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LOCV calculation
Similar scaling as for Fermions
Condensate depletion. BEC quenched when:
Comparison to 85Rb JILA data

Galitskii resummation vs. LOCV
New fundamental many-body parameter:
Comparison to experiments near Feshbach resonances
FN-GFMC
Comparison to 6Li ENS data
E/N, Pairing gaps, sound speed,….

• What happens when the scattering length  a goes to +/- 8     ?
     New scaling region for dense or strongly interacting particles:

• Dense/Strongly Interacting Bose gas:

• Dense/Strongly Interacting Fermi gas:
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Dilute vs. dense or strongly
interacting (unitary) limit

• Interaction energy per particle in the dilute limit:

      for bosons and half that for fermions in two spin states.

• Interaction energy in the dense, strongly interacting or unitary limit:

      where the constant is universal albeit spin dependent.

(It is assumed throughout that the range of interaction is small: R<<|a|,r0)
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Near Feshbach resonances

• By tuning magnetic field, atoms can
interact resonantly, so that

          a  ?   +/- 8
• Expands hydrodynamically (Stringari et al.)

either collisional (JILA, cond-
mat/0305028), or as a superfluid (6Li)
(Duke, Science 298(2002)2179, cond-
mat/0304633)

• Molecule formation rate much slower than
Cooper pair and BCS phase transition
(MIT, cond-mat/0207046)

      (JILA,cond-mat/0311172)
• For a<0 a BEC collapses, whereas a

degenerate Fermi gas does not!



LOCV calculation
Urbana/Nordita, PRL88(2002)210403

• LOCV invented by Pandharipande & Bethe for the strongly correlated 4He, 3He
and nuclear liquid.

• Jastrow ansatz for the wave-function:
• Determine corr.fct. f(r) variationally by minimizing:
• To lowest order constrained variation (LOCV), f(r) is determined by two-body

Schrødinger Eq. for:  r < d~r0,  where coh.length d is of order the interparticle
spacing r0

• Boundary conditions: f´(d)=0  and   (rf)´/rf = -1/a  at r=0.
• Gives energy per particle
                                                        where

• Gives correct low (Lenz) density dilute limit
• For                       :
• Besides ~40 molecular states also one dimer state:
• Higher orders in linked cluster expansion small
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LOCV energy vs. scattering length
• LOCV:                                              where

      and

• Dilute:

• Molecule:
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85Rb JILA exp.
• Scattering length near  Feshbach resonance
     induced in the BEC at frequency ? (a(B))
• Coherent atom-molecule transitions at radio frequency

                                                                                           ? (B) in LOCV
• At Feshbach resonance LOCV

• Inserting the 85Rb density in
     the JILA exp. ~2x1013 gives
             ? (B)=5kHz
     at Feshbach resonance
• Minimum in ? (B) found
• Atom-molecule transitions
     overdamped between 155-156G
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Condensate Fraction
• Dilute limit:

• LOCV:

  BEC quenched for:
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The dense/strongly interacting Bose gas
• The energy per particle in a dilute Bose gas with repulsive interactions is

• The dense/strongly interacting repulsive Bose gas also has the new scaling as
the Fermi liquid:

• Similar scaling in the two- and three-body problem in a harmonic oscillator
trap (S.Jonsell et al., PRL 88 (2002)50401)

• Chemical potential, sound speed and collective modes are similar to those in
Fermi gases and liquids
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Strongly interacting Fermions
• Consider an uniform Fermi gas with density:

     (?  components or spin states)

• A dense/strongly interacting Fermi gas enters
a new scaling region when:   ? |a|3 >1

• Energy per particle in a dilute:

      vs. dense/strongly int. liquid:

• Universal parameter (only spin dependent)

• First studied for a neutron gas/nuclear matter
in ´99, where the NN  1S0 scattering lengths
are:
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Galitskii´s integral equations        (MBX’99)

• Galitskii’s ladder resummation for the scattering amplitude:

• Energy per particle for ?  components:

• Dilute limit:                          . Diagrammatic expansion gives:

• Dense limit:                          , scaling.

      Higher orders suppressed by phase space (Bethe-Brueckner). To 2nd order:

• Unstable towards collapse when:                           ´´Ferminova´´
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Bosenovae,
Ferminovae

    & Supernovae
• BEC with attractive interactions

collapse and subsequently  explodes
leaving a cold core (Bosenovae)

• Collapse/implosion also seen in other
physical systems as fission bombs,
sonoluminoscense and supernovae

• Traps with Fermi atoms are unstable
towards molecule formation but do not
collapse directly due to the mean field

• Bosenovae offer tabletop ``simulations”
of Supernova explosions though
energies are much smaller



Lowest Order Constrained
Variation

• LOCV invented by Pandharipande & Bethe for the strongly correlated nuclear
liquid. Jastrow ansatz for the wave-function with periodic boundary condition.

• LOCV as for bosons when finite momenta are ignored

• Correcting for exchange by changing a factor:

• For :                            , it gives the energy per particle for ? =2:

     for the dimer state:
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The dense/strongly interacting Fermi gas

• The new universal many-body parameter in dense or strongly interacting
Fermi liquids with two spin states is:

     where:

• ß   =  0.67  ,           Galitskii approx.

• ß   =  0.43  ,           LOCV approx.

• ß   =  0.67  ,           Pade’ approx.       (Baker, MBX99)

• ß   =  5/9    ,           EFT                      (Steele, nucl-th/0010066)

• ß   =  0.26+/-.07,    6Li exp.                (Duke, cond-mat/0212499)

• ß   ~  0.7+/-0.2,     40K  exp.               (JILA, cond-mat/0302246)

• ß   =  0.3-0.4,         6Li exp.                (ENS, cond-mat/0303079)

• ß   =  0.56+/-0.01,  FN-GFMC calc.  (Carlson et al., physics/0303094)
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ENS exp. with 6Li

• Measuring expansion energies of a 6Li
gas near B=855G (Bourdell et al.)

• Agrees with LOCV prediction

       -except just below resonance

• Plateau due to molecule formation?
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Trapped Bose vs. Fermi atoms

• Hamiltonian:
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Shopping list for experiments

• More experiments near Feshbach resonances for bosons
and fermions

• Several densities to check:
• Measure
• Dependence on spin states:
• Molecule formation rates,  BCS-BEC cross over
• Lower temperatures
• Superfluid fermions
• Measure gaps vs. density and scattering length
• …………..
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Summary
• Trapped Fermi & Bose atoms near Feshbach resonance provides

new table top test ground for studying strongly interacting/dense
systems                     in the unitary limit:

• Experimental confirmation of unitary limit
• Detailed agreement with 6Li and 85Rb data near Feshbach

resonances
• New scaling laws and universal many-body parameters
        Bosons:
        Fermions:
      where ß  depends on spin only.
• Pairing gap:
• Fermi gases particular relevant for BCS pairing in general and for

solids, nuclei and neutron stars in particular  - more on Thursday!
• Ferminovae for                       when
• Cold atomic systems are perfect playgrounds because parameters

can be controlled and varied:
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