Covariant Effective Field Theory

Franz Gross

Outline

Part I: The Covariant Spectator approach for two and
three nucleon interactions at JLab energies

Part II: Ideas for improvements -- toward a Covariant
Effective field theory for GeV reactions
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The true landscape what does the

dinosaur see?

what does the
cockroach see?
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Part [

Covariant Spectator theory - philosophy

Few body nuclear physics at JLab (GeV) energies (conventional EFT NOT
an option):

® Preserve all symmetries

¢
¢
¢
¢

Poincare invariance essential -- manifest covariance useful
unitarity (conservation of flux)

electromagnetic gauge invariance

chiral invariance

® Microscopic dynamics

*

*

*

OBE dynamics with point couplings, but form factors for the self energies
of each hadron

Organizational principle -- include exchanges of all mesons and quantum
numbers up to about 1 GeV. Cutoff at the nucleon mass scale.

Mesons needed: 7, 27 (0, 0,), 1), p, w plus short distance counter terms.

® Maintain consistency

¢
¢

electromagnetic currents constrained by WT identities (but still not unique)
three-body forces constrained by two-body forces
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Covariant Spectator theory -- Definition

* The spectator theory starts from the n-body Bethe-Salpeter equation and
restricts n-1 particles to their positive energy mass shells. The propagator
for these particles is replaced by

+
Sos(P) = (f" ‘f)“ﬁ =270, (m" = p*) Y u, (P, 9)it,(p, s)

m —p-—i€
* Integration over the n-1 internal energies (p,) places these particles on their
positive energy mass-shell. All 4-d integrations reduce to 3-d integrations.

* Remark: These on-shell particles do not propagate in intermediate states.
The spinors are absorbed into matrix elements, and the on-shell particles
becomes part of the “source” for the single propagating off-shell particle.

* The two body scattering equation is, diagrammatically,

R ] ] )
M = + M
v % % > % | X
\—_/ — — —__/
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Both the BS and the CS theories have a close connection to field theory

* The Bethe-Salpeter amplitude is a well defined field theoretic matrix element:

W(x,x,) = <O| T(l/} (X1)w(x1)) | d) —>—

* The Covariant Spectator amplitude is also a well defined field theoretic
amplitude:

W(x,)= (N lyp(x,) d) .

* Equations for the Bethe-Salpeter and the Spectator®* amplitudes can be derived
from field theory

® Both are manifestly covariant under all Poincaré transformations
(advantage)

® Both incorporate negative energy (antiparticle) states (disadvantage)

*O. W. Greenberg’s "n-quantum approximation"
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Negative energy states (from off-shell propagation); what is their role?*

* In field theories of point Dirac particles, antiparticle states can be extremely
important! Example: Compton scattering

|
|
7"‘1 AJ'r = 7"(1 : ;f'r — palr term
: gives the
classical limit!

Feynman \posmve energy pair (negatlve energy/
diagram
time ordered diagrams
o (o)1 co | | 1 [ e2
2M “\m) M- (M +w) YZ 3M +2w - (M +w) 2M

* Relativistic extension to virtual photons and including hadronic structure

e *maintains covariance
e follows from vector dominance

(with point couplings)
> * not to be used in time ordered theory
* extension needed to satisfy WT
F (q1 F (q2 identities
Feynman diagram * works if real antiparticle degrees of

freedom are not important
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for identical particles, symmetrize the kernel:

Y

Spectator Equations for two body systems —i

*  scattering amplitudes: an infinite sum of interactions V

on-shell
particle

* if a bound state exists, there is a pole in the scattering amplitude

— [r— ——
=X= —X= == == == —X=
\—/ \—/

residue: finite at the pole

* equation for the bound state vertex functions: obtained from the scattering equation near

the bound state pole
%

% the bound state normalization condition follows from examination of the residue of the
bound state pole
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Properties of the two-body Spectator amplitude

* from translational invariance:

