Covariant Effective Field Theory

Franz Gross

Outline

Part I: The Covariant Spectator approach for two and three nucleon interactions at JLab energies

Part II: Ideas for improvements -- toward a Covariant Effective field theory for GeV reactions

Part I Covariant Spectator theory - philosophy

Few body nuclear physics at JLab (GeV) energies (conventional EFT NOT an option):

- Preserve all symmetries
 - Poincare invariance essential -- manifest covariance useful
 - unitarity (conservation of flux)
 - electromagnetic gauge invariance
 - chiral invariance
- Microscopic dynamics
 - OBE dynamics with point couplings, but form factors for the self energies of each hadron
 - Organizational principle -- include exchanges of all mesons and quantum numbers up to about 1 GeV. Cutoff at the nucleon mass scale.
 - Mesons needed: π , $2\pi(\sigma_0, \sigma_1)$, η , ρ , ω plus short distance counter terms.
- Maintain consistency
 - electromagnetic currents constrained by WT identities (but still not unique)
 - three-body forces constrained by two-body forces

INT 10/29/03

Covariant Spectator theory -- Definition

★ The spectator theory starts from the *n*-body Bethe-Salpeter equation and restricts *n*-1 particles to their positive energy mass shells. The propagator for these particles is replaced by

$$S_{\alpha\beta}(p) = \frac{(m+p)_{\alpha\beta}}{m^2 - p^2 - i\varepsilon} \Longrightarrow 2\pi i \delta_+(m^2 - p^2) \sum_s u_\alpha(\mathbf{p}, s) \overline{u}_\beta(\mathbf{p}, s)$$

- ★ Integration over the *n*-1 internal energies (p_0) places these particles on their *positive energy* mass-shell. All 4-d integrations reduce to 3-d integrations.
- ★ Remark: These on-shell particles do not *propagate* in intermediate states. The spinors are absorbed into matrix elements, and the on-shell particles becomes part of the "source" for the single propagating off-shell particle.
- \star The two body scattering equation is, diagrammatically,

Both the BS and the CS theories have a close connection to field theory

★ The Bethe-Salpeter amplitude is a well defined field theoretic matrix element:

$$\Psi(x_1, x_2) = \langle 0 \mid T(\psi(x_1)\psi(x_1)) \mid d \rangle$$

★ The Covariant Spectator amplitude is *also* a well defined field theoretic amplitude:

$$\Psi(x_1) = \langle N | \psi(x_1) | d \rangle$$

- ★ Equations for the Bethe-Salpeter and the Spectator* amplitudes can be derived from field theory
 - Both are manifestly covariant under *all* Poincaré transformations (advantage)
 - Both incorporate negative energy (antiparticle) states (disadvantage)

^{*}O. W. Greenberg's "n-quantum approximation"

Negative energy states (from off-shell propagation); what is their role?*

★ In field theories of *point* Dirac particles, antiparticle states can be extremely important! Example: Compton scattering

★ Relativistic extension to virtual photons and including hadronic structure

- *maintains covariance
- follows from vector dominance (with point couplings)
- not to be used in time ordered theory
- extension needed to satisfy WT identities
- works if real antiparticle degrees of freedom are not important

Franz Gross

for identical particles, symmetrize the kernel:

 $\mathbf{x} = \frac{1}{2} \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix} \mathbf{x} = \frac{1}{2} \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix} \mathbf{x}$

Spectator Equations for two body systems

 \star scattering amplitudes: an infinite sum of interactions V

 \star if a bound state exists, there is a pole in the scattering amplitude

★ equation for the bound state vertex functions: obtained from the scattering equation near the bound state pole

★ the bound state normalization condition follows from examination of the residue of the bound state pole

