñ, Ĩ) and also with (ñ - 1, Ĩ + 2) or (ñ + 1, Ĩ - 2) are degenerated. Fig.b shows the levels in the (n, I) scheme of the upper component.

•The pseudospin doublets below, have moment the same \tilde{I} and \tilde{n} . $1s_{\frac{1}{2}}-0d_{\frac{3}{2}} \rightarrow \widetilde{0}\widetilde{p}_{\frac{1}{2}}-\widetilde{0}\widetilde{p}_{\frac{3}{2}}$ $1p_{\frac{3}{2}}-0f_{\frac{5}{2}} \rightarrow \widetilde{0}\widetilde{d}_{\frac{3}{2}}-\widetilde{0}\widetilde{d}_{\frac{5}{2}}$

† General case for U 0

$$\vec{\alpha} \cdot \vec{p} \Psi_{+} - (\varepsilon + m - \Delta) \Psi_{-} = 0$$

$$\vec{\alpha} \cdot \vec{p} \Psi_{-} - (\varepsilon - m - U) \Psi_{+} = 0$$

we obtain the two second-order differential equations

$$\mathbf{p}^{2} \Psi_{+} = -\left[\vec{\alpha} \cdot \vec{p}\Delta\right] \Psi_{-} + (\mathbf{E} + 2\mathbf{m} - \Delta)(\mathbf{E} - \mathbf{U})\Psi_{+}$$
$$\mathbf{p}^{2} \Psi_{-} = \left[\vec{\alpha} \cdot \vec{p}\mathbf{U}\right] \Psi_{+} + (\mathbf{E} + 2\mathbf{m} - \Delta)(\mathbf{E} - \mathbf{U})\Psi_{-}$$
where

$$\mathbf{E} = \mathbf{\mathcal{E}} - \mathbf{m}$$

 Assuming that potentials U and D are radial functions (spherical symmetry)

$$p^{2}\Psi_{+} = -\frac{\Delta'}{E+2m-\Delta} \left(-\frac{\partial}{\partial r} + \frac{1}{r}\sigma \cdot L \right) \Psi_{+} + (E+2m-\Delta)(E-U)\Psi_{+}$$
$$p^{2}\Psi_{-} = -\frac{U'}{E-U} \left(-\frac{\partial}{\partial r} + \frac{1}{r}\sigma \cdot L \right) \Psi_{-} + (E+2m-\Delta)(E-U)\Psi_{-}$$

where σ are the Pauli matrices and the primes denote derivatives with respect to r.

The Dirac spinors can be factorized in radial and angular parts:

$$\begin{pmatrix} \Psi_{+} \\ \Psi_{-} \end{pmatrix} = \begin{pmatrix} \mathbf{i} \mathbf{G}_{\mathbf{i}}(\mathbf{r}) \ \Phi_{\mathbf{i}}^{+}(\theta, \varphi) \\ -\mathbf{F}_{\mathbf{i}}(\mathbf{r}) \ \Phi_{\mathbf{i}}^{-}(\theta, \varphi) \end{pmatrix}$$

where *i* denotes the quantum numbers of the single particle state.

† In terms of the radial functions G_i and F_i for upper and lower components the two equations become

$$\nabla^2 \mathbf{G}_i + \frac{\Delta'}{\mathbf{E} + \mathbf{m} - \Delta} \left(\mathbf{G}'_i + \frac{1 + \mathbf{k}_i}{\mathbf{r}} \mathbf{G}_i \right) + \left(\mathbf{E} + 2\mathbf{m} - \Delta \right) \left(\mathbf{E} - \mathbf{U} \right) \mathbf{G}_i = \mathbf{0}$$

$$\nabla^2 \mathbf{F}_i + \frac{\mathbf{U}'}{\mathbf{E} - \mathbf{U}} \left(\mathbf{F}'_i + \frac{1 - \mathbf{k}_i}{\mathbf{r}} \mathbf{F}_i \right) + \left(\mathbf{E} + 2\mathbf{m} - \Delta \right) (\mathbf{E} - \mathbf{U}) \mathbf{F}_i = \mathbf{0}$$

where the property was used.

 $\boldsymbol{\sigma}\cdot\boldsymbol{L}\boldsymbol{\Phi}_{i}^{\pm}=-\big(1\pm\boldsymbol{k}_{i}\big)\boldsymbol{\Phi}_{i}^{\pm}$

$$\mathbf{k}_{l} = \begin{cases} -(l+1) & \mathbf{j} = l+1/2 \\ l & \mathbf{j} = l-1/2 \end{cases}$$
$$\mathbf{k}_{\tilde{l}} = -\mathbf{k}_{l} = \begin{cases} -(\tilde{l}+1) & \mathbf{j} = \tilde{l}+1/2 \\ \tilde{l} & \mathbf{j} = \tilde{l}-1/2 \end{cases}$$

