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Why do nuclear lattice simulations?

~ 0.15 fm

Nucleon in lattice QCD
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Nucleons as point particles on lattice



Numerous studies of ground state properties of few 
nucleon systems using potential models together 
with variational and/or Green’s function Monte 
Carlo

[Wiringa and Pieper, PRL 89 (2002)182501; Carlson and 
Schiavilla, Rev. Mod. Phys. 70 (1998) 743; etc.]

Also studies of the liquid-gas transition using classical 
lattice gas models

[Ray, Shamanna, and Kuo, PLB 392 (1997) 7]

Nuclear Lattice Simulations



First study of quantum many body effects in infinite 
nuclear matter on the lattice (quantum hadrodynamics on 
momentum lattice)

[Brockmann and Frank, PRL 68 (1992) 1830]

First study on spatial lattice at finite temperature

[Müller, Koonin, Seki, and van Kolck, PRC 61 (2000) 044320]
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Used Hubbard-Stratonovitch transformation 
(introduces an auxiliary boson field) to put fermion
interactions in quadratic form,

ψφψ )(M

Studied phase transition from uncorrelated Fermi gas 
to clustered phase.  Calculated saturation curve for a 
43 ��Lt lattice with a = 1.84 fm.
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Simulations with Chiral Effective Theory

Non-perturbative lattice simulations of effective field 
theory of low energy pions and nucleons.

Non-perturbative effective field theory?... but isn’t 
effective field theory based upon an expansion?

G = G0 G2+ +  …

For pions the expansion is simple



V = +

V= +G V+

V0 V2

V +  …

For nucleons we must take care of infrared singularities
[Weinberg, PLB 251 (1990) 288, NPB 363 (1991) 3]

+  …



We will iterate “everything”
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A complete summation of all diagrams involving 
interaction terms with order  � k



The characteristic high-energy scale is set by heavy 
particle masses which we integrate out of the low 
energy theory or, equivalently, the chiral symmetry 
breaking scale (~1 GeV)

We use a low energy cutoff 150 ~ 300 MeV.  The 
renormalization group flow to low energies tells us 
that the contribution of higher-dimensional operators 
are suppressed by powers of

energy-high

cutoff

Λ
Λ



Following Weinberg [PLB 251 (1990) 288; NPB 363 (1991) 3],
we write the most general local Lagrangian involving 
pions and low-energy nucleons
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Weinberg power counting:

We use Hubbard-Stratonovitch transformation for the 
NN contact interaction.

We start with neutron matter – just neutrons and 
neutral pions
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Operator coefficients

Neutron-neutron contact interaction coefficient  
determined by s-wave zero-temperature scattering phase 
shifts on the lattice

Two possibilities:

Luscher’s formula [Luscher, NPB 354 (1991) 531]

Solve lattice Schrodinger equation and find asymptotic 
wavefunctions of scattering states



If we ignore pion exchange (i.e., only bubble diagrams), 
we expect C ~ a

As expected we see significant cutoff dependence

-0.29E-4300

-0.31E-4250

-0.35E-4200

-0.40E-4150

C (MeV-2)a-1 (MeV)



Numerical challenges
Good news… sign/phase problem is not bad at all

Problems occur only for temperatures less that about 1 MeV

Far better situation when compared with finite density 
lattice QCD

Why?

Physics answers– nucleons and pions give a simpler 
representation of the essential physics in the hadronic phase

Algorithmic answer – nucleons are much heavier than up 
and down quarks



The determinant of the one-body nucleon interaction matrix 
is not positive**

Although the phase is not oscillating much, there is a phase 
and to calculate it one needs to use LU decomposition

Numerical complexity for LU decomposition scales as the 
dimension of the matrix to the third power – slows down as 
L12 where L is the length of the system

**Except in special cases similar to attractive Hubbard 
model due to up-down spin symmetry [Chen and Kaplan, hep-
lat/0308016]
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Determinant zone expansion
Worldlines in finite temperature simulation:



For a given fermion worldline we expect ~ βh total hops 
to the left and ~ βh hops to the right. 

Equivalent to a random walk with 2βh steps.  The 
average net displacement is therefore

hl β~

Let h be the spatial hopping parameter, and let β be 
the inverse temperature (imaginary time)
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Space-time lattice
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Break up into spatial zones



then neglecting fermion hopping across the zone boundaries 
is a relatively small effect.  We can then expand in the zone 
boundary hopping term.

hl β~

If the zone size is much larger than the localization length

Let M be the nucleon matrix on the Euclidean lattice for 
given pion background field and Hubbard-Stratonovitch
field.  Let M0 be the corresponding matrix with spatial 
hopping across zone boundaries eliminated.