Properties of the two-body Spectator amplitude

Applications (1): OBE model for NN scattering

★ Kernel of the integral equation is represented by $\underset{g_{\alpha}}{OBE}$

$$= \frac{g_{\pi}}{v_{\pi}} = \frac{g_{\eta}}{v_{\pi}} + \frac{g_{\eta}}{v_{\eta}} + \frac{g_{\sigma}}{v_{\sigma}} = \frac{g_{\delta}}{v_{\sigma}} + \frac{g_{\omega}}{v_{\delta}} = \frac{g_{\rho}}{v_{\sigma}} + \frac{g_{\sigma}}{v_{\delta}} = \frac{g_{\delta}}{v_{\sigma}} + \frac{g_{\omega}}{v_{\delta}} + \frac{g_{\rho}}{v_{\rho}} = \frac{g_{\sigma}}{v_{\sigma}} + \frac{g_{\sigma}}{v_{\delta}} + \frac{g_{\omega}}{v_{\delta}} + \frac{g_{\sigma}}{v_{\rho}} = \frac{g_{\sigma}}{v_{\sigma}} + \frac{g_{\sigma}}{v_{\delta}} = \frac{g_{\sigma}}{v_{\sigma}} + \frac{g_{\sigma}}{v_{\delta}} = \frac{g_{\sigma}}{v_{\sigma}} + \frac{g_{\sigma}}{v_{\delta}} + \frac{g_{\omega}}{v_{\delta}} = \frac{g_{\sigma}}{v_{\sigma}} + \frac{g_{\sigma}}{v_{\sigma}} = \frac{g_{\sigma}}{v_{\sigma}} + \frac{g_{\sigma}}{v_{\sigma}} + \frac{g_{\sigma}}{v_{\delta}} = \frac{g_{\sigma}}{v_{\sigma}} + \frac{g_{\sigma}}{v_{\sigma}} = \frac{g_{\sigma}}{v_{\sigma}} + \frac{g_{\sigma}}$$

★ 13 Parameters

	spin parity	I- spin	mass	$m{g}$ ²/4 π	к	# of Para	cutoffs
π	0-	1	134.98	13.34		0	$\Lambda_{\pi} \approx 2000$
η	0-	0	548.8	3.0 ± 0.25		1	$\Lambda_{\rm m} \approx 1300$
σ	0+	0	≈ 500	5.0 ± 0.5		2	$\Lambda_{\rm N} \approx 1800$
δ	0+	1	≈ 500	$0.6 \pm 0.4*$		2	<i>o</i> mixing
ω	1-	0	782.8	15.0 ± 1.0	≈ 0.2	2	1 0
ho	1-	1	760.0	0.8 ± 0.2	7.0 ± 0.5	3	$\lambda_{ m p} = 1.55 \pm 0.4$

We fixed the ratio of the v's
$$\begin{cases} v_{\sigma} = -0.75 v \\ v_{\delta} = 2.60 v \end{cases}$$

INT 10/29/03

Applications (2): One sigma exchange with momentum dependent coupling

\star One σ (and one δ) exchange diagram:

$$\xrightarrow{p_1' \quad p_1} \qquad \longrightarrow \qquad \frac{\Lambda(p_1', p_1) \, \Lambda(p_2', p_2)}{m_{\sigma}^2 - (p_1' - p_1)^2}$$

\star momentum dependence σ NN (and δ NN) coupling

$$\Lambda(p', p) = g_{\sigma} \left\{ 1 + \frac{\nu}{2m} [2m - p' - p] \right\}$$
 zero on-shell