[d*xe™ Culp (x)|d) = 27)* 8(p +n = d){nhyp(0)]d)

conservation of momentum
and energy at the vertex

% from rotational invariance [ elﬁlmf o
_ ] u —T the most general Torm
(n’)LhPO‘ (0)| d’§> o () [S(p)r (P C :Iaﬁ o (n’}L)gﬂ possible for the coupling

of a spin 1 particle to two

o = {UJ ,J{'M,x (p) u, (p,A') + wﬂ; (p) v, (—p,)»')} EM slén El/%lparticles, one
> % positive negative \O e J
energy L‘ energy

A —%—
spinor spinor
* from transformations under boosts exact ,
. obtained from Wigner
B(A{n, Ay, (0)|d,§> =B . (An, Ay, (())l Ad,A§> D7 () rotations and Dirac
boost matrix
boost matrix for \—‘ Wigner _
off-shell particle in rotation of the spin

Dirac space of the on-shell particle
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Applications (1):
OBE model for NN scattering

* Kernel of the integral equ%tion 1S reprgsent%d by gOBE
T o 0 0]

1 (T M 0 ;0 o G p
= = 'V].[=1 + 'Vn=1 + VO’ +V5 + KCU +Kp
* 13 Parameters A=l Ay
spin I- mass g¥an K # of cutoffs
Spin
panty | sp Para A, = 2000
T 0 1 134.98 1334 -1 0
A, = 1300
n 0 0 5488 | 30+025 — 11
o 0" 0 ~ 500 50+05 | 2 Ax = 1800
S 0 1 ~500 | 0.6+ 04% — | 2 Py
w 1 0 7828 | 150+ 10 ~02 | 2
o 1 1 760.0 08+02|70+05 | 3 Apy=155+04
, , ; Vg = -0.75 v
We fixed the ratio of the v's
Vg = 2.60 v
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Applications (2):
One sigma exchange with momentum dependent coupling

* One o (and one 0) exchange diagram:

‘ @ : A(p,',p) A(p,' . p,)
| —> m. —(p,'-p,)’

* momentum dependence NN (and ONN) coupling

A(p', p)= go{l +[2L[2m -p —p]H < zero on-shell
m

* Issue: what 1s v 7 Many models have been studied
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OBE IIB W00 W05 W10 W15 || W16 | W18 W19 W20 W22 W26
para (rev.)
v 0 0.0 0.5 1.0 1.5 1.6 1.8 1.9 2.0 2.2 2.6
Gr 13.15 1334 1334 13.34 1334 | 13.34 | 13.34 1334 1334 13.34 13.34
G, 3.023 3350 2714 2455 2.849 | 2.969 | 3.193 3.322 3.437 3.639 3.949
G, 5.30275 5.84067 5.59454 5.50753 5.09315(4.99887|4.80199 4.67948 4.56381 4.36852 4.05718
mge 922 525 519 215 507 506 503 501 499 496 491
Vg 0.0 0.0 -0.375 -0.75 -1.125| -1.2 -1.35 -1.425 -1.5 -1.65 -1.95
Gs 0.33136 0.14812 0.34622 0.69046 0.6812(C|0.62818(0.52659 0.47598 0.43276 0.35656 0.25045
ms 484 390 472 540 524 012 488 474 462 439 399
Vs 0.0 0.0 1.3 2.6 3.9 4.16 4.68 4.94 5.2 0.72 6.76
G, 10.087 12.801 13.430 14.767 15.028| 14.879 | 14.617 14.439 14.267 13.932 13.361
Ky 0.095 0.207 0.150 0.119 0.177 | 0.195 | 0.227 0.247 0.264 0.298 0.356
G, 0443 0.561 0.645 0.807 0.901 || 0.899 | 0.878 0.870 0.852 0.814 0.733
kp 6.651  6.929 6.661 6.245 6.210 | 6.267 | 6.441 6.516 6.628 6.872 7.418
Ap  0.863 1.533 1.499 1.520 1.553 | 1.556 | 1.557 1.559 1.558 1.555  1.548
~ 2034 2304 2235 2203 2106 | 2075 | 2027 1992 1972 1935 1883
n 2034 1473 1394 1283 1213 1206 1195 1189 1185 1178 1165
N 1725 1629 1690 1759 1813 || 1822 | 1837 1847 1854 1867 1887
[x* 253 300 271 245 226 | 2.25 | 226 227 231 244 256
[ Er 60 6217 6706 7412 8301 8.491 ] 8871 9.074 9.266 9.662 10.535
D/S 0.0247 0.0252 0.0253 0.0254 0.0255/| 0.0255 | 0.0255 0.0255 0.0255 0.0255 0.0255
Py 5.0 5.3 5.6 6.0 6.4 6.4 6.5 6.5 6.6 6.6 6.7
P, 0.048 0.015 0.011 0.005 0.002 | 0.002 | 0.002 0.002 0.002 0.002 0.003
P,, 0.009 0.007 0.003 0.001 0.001 | 0.001 [ 0.002 0.002 0.002 0.003 0.004
(V" 2.0 2.6 1.6 0.3 -1.0 -1.2 -1.6 -1.7 -1.9 -2.2 -2.8

