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Outline

e Introduction:

e Manifestly Lorentz-invariant formulation of ba-
ryon CHPT, EOMS scheme;

e IR renormalization reformulated:

e Application to two (multi) loop diagrams;

e Summary



Chiral perturbation theory (ChPT) in the mesonic
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sion of matrix elements in 1/mpy and 1/(4nFrx).

Problem: in some cases, it does not provide the
correct analytic behavior.

Reconciling power counting with manifest Lorentz
invariance

P. J. Ellis and H. Tang, Phys. Rev. C 57, 3356
(1998).

T. Becher and H. Leutwyler, Eur. Phys. J. C 9,
643 (1999).

J. Gegelia and G. Japaridze, Phys. Rev. D 60,
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The most widely used technique — IR regularization
of BL.



T he freedom of choosing a renormalization scheme

IS advantageously used to formulate a power count-
ing.

This talk — EOMS and IR renormalization.



BCHPT versus QED — the leading order EFT of
interacting electrons and photons

o QED — Write the Lagrangian;

BCHPT — "...";

e QED — Draw all Feynman Diagrams;

e BCHPT — "...7;

e QED — Loop diagrams diverge: renormalize
them by absorbing the infinite parts of loop di-
agrams into the redefinition of fields and avail-
able parameters, choose the subtraction scheme
so that renormalized coupling is " natural” and
subtracted loop diagrams are "reasonable” .

e BCHPT — "...7";

e QED — Define the "power counting” — if the
renormalized coupling constant is small and the



contributions of renormalized loop diagrams are
not large, then the higher orders of the coupling
are suppressed;

Power counting depends on the applied renor-
malization scheme;

BCHPT — Define the "power counting” — if
the renormalized coupling constants are " natu-
ral’” and the contributions of renormalized loop
diagrams are not large, then the higher or-
ders of small momenta and pion mass are sup-
pressed,

Power counting depends on the applied renor-
malization scheme;

QED — There is a finite number of parameters
— predictive power;

BCHPT — There is an infinite number of pa-
rameters, but they are fixed by underlying the-
ory — predictive power; In practice: At any



given order there is only a finite number of pa-
rameters — can be extracted from data — pre-
dictive power;

QED — Identify all renormalized diagrams of
given order and sum them up.

The renormalization scheme dependence of re-
sults is always of higher order.

The couplings at any order are the full cou-
plings, e.g. tree order diagram contributions
are expressed in renormalized coupling (not in
the " bare” one).

BCHPT — "...".

QED — We are interested only in renormal-
ized diagrams. Unrenormalized diagrams and
counter term contributions separately do not
even make sense.

BCHPT — Power counting should be applied
to renormalized diagrams. Power counting for



unrenormalized diagrams and counterterm con-
tributions separately is not of physical relevance.

If in a specified order of renormalized diagrams
there are contributions of counterterms which
themselves have been assigned the higher chiral
order in the Lagrangian, then they will result
in the renormalization scale dependence of the
renormalized diagram which is of higher order.



T he effective Lagrangian

Leff = Ln + LaN,

(chiral) Derivative and quark-mass expansion

Lr

£’7TN

Lo+ La+ L6+
L 4O c(3> @4

Lowest-order mesonic Lagrangian [©O(Q?2)]

2 27712

Lo = FTTr(aﬂUa“UT) + Mot oy, (1)

U — a unimodular unitary (2 x 2) matrix. Fp =
F[1 4+ O(m)] = 92.4 MeV. my = my = m, lowest-
order expression: M?2 = 2Bm, B is related to the
quark condensate (gqq)g in the chiral limit.

Building blocks for # N Lagrangian.

-8

— the nucleon field.



(In the absence of external fields)

u? = U, Uy = iu]L@,,,UuT, My = —[uT,ap,u]

v+ = M2(UT+U).