★ Issue: what is v? Many models have been studied

OBE	IIB	W00	W05	W10	W15	W16	W18	W19	W20	W22	W26
para	(rev.)										
ν	0	0.0	0.5	1.0	1.5	1.6	1.8	1.9	2.0	2.2	2.6
G_{π}	13.15	13.34	13.34	13.34	13.34	13.34	13.34	13.34	13.34	13.34	13.34
G_{η}	3.023	3.350	2.714	2.455	2.849	2.969	3.193	3.322	3.437	3.639	3.949
G_{σ}	5.30275	5.84067	5.59454	5.50753	5.09315	4.99887	4.80199	4.67948	4.56381	4.36852	4.05718
m_{σ}	522	525	519	515	507	506	503	501	499	496	491
ν_{σ}	0.0	0.0	-0.375	-0.75	-1.125	-1.2	-1.35	-1.425	-1.5	-1.65	-1.95
G_{δ}	0.33136	0.14812	0.34622	0.69046	0.68120	0.62818	0.52659	0.47598	0.43276	0.35656	0.25045
m_{δ}	484	390	472	540	524	512	488	474	462	439	399
$ u_{\delta}$	0.0	0.0	1.3	2.6	3.9	4.16	4.68	4.94	5.2	5.72	6.76
G_{ω}	10.087	12.801	13.430	14.767	15.028	14.879	14.617	14.439	14.267	13.932	13.361
κ_{ω}	0.095	0.207	0.150	0.119	0.177	0.195	0.227	0.247	0.264	0.298	0.356
G_{ρ}	0.443	0.561	0.645	0.807	0.901	0.899	0.878	0.870	0.852	0.814	0.733
$\kappa_{ ho}$	6.651	6.929	6.661	6.245	6.210	6.267	6.441	6.516	6.628	6.872	7.418
$\lambda_ ho$	0.863	1.533	1.499	1.520	1.553	1.556	1.557	1.559	1.558	1.555	1.548
π	2034	2304	2235	2203	2106	2075	2027	1992	1972	1935	1883
η	2034	1473	1394	1283	1213	1206	1195	1189	1185	1178	1165
N	1725	1629	1690	1759	1813	1822	1837	1847	1854	1867	1887
χ^2	2.53	3.00	2.71	2.45	2.26	2.25	2.26	2.27	2.31	2.44	2.56
E_T	6.0	6.217	6.706	7.412	8.301	8.491	8.871	9.074	9.266	9.662	10.535
D/S	0.0247	0.0252	0.0253	0.0254	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255
P_d	5.0	5.3	5.6	6.0	6.4	6.4	6.5	6.5	6.6	6.6	6.7
P_{v_t}	0.048	0.015	0.011	0.005	0.002	0.002	0.002	0.002	0.002	0.002	0.003
P_{v_s}	0.009	0.007	0.003	0.001	0.001	0.001	0.002	0.002	0.002	0.003	0.004
$\langle V' \rangle$	2.0	2.6	1.6	0.3	-1.0	-1.2	-1.6	-1.7	-1.9	-2.2	-2.8

TABLE II. Deuteron properties and OBE parameters for the models discussed in the text. The couplings are all dimensionless, with $G_{\pi} = g_{\pi}^2/4\pi$, and E_T is in MeV. The χ^2 is for the 1994 np data set up to 350 MeV. The last four rows are *probabilities*.

J=0 phase shifts

Franz Gross

J=1 coupled states (deuteron channel)

J=1 uncoupled states

nearly identical P waves

Franz Gross

Spectator equations for three-body systems*

★ Define three-body vertex functions for each possibility

★ then three body Faddeev-like equations emerge automatically. For identical particles they are:

*Alfred Stadler, FG, and Michael Frank, Phys. Rev. C 56, 2396 (1997)

INT 10/29/03

3N binding energy is very sensitive to v (off shell coupling of the scalar mesons)*

Two body current operator in the spectator formalism

★ Inelastic Scattering

★ Elastic Scattering

Franz Gross

Theory overview (3 body currents - in the spectator theory)*

★ The gauge invariant three-body breakup current in the spectator theory (with on-shell particles labeled by an X) requires many diagrams

where the FSI term is

INT 10/29/03

•• A final touch; using the Spectator theory

- ★ A precise description of all the form factors can be obtained by exploiting the off-shell freedom of the current operator
- ★ To conserve current, the current operator must satisfy the WT identity

$$q_{\mu}j_{N}^{\mu}(p',p) = S^{-1}(p) - S^{-1}(p')$$

- ★ The spectator models use a *nucleon form factor*, h(p). This means that the nucleon propagator can be considered to be dressed $S(p) = \frac{h^2(p)}{S(p)} = \frac{h^2(p)}{p}$
- \star one solution (the simplest) is

$$j^{\mu}(p',p) = F_0 \left[F_1 \gamma^{\mu} + F_2 \frac{i\sigma^{\mu\nu}q_{\nu}}{2m} \right] + G_0 F_3 \Lambda_-(p')\gamma^{\mu} \Lambda_-(p)$$

$$F_{0} = \frac{h(p)}{h(p')} \left(\frac{m^{2} - {p'}^{2}}{p^{2} - {p'}^{2}}\right) - \frac{h(p')}{h(p)} \left(\frac{m^{2} - p^{2}}{p^{2} - {p'}^{2}}\right) \qquad G_{0} = \left(\frac{h(p')}{h(p)} - \frac{h(p)}{h(p')}\right) \frac{4m^{2}}{p^{2} - {p'}^{2}}$$