TABLE II. Deuteron properties and OBE parameters for the models discussed in the text. The
couplings are all dimensionless, with G, = g2 /4w, and Er is in MeV. The x? is for the 1994 np
data set up to 350 MeV. The last four rows are probabilities.
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J=0 phase shifts
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J=1 coupled states (deuteron channel)

2 - o 4
S/D mixing
1 parameter E i 3 1
O 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 ] 100 j S 1 i
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J=1 uncoupled states

-10 [
-15 |
-20 |

25

-30 [

*

Model 1IB
Model W00
Model W16
Model W26
Nijmegen 93

35 —

100

INT 10/29/03

200
E_ (MeV)

nearly identical P waves

300

210
15
20
25
-302

35 —

100

200 300
E _ (MeV)

Franz Gross

400



Spectator equations for three-body systems™

* Define three-body vertex functions for each possibility
this particle is

X  }—x ) / the “last” spectator
M =X _1l¢
~ X I mp x|T
M v M M ]
—/ —

* then three body Faddeev-like equations emerge automatically. For
identical particles they are:

e
—e I = 2 M

o 0
Ea) ‘

this amplitude already
known from the 2-body sector

*Alfred Stadler, FG, and Michael Frank, Phys. Rev. C 56, 2396 (1997)
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3N binding energy 1s very sensitive to v
(off shell coupling of the scalar mesons)*

-6.0 L L B | L LR ] ( \
t . v=1.6 (vo =-1.2, vy = 4.16) is strongly
a0 b ; favored, both by the 3N binding energy
[ j and the 2N data!
E L ]
T I 1 \ J
-8.0 -‘ -
L experimental value ] ] ] ]
[ 848 MeV ] [ experimental binding energy at v=1.6! ]
9.0 N
210 N T R L N
3.0 A T T T T
28 -
26 | ]
deata [ ] ~
i 1 |best fit to the 2N data (minimum y2) at v=1.6!
2 ] D
2.0 b *three body calculations done with Alfred Stadler, Phys. Rev.

0.0 0.50 1.0 1. 2.0 2.5 Letters 78, 26 (1997)
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Two body current operator in the spectator formalism

* Inelastic Scattering

RIA N We n'd

FSI e

MEC

* Elastic Scattering * Interaction current
RIA
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Theory overview (3 body currents - in the spectator theory)*

* The gauge invariant three-body breakup current in the spectator theory (with
on-shell particles labeled by an X) requires many diagrams

- S

A\

RIA
where the FSI term is

g_/. N NS, N ~ \,g \ Kvinikhidze & Blankleider,
%/ > =3 > +3 {[_S_X_> +3§E|j o > PRC 56, 2973 (1997)
] Adam & Van Orden