We can use a trace log expansion for the 
determinant

Using the second order approximation speeds up 
the calculation of determinants using LU 
decomposition by a factor of 105 – 107 times for 
typical simulations with errors  ~1%.

EMMM += 0

[ ]�
�

�
�
�

�
= �

=

−− −

,...2,1

1
0

)1(
0 )(trexpdetdet

1

p

p
Ep MMMM

p

[D.L. and I. Ipsen, nucl-th/0308052, to appear in PRC]



Sample configurations (neutron matter)

18.262-0.181i18.120+0.448i16.474+0.367ilog(∆8)

18.255-0.181i18.115+0.448i16.466+0.367ilog(∆6)

18.286-0.181i18.133+0.447i16.496+0.366ilog(∆4)

18.284-0.180i18.179+0.448i16.496+0.369ilog(∆2)

14.006+0.208i13.793+0.490i12.170+0.381ilog(∆0)

18.261-0.181i18.119+0.448i16.473+0.367ilog(det(M))

0.5340.5230.538R

321configuration

MeV 37.5MeV, 150 ==Λ T
nucl

33 57.0,64 ρρ =×=× tLL



73.482-0.158i76.176+0.710i70.634+0.412ilog(∆8)

73.489-0.157i76.178+0.710i70.639+0.412ilog(∆6)

73.448-0.158i76.161+0.711i70.603+0.411ilog(∆4)

73.792-0.154i76.393+0.701i70.953+0.412ilog(∆2)

67.850-0.181i71.001+0.799i64.800+0.441ilog(∆0)

73.483-0.158i76.176+0.710i70.635+0.412ilog(det(M))

0.5360.4780.520R

321configuration

MeV 37.5MeV, 150 ==Λ T
nucl

33 67.1,64 ρρ =×=× tLL



16.011+0.058i37.678-1.594i65.803-0.725ilog(∆8)

16.312+0.048i37.653-1.592i65.793-0.725ilog(∆6)

15.939+0.034i38.087-1.580i65.829-0.724ilog(∆4)

11.759+0.086i36.257-1.654i66.003-0.722ilog(∆2)

4.100+0.203i20.765-1.575i51.399-0.789ilog(∆0)

16.002+0.054i37.691-1.593i65.801-0.725ilog(det(M))

0.76310.67420.5122R

18.8 MeV25.0 MeV37.5 MeVtemperature

MeV 150=Λ

)12,9,6(633 ×=× tLL



65.801-0.725i65.801-0.725i65.803-0.725ilog(∆8)

65.801-0.725i65.801-0.725i65.793-0.725ilog(∆6)

65.801-0.725i65.802-0.725i65.829-0.724ilog(∆4)

65.832-0.723i65.857-0.723i66.003-0.722ilog(∆2)

61.047-0.772i58.659-0.754i51.399-0.789ilog(∆0)

65.801-0.725i65.801-0.725i65.801-0.725ilog(det(M))

0.30140.30130.5122R

[3,3,3][2,2,2][1,1,1]zone

MeV 37.5MeV, 150 ==Λ T

6633 ×=× tLL



The error in the logarithm of the determinant seems to 
be the roughly the same for different configurations… 
observables could be more accurate since overall 
normalization is irrelevant

We compute the density-density correlation function for 
pure neutron matter and look at errors in the zone 
determinant expansion
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Using the second order approximation speeds up 
the calculation of determinants using LU 
decomposition by a factor of 105 – 107 times for 
typical simulations with errors  ~1%.



We compute the density-density correlation function for 
pure neutron matter on a 83 × 6 lattice at

MeV 800   ,MeV 150   MeV, 5.37 1 === − µaT

ρ ~ 0.62ρnucl
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Directions (near future – hopefully some 
this week at the INT) 

1.  Calculations of E/A as a function of temperature and density

2.  Show that physical observables are cutoff independent

3.  Measure Fermi surface and occupation numbers for 
momentum modes

4.  Equation of state – measuring pressure using local chemical 
potentials

5. Include protons and charged pions



Ropke and Schell, Prog. Part. Nucl. Phys. 42, 53 (1999)
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