★ $F_3(Q^2)$ is unknown, except $F_3(0)=1$. THIS FREEDOM can be exploited to fit *ALL* the deuteron form factors

INT 10/29/03

Franz Gross

The Spectator theory, with a suitable F_3 , can explain the elastic electron deuteron scattering data!

INT 10/29/03

The *Covariant Spectator* theory (overview *page* 1)

★ Theory:

- Smooth nonrelativistic limit, one-body limit, cluster property, gauge invariant one photon exchange interaction (pre 1983)
- Manifest covariance with boosts exactly known to all orders in $(v/c)^2$ (pre 1983)
- Demonstration that theory is exact for scalar theories in the large mass limit (with Savkli and Tjon -- 2002)
- ★ Applications:
 - $\overline{q}q$ sector: covariant confinement and spontaneous chiral symmetry breaking (with Milana 1991)
 - pion nucleon scattering and pion photoproduction (with Surya -- 1993)

The *Covariant Spectator* theory (overview - *page* 2)

★ Applications (continued)

- few nucleon problems:
 - *NN* scattering and bound state solutions to 350 MeV lab kinetic energy with $\chi^2 \sim 2$ (13 parameters) (with Van Orden and Holinde -- 1992)
 - exact numerical solution for the ³*H* bound state -- good binding energy without relativistic three body forces (for optimal 2 body parameters) (with Stadler -- 1997)
- electromagnetic interactions:
 - consistent current operator (with Riska -- 1987)
 - good description of the deuteron form factors (with Van Orden and Devine --1995)
 - description of inelastic scattering (theory with Dmitrasinovic -- 1989 and applications with Adam, Van Orden, Jeschonnek and Ulmer -- 2002)
- *multiple scattering:* derivation of *pA* scattering series (with Maung -- 1991)

Part II

How can the ideas of effective field theory improve the CSM

- ★ At present, regularization and short range physics are both contained in the form factors
- \star The most important is the nucleon form factor

$$S(p) = \frac{f(p)}{m - p}; \quad f(p) = \frac{2(\Lambda^2 - m^2)^2}{(\Lambda^2 - p^2)^2 + (\Lambda^2 - m^2)^2}$$

- ★ The fits are very sensitive to Λ -- which both regulates the infinities and parameterizes the short range physics
- \star Use the ideas of EFT to separate these two roles ??

Effective theory - 1¢ review

- Take an effective contact interaction -- short range physics described by one \star parameter → -*ig*
- \star Sum the infinite series of diagrams

$$M = g + ig B(s) g - g B(s) g B(s) g +$$

= $\frac{g}{1 - ig B(s)} = \frac{1}{\frac{1}{g} - iB} (s)$ a bound state of g

a bound state of mass $M_{\rm B}$ exists if

$$igB(M_B^2) = 1$$

this means at *all* the Feynman diagrams in the series are the same size - *non perturbative physics*

Bubbles are the first place to start \star

INT 10/29/03

 \star In covariant field theory there are *two* second order bubbles

(both can be thought of as coming from heavy meson exchange)

s channel (from ladders)

u channel (from crossed ladders)

Example 1 (slide 1): Relativistic effective theory in 1+1 dimensions

★ calculation of B(s) in 1+1 D

$$B(P^{2}) = i \int \frac{dk_{0}dk_{1}}{(2\pi)^{2}} \frac{1}{(M^{2} - k^{2} - i\varepsilon)(m^{2} - (P - k)^{2} - i\varepsilon)}$$