(in preparation)
> o FG, A. Stadler, & T. Pena
+6C +6;£ﬂj&> +65 Eﬂjz>é> (in preparation)
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A final touch; using the Spectator theory '

* A precise description of all the form factors can be obtained by exploiting the off-shell freedom
of the current operator

* To conserve current, the current operator must satisfy the WT identity
: -1 -1
q,jv(P,p) =S (p)-S"(p)

*  The spectator models use a nucleon form factor, h(p). This means that the nucleon propagator

can be considered to be dressed m@ =@
m—-pr A(p)

* one solution (the simplest) is
___—off-shell effects

e
i =FLF e B2 G A )yt AL(p)
> o £'1 > o o '3 IN_(P )Y _\p

_ h(p) (m - p'z) _hp) (m - pz) - (h<p'> ) h<p>) 4m’

" mpH\p'-p?) KWp\p'-p” * \n(p) " p*-p°
*  F5(Q?) is unknown, except F;(0)=1. THIS FREEDOM can be exploited to fit ALL the deuteron
form factors
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AQ

Buchanan
elias
benaksas
arnold
platchkov
galster
cramer
simon

jlabt20

H e 0 O O 49 H X ¢ D

jlaba

—— A(delta F3)
— -A(rpg;F3=1)
----- A (RIA; F3=1,MMD)

Q’ (GeV?)

Choice of a "hard" F,
is sufficient for an
excellent fit!
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AQ)/A, @)
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Arnold/s
Platchkov/s
Galster/s

Cramer/s
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JLabC/s

JLabA/s

— A (delta F3)/A (0)
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HOOHOOICHXOD

0.0 bt

—dipole

1

— Fg(Q2)=(

1+ Q2/5)3
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[

<

=]

[m]

Mainz-81
Saclay-85
Bonn-85
SLAC-90
JLab (prelm)

Stanford65

——B(delta F3)

B(Frpg)

B(RIA;F3=1)
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Mainz-81/B
Saclay-85/B
Bonn-85/B

3.5

3.0

2.5}

SLAC-90/B
Jlab/B

Stan/B

B(delta F3)/B(0)
— -B(Frpg)/B(0)

O m B Q9 ¢ 0

[ Same F, also works for B(Q?) ]
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omOOoO o ep H X

Bates-84
Novosibirsk-85
Novosibirsk-90
Bates-91

Bonn 92
NIKHEF-96

99

JLAB-97

Novo 01

T20 tilde (RIA;F3=1)
TZOEdeIta F3)
T20(Frpg)

Same F'; gives a different,
but good, fit to T, !

The Spectator theory, with a suitable F'; , can explain the
elastic electron deuteron scattering data!
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The Covariant Spectator theory (overview page 1)

* Theory:

® Smooth nonrelativistic limit, one-body limit, cluster property, gauge invariant one
photon exchange interaction (pre 1983)

® Manifest covariance with boosts exactly known to all orders in (v/c)? (pre 1983)

®* Demonstration that theory is exact for scalar theories in the large mass limit (with
Savkli and Tjon -- 2002)

* Applications:

® gq sector: covariant confinement and spontaneous chiral symmetry breaking (with
Milana 1991)

® pion nucleon scattering and pion photoproduction (with Surya -- 1993)
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The Covariant Spectator theory (overview - page 2)

* Applications (continued)
® few nucleon problems:

& NN scattering and bound state solutions to 350 MeV lab kinetic energy with y 2~
2 (13 parameters) (with Van Orden and Holinde -- 1992)

& cxact numerical solution for the 3H bound state -- good binding energy without
relativistic three body forces (for optimal 2 body parameters) (with Stadler --

1997)

® electromagnetic interactions:

& consistent current operator (with Riska -- 1987)

¢ good description of the deuteron form factors (with Van Orden and Devine --
1995)