The lowest-order Lagrangian

1 - (. 1
L) = (D" = m+ - Gaposut ) W, (2)

Some terms of the Lagrangian at (9(622)

c?) = clTr(X+)\Tf\U—%Tr(uuu,/) (WDFDYW + H.c.)
m
C3 " — Cq — ©wov
—I—ETr(u uy)WW — Z\Uv Y lup, up]W -+, (3)

Lagrangian 553\), does not contribute to the nucleon
mass. At O(¢*) we need to consider the term

—%M4\TJ\U, (4)

a = —4(8e3zg + e115 + €e116)- (5)



EOMS Renormalization
Power counting:

Loop integration in n dimensions ~ @Q", pion and
fermion propagators ~ Q=2 and Q~1, vertices de-
rived from Lo and 57(5\), ~ Q%% and QF.

Power D of a diagram in the one-nucleon sector

@) @)
D =nNp -2 — Iy + Y 2kN3. + Y kNY, (6)
k=1 k=1
N; — the number of independent loop momenta,
I — internal pion lines, Iy — internal nucleon lines,
NI — vertices originating from Lo, and N;¥ — ver-

tices originating from ng\),

Consider one-loop integral
d"k 1

oy =02 — w2 — w2

= —1

H is expected to be of order O(Q"3).

As it stands H does not yet satisfy a simple chiral
power counting.



Chiral limit

The chiral limit M2 = 0.
_ mt [F(Q_%
(47r)n/2 n—23

Ho )F(1,2—g;4—n;—A>

+(-a) 2 (L -1 re-ma+ a3,

p2—m2

JANE—
m2

The first term of Eq. (8) does not satisfy the power
counting.

mn=4 [T (2-%

)4 Cayncayt|

Hg = n
(47)2 n—3
(9)
If we subtract
n—4r (2 -2
- (2-3) (10)
(47)2 n—3
from Eq. (9) we obtain as the renormalized integral
—4
rR_ m"
— ~A)IN(=A) +---. 11
8= Gz AN (A (11)



The subtracted term of Eq. (10) is a polynomial
in p2 and can be generated by a finite number of
counterterms.

We identify subtraction terms without explicitly cal-
culating the integral beforehand. We work with a
modified integrand which is obtained from the orig-
inal integrand by subtracting a suitable number of
counterterms.

We consider the series

00 (p2 . m2)l 1 o ! 1
2 <2p2p ’“‘ap) k2[(p — k)2 — m?]

[=0 2

p>=m

(12)

Definition of our renormalization scheme: we sub-
tract from the integrand of Hp those terms of the
series of Eq. (12) which violate the power counting.

In the above example we only need to subtract the
first term.

Since we expand at p? = m?, we denote our renor-
malization as “extended on-mass-shell” (EOMS).



Finite pion mass

We obtain for H, as n — 4,

H=-2X+ 12—|—HR (13)
7T
where
< omvr 1 1 ,
X= s {n_4—§[ln(47r)—|—l_(1)—|—1]}.

The first two terms violate power counting. In
order to apply EOMS scheme to H, we expand the
integrand in p? — m?2 and M2 and subtract power
counting violating terms of this expansion from the
integrand of H. We only need to subtract the first
term, which generates:

d"k 1 1
(2m)"k2 k2 —2p - k

Hgyptr = —1
2—m

= -2+ (14)

1672
Subtracting Eq. (14) from Eq. (13) we obtain HE.



Nucleon self-energy at @(Q*)

At O(Q?), the self-energy receives contact contri-
butions as well as the one-loop contributions

2 =2 contact + 2a + 2p + 2o, (15)

where

> contact = —4M?c1 — 2M*(8eszg + e115 + e116),

2
(@)
394

42

(p? —m?)p
2p?

{6 +m)Iy+ M3+ m)Iy.(—p,0)

[(p? — m? + M) Iy, (—p,0) + Iy — Ir]}.
(16)



S, = —4MZ3cy , (17)
m
M2 2
S, = 3— (2(;1 — 3 — p—20—2> Ir. (18)
FO m< n

The renormalization of the loop diagrams is per-
formed in two steps. First we render the diagrams
finite by applying the modified minimal subtraction
scheme of ChPT (MS). In a second step we then
perform additional finite subtractions.