 $= \tilde{l} + 1/2$ = $\tilde{l} - 1/2$ Pseudospin partners

$$l + \tilde{l} = 2\mathbf{j}$$

$$\mathbf{k}_{l} < \mathbf{0} \rightarrow \tilde{l} = l + 1$$

$$\mathbf{k}_{l} > \mathbf{0} \rightarrow \tilde{l} = l - 1$$

$$(2\mathbf{s}_{1/2},\mathbf{1d}_{3/2}) \rightarrow \widetilde{l} = \mathbf{1}$$
$$(2\mathbf{p}_{3/2},\mathbf{1f}_{5/2}) \rightarrow \widetilde{l} = \mathbf{2}$$

† The pseudo-orbital angular momentum is just the orbital angular momentum of the lower component of the Dirac Spinor.

† Schroedinger-like equations for the lower component

$$\frac{\mathbf{p}^{2}}{\mathbf{2m}^{*}}\Psi_{-} + \frac{1}{\mathbf{2m}^{*}}\frac{\mathbf{U}'}{\mathbf{E}-\mathbf{U}}\left(-\frac{\partial}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}}\boldsymbol{\sigma}\cdot\mathbf{L}\right)\Psi_{-} + \mathbf{U}\Psi_{-} = \mathbf{E}\Psi_{-}$$

where
$$\mathbf{m}^* = ig(\mathbf{E} + \mathbf{2m} - \Deltaig)/2$$

U' = dU/dr = 0 no l . s coupling in the lower component

$$\mathbf{j} = \widetilde{l} \pm \widetilde{\mathbf{s}}$$

are degenerate.

U = S + V = 0 and dU/dr = 0 are not met in nuclei

The structure of radial nodes

A Leviatan and J. N. Ginocchio, Phys. Lett. B 518, 214 (2001); Phys Rev. Lett. 87, 072502 (2001)

$$(\mathbf{GF})' = \mathbf{A}(\mathbf{r})\mathbf{F}^{2} - \mathbf{B}(\mathbf{r})\mathbf{G}^{2}$$

$$\mathbf{A}(\mathbf{r}) = (\mathbf{E} + \mathbf{m} + \mathbf{\Delta}(\mathbf{r})), \quad \mathbf{A}(\mathbf{r}) > 0$$

$$\mathbf{B}(\mathbf{r}) = (\mathbf{E} - \mathbf{m} - \mathbf{U}(\mathbf{r})), \quad \{\begin{array}{l} \mathbf{B}(0) > 0 \\ \mathbf{B}(\infty) = (\mathbf{E} - \mathbf{m}) < 0 \end{array}$$

$$\mathbf{G}(\mathbf{r}) \text{ and } \mathbf{F}(\mathbf{r}) = 0 \quad \{\begin{array}{l} \mathbf{r} = 0 \\ \mathbf{r} = \infty \end{array} \quad \text{Nodes of } \mathbf{G} \text{ and } \mathbf{F} \text{ are alternate.} \end{array}$$

$$\mathbf{Nodes of } \mathbf{G} \circ \quad (\mathbf{GF})' > 0$$

$$\mathbf{Nodes of } \mathbf{F} \circ \quad (\mathbf{GF})' < 0$$

$$\mathbf{For } \mathbf{r} \circ \quad (\mathbf{GF})' > 0 \quad (\text{ increase negative function})$$

$$\mathbf{For } \mathbf{r} \circ \quad \mathbf{0} \quad \mathbf{k} > 0 \circ \quad (\mathbf{GF}) > 0$$

$$\mathbf{k} < 0 \circ \quad (\mathbf{GF}) < 0$$

$$\mathbf{k} = -2 \quad - \mathbf{GF}$$

$$\mathbf{F} \quad \mathbf{F} = -\mathbf{GF}$$

$$\mathbf{K} = 2$$

 $F_{k<0}(r) = F_{k>0}(r)$ up to a phase; have the same n_F

J. N. Ginocchio and D. G. Madland, Phys. Ver. C 57, 1167 (1998)

Dynamical symmetry? Depending on the nuclear potential parameters the quasi-pseudospin degeneracy may show up.

P. Alberto, M. Fiolhais, M. M., A. Delfino and M. Chiapparini, Phys. Rev. Lett. 86, 5015 (2001) and Phys. Rev. C65, 03407 (2002).

Results for Woods-Saxons potentials

Single particle energy levels for Pb 208. Parameters: R = 7.0 fm, a = 0.6 fm, =-66MeV, $D_0 = 650 \text{ MeV}$.