= $i \int \frac{dk'_{0}dk'_{1}}{(2\pi)^{2}} \int_{0}^{1} dx \frac{1}{(M^{2}x + m^{2}(1 - x) - P^{2}x(1 - x) - k'^{2} - i\varepsilon)^{2}}$

s channel

$$\lim_{M \to \infty} B(s) = -\frac{1}{8\pi M} \left\{ \frac{\pi}{\delta} - \frac{1}{\delta} \arctan\left(\frac{\delta}{\sqrt{m^2 - \delta^2}}\right) \right\}$$

$$P = M + E_0$$

$$\lim_{M \to \infty} B(u) = -\frac{1}{8\pi M} \frac{1}{\delta} \arctan\left(\frac{\delta}{\sqrt{m^2 - \delta^2}}\right)$$

$$\delta = \sqrt{m^2 - E_0^2}$$

\star Hence the *s*- and *u*-channel bubbles cancel

$$\lim_{M\to\infty} \left[B(s) + B(u) \right] = -\frac{1}{8\pi M} \frac{1}{\delta}$$

Franz Gross

★ The spectator contribution to the bubble is obtained from the positive energy pole of the heavy particle

Franz Gross

Homework problem -- extend these ideas to 1+3 dimensions

★ One can show that the *s*-channel bubble becomes, if $M \Rightarrow \infty$,

$$B_{s}(s) = -\frac{\Gamma(2 - d/2)}{(4\pi)^{d/2}} + \frac{1}{(4\pi)^{2}} \left\{ \log M^{2} - 2 - \frac{E_{0}}{M} \log \left(\frac{M^{2}}{m^{2}}\right) + \frac{2\delta}{M} \left[\pi - \arctan\left(\frac{\delta}{E_{0}}\right)\right] \right\}$$

1

 \star Adding the *u*-channel bubble gives a similar cancellation

$$B_{s}(s) + B_{u}(s) = -\frac{2\Gamma(2-d/2)}{(4\pi)^{d/2}} + \frac{2}{(4\pi)^{2}} \left\{ \log M^{2} - 2 + \frac{2\pi\delta}{M} \right\}$$

- ★ How does this compare to the Spectator contribution? How can we calculate this using dimensional regularization?
- ★ Introduce a new technique

(based on Appendix A of a 1982 paper--which turns out to be equivalent to the recent work of Becher & Leutwyler, Eur. Phys. J. C9 (1999) 643, hep-ph/9901384)

Technique for computing Spectator amplitudes

★ Spectator amplitude has heavy particle on positive energy mass shell. Introduce:

$$A_1 = M^2 - k^2; \quad A_2 = m^2 - (P - k)^2$$

then the spectator amplitude can be written

$$B_{Spec}(s) = i \int \frac{d^4 k}{(2\pi)^4} \frac{1}{(A_1 - i\varepsilon)(A_2 - A_1 - i\varepsilon)}$$
$$= i \int \frac{d^4 k}{(2\pi)^4} \frac{1}{(\varepsilon - k_0 - i\varepsilon)(\varepsilon + k_0 - i\varepsilon)(m^2 - M^2 - s + 2Wk_0 - i\varepsilon)}$$

only pole in lower half plane

 \star This can be written in Feynman parameter form as

$$B_{Spec}(s) = i \int \frac{d^4 k}{(2\pi)^4} \int_0^\infty dx \frac{1}{\left[A_1(1-x) + A_2 x - i\varepsilon(1+x)\right]^2}$$

note that this is identical to the full bubble except the x integration is extended from $[0,\infty]$ instead of [0,1]

INT 10/29/03

- ★ The bubble and crossed bubble *cancel* (at t = 0).
- ★ In 1+1 dimension their sum is *identical* to the Relativistic Spectator contribution
- ★ The Relativistic Spectator contribution is close to the result obtained from nonrelativistic EFT
- ★ *Extension and conjecture:* the Relativistic Spectator contribution, which defines EFT!, is the natural relativistic extension of EFT
- \star Extended homework problem -- show that this is true

END

INT 10/29/03