& description of inelastic scattering (theory with Dmitrasinovic -- 1989 and
applications with Adam, Van Orden, Jeschonnek and Ulmer -- 2002)

® multiple scattering: derivation of pA scattering series (with Maung -- 1991)
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Part 11
How can the 1deas of effective field theory improve the CSM

* At present, regularization and short range physics are both contained in
the form factors

* The most important is the nucleon form factor

_fp) . ) 2N -m’)
S(p = m—lp’ f(p)_(Az—p2)2+(A2 _mz)z

* The fits are very sensitive to A -- which both regulates the infinities and
parameterizes the short range physics

* Use the ideas of EFT to separate these two roles ??
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Effective theory - 1¢ review

* Take an effective contact interaction -- short range physics described by one
parameter

8 — i
* Sum the infinite series of diagrams

>‘<>O<>'OO-<

M = + lgB(S)gl - gB(s)gB(s)g +
g
— igB(s) =1 _ iB (s) a bound state of mass My exists if

: 2 this means at all the Feynman diagrams in the
igB(M;) =1 SR o U
series are the same size - non perturbative physics

* Bubbles are the first place to start
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Covariant effective field theory

* In covariant field theory there are two second order bubbles

(both can be thought of as coming from heavy meson
exchange)

s channel (from ladders)

u channel
(from crossed ladders)
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Example 1 (slide 1): Relativistic effective theory in 1+1 dimensions

* calculation of B(s)in 1+1 D

0\ pdkydk, 1
AP =if (2n) (M=K —ic)(m’* - (P - k) - ie)
dk', dk', ' 1
— iy
lf (231)2 ! * (sz +m*(1-x) = P’x(1-x) k" —i3)2

s channel | 1im B( S) _
M—

P=M+E,
Zhannel lim Blu) = 2
(att=0) |~ O=vm=-Ey
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Example 1 (slide 2): Spectator contribution in 1+1 dimensions

* The spectator contribution to the bubble is obtained from the positive
energy pole of the heavy particle

dk,dk, |
(2n) (M =K —ie)(m’ - (P=k) -ie)

AN

}liin BSPEC (S> = if

* it equals precisely the sum of B(s) + B(u)
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Homework problem -- extend these ideas to 1+3 dimensions

% One can show that the s-channel bubble becomes, if M= |

I'2-d/?2) |
(4j[)d/2 + (41_[)2

B (s)=- - +—

S (AN 5
{logM —2—M10 2) Mn—arct E.

* Adding the u-channel bubble gives a similar cancellation
2I'R2 -d /2) 2 ) 270
B (s)+ B,(s) =- T + Gy {logM -2+ v }

* How does this compare to the Spectator contribution? How can we
calculate this using dimensional regularization?
* Introduce a new technique

(based on Appendix A of a 1982 paper--which turns out to be equivalent to the recent
work of Becher & Leutwyler, Eur. Phys. J. C9 (1999) 643, hep-ph/9901384)
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Technique for computing Spectator amplitudes

* Spectator amplitude has heavy particle on positive energy mass shell.

Introduce:
A=M -k; A=m-P-k)

then the spectator amplitude can be written
o d'k 1
By &) =i o S G T~ Ao
e dk 1
kT k —ie)N& + k, —ie)m® —M* —s +2Wk, — i¢)

only pole in lower half plane

* This can be written in Feynman parameter form as

o~ d'k 1
By ) =if s, dx[Al(l )+ A —ie(l+ 0]

note that this is identical to the full bubble except the x integration is
extended from [0, ] instead of [0,1]
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Lessons

* The bubble and crossed bubble cancel (at t = 0).

* In 1+1 dimension their sum is identical to the Relativistic Spectator
contribution

* The Relativistic Spectator contribution is close to the result
obtained from nonrelativistic EFT

* Extension and conjecture: the Relativistic Spectator contribution,
which defines EFT!, i1s the natural relativistic extension of EFT

* Extended homework problem -- show that this is true
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END
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