U₀

† Contribution of the various terms to the binding energy E.

$$\left\langle \frac{\mathbf{p}^2}{\mathbf{2m}^*} \right\rangle + \left\langle \mathbf{V}_{\mathbf{PSO}} \right\rangle + \left\langle \mathbf{V}_{\mathbf{D}} \right\rangle + \left\langle \mathbf{U} \right\rangle = \mathbf{E}$$

$$\left\langle \frac{\mathbf{p}^{2}}{\mathbf{2m}^{*}} \right\rangle = \frac{\int_{0}^{\infty} d\mathbf{r} \frac{1}{\mathbf{2m}^{*}} \left[\mathbf{F}_{\tilde{l}} \frac{d}{d\mathbf{r}} \left(\mathbf{r}^{2} \frac{d\mathbf{F}_{\tilde{l}}}{d\mathbf{r}} \right) + \tilde{l} \left(\tilde{l} + 1 \right) \mathbf{F}_{\tilde{l}}^{2} \right]}{\int_{0}^{\infty} \mathbf{r}^{2} d\mathbf{r} \mathbf{F}_{\tilde{l}}^{2}}$$

$$\left\langle \mathbf{V}_{PSO} \right\rangle = \frac{P_{0}^{\infty} r dr \frac{1}{2m^{*}} \frac{U'}{E - U} (\mathbf{k}_{l} - 1) F_{\tilde{l}}^{2}}{\int_{0}^{\infty} r^{2} dr F_{\tilde{l}}^{2}}$$

$$\left\langle \mathbf{V}_{\mathbf{D}} \right\rangle = -\frac{P_{0}^{\infty} r^{2} dr \frac{1}{2m^{*}} \frac{U'}{E-U} F_{\tilde{l}} \frac{dF_{\tilde{l}}}{dr}}{\int_{0}^{\infty} r^{2} dr F_{\tilde{l}}^{2}}$$

$$\left\langle \mathbf{U} \right\rangle = \frac{\int_{0}^{0} r^{2} dr \mathbf{U} \mathbf{F}_{\tilde{l}}^{2}}{\int_{0}^{\infty} r^{2} dr \mathbf{F}_{\tilde{l}}^{2}}$$

É Contributions of the terms to the pseudospin energy splittings D E.

† Pseudospin orbital is larger than splittings itself.

† Strong cancellation among the different terms that produces pseudospin quasidegeneracy.

† Pseudospin symmetry is a dynamical symmetry in the sense of Arima's definition: a ordered breaking symmetry from dynamical reasons. † V_{PSO} and D E splittings are correlated when diffusivity and depth of U potential are varied.

Isospin Asymmetry

P. Alberto, M. Fiolhais, M. M., A. Delfino and M. Chiapparini, Phys. Rev. Lett. **86**, 5015 (2001)

† Pseudospin degeneracy is different for protons and neutron (better for N).

† RMF models the asymmetry comes from r meson interaction.

† Nuclear vector potential $V = V_{\sigma} + V_{\rho} = V_{\sigma} \mp \frac{g_{\rho}}{2} \rho_0 \{ - \text{ protons} + \text{neutrons} r_0 \text{ is proportional to (N - Z).} \}$

† Spin-orbit depends on D ~ 650MeV >> V_r ~ 10MeV Pseudospin-orbit depends on U ~ 60MeV ~ V_r .

V_r does not affect the spin-orbit interaction (almost isospin symmetric).

The Role of the Coulomb Potential in the isospin asymmetry

† Contribution of the terms to energy splitting for the Sn isotopes as a function of A

• Pseudospin partners 2d_{5/2}- 1g_{7/2} (upper levels)

• V_{Cou} potential affects the pseudospin orbit term.

• For the isospin asymmetry in D < E > the effect of V_{Cou} potential is small for deep levels and negligible for upper levels.

The Role of the Isovector Potential in the isospin asymmetry

† Contribution of the terms to energy splitting for the Sn isotopes as a function of A

Pseudospin partners $2s_{1/2}$ - $1d_{3/2}$ (deep levels)

 Δ < V_D >

• Pseudospin partners 2d_{5/2}- 1g_{7/2}

(upper levels)

 \bullet Vr does not change the pseudospin orbit term V_{PS} .

• The isospin asymmetry in D<E> comes essentially from the effects of the potential Vr in the other terms.

uff

Conclusions

† Correlation of the pseudospin energy splittings with the nuclear potentials:

• decrease with the increase of diffusivity and the decrease of $|U_0|$

É Pseudospin interaction is related to a pseudospinorbit term for the lower component of the Dirac spinor.

É Pseudospin-orbit term is large (non perturbative nature).

É Pseudospin degeneracy results from a significant cancellationô Dynamical character of the symmetry.

É Pseudospin splittings are different for neutrons and protons.

É V_c potential affects the pseudospin term, but the effect is small in DE.

 $\stackrel{\text{\tiny E}}{=}$ Vr does not change the pseudospin orbit term V_{PS}.

É The isospin asymmetry in the pseudospin splittings comes essentially from the effects of the potential Vr in the other terms.

É The usual spin-orbit interaction is almost isospin symmetric.