Up to O(Q%*) contributions in the mass from MS
subtracted diagrams

2
3gcj4 M?
myn=m — 4c M2 m (1 8c1m
N 1M+ -0 5 om (14 8eim)
2 2
394 M3+ 3M4 n M (g . g
— c1 —co — 4cz — ——
327F2 | 3272F2 g (TP 72 ST m
2
3gcj4 M4
1 deim
T 3om2p2, LT Aam]
3
M4< cr — 16e3a — 2e115 — e ) 19
+ (582522 38 115 116 | {19)



In order to perform the second step, given diagram
is written as the sum of a piece which satisfies the
power counting and a remainder which violates the
power counting. The counterterms are fixed so
that the net result of combining the counterterm
diagrams with those parts which violate the power
counting are of the same order as the subtracted
diagram.

We determine the terms to be subtracted from
2 ,+p Dy first expanding the integrands and coeffi-
cients in powers of M2, p—m and p2—m2. We keep
all the terms which violate the power counting.

o 2
subtr __ 394 mM2 — (p? — m?)?
a+tb 32722 4dm
31y M2 3
C19A 2 2
+2 2 G+ m) - (P —m?). (20)

Corresponding counterterms exactly cancel the ex-
pression given by Eq. (20).

Eqg. (20) is subtracted from the MS-subtracted ver-
sion of > ,44. The MS-subtracted version for 2. is
already of order O(Q%).



The correction to the nucleon mass resulting from
the counterterms:

2
394 M?
3272 F?
The physical mass of the nucleon up to order Q4

Am = — (m + 8cym?). (21)

M
my =m 4+ ki M? + ko M3 + ks M*In (—> + kaM*
m

In terms of the EOMS-renormalized parameters,
the coefficients k; are then given by

ki = —4cq,
-
ky = _ 94
327 F2’
3 02
ga
ks = 8cy — ey — dez — 24|
3 3op2p2 | LT R2T e T
30" 3
ga
ka = 1 deim co — 16
4 Bon2 o, L T Aam) + oo c38
—2e115 — 2e116- (22)

Comparing with BL, the k1, k> and k3 terms coin-
cide. The analytic k4 term (~ M?%) is different. The
difference between the two results is compensated
by different values of the renormalized parameters.



IR regularization reformulated

General one loop scalar integral corresponding to
diagrams with one fermion line and an arbitrary
number of pion and fermion propagators:

...... IR yeoo) — 1 ,
N \P1 q1 (27)" by---b ag---am

(23)

where

bj = (k+p;)* —m* 40T,

a; = (k+ ¢;)* — M +i0T,
Following (BL) reduce the integral of Eq. (23) to

(_1)1—l—m
(47)n/2

1d 1d Y 1d 1d X
_ €T - Lo X
/0 1 /0 JI-1 /0 1 /o m—1

(P2z2 — (PQ — B) z+ A(l — 2)—

i+ m—n/2] /01 A7 — )M g,

n/2—l—m

((52 —2p. cj) 2(1—2) — i0+) (24)



The constant term A ~ 0(Q?), ¢ ~ O(Q), P? =
m?2 4+ O(Q) and B =m?2+ 0(Q).

To apply the IR regularization rewrite

1 00 00
/ dz...:/ dz..._/ dz -
0 0 1

The result of the first integration is the IR singular
part and the second is the infrared regular part.

It can be shown that the IR regular part of the
original integral can be obtained by expanding the
integrand in small parameters and interchanging
the summation and the integration over loop mo-
menta.

To practically calculate the IR regular parts it is
convenient to reduce the loop integrals to inte-
grals over (Feynman/Schwinger) parameters, ex-
pand the integrand in Lorentz invariant small ex-
pansion parameters and interchange the integra-
tion and summation.



Applications

1. The characteristic integral of the fermion self-
energy

i d"k
INg = (277)”/ [(p — k)2 — mz} [kz _ MQ}' (25)

Expanding the integrand in M2 and p2 — m?

$ O omaryy (1 >l< 2) x
: Pu YY)
1i=0 [g! 2p2 Oppu OM?

1

((p — k)2 —m2 +i0F) (k2 — M2 + z-o+ﬂp2=mz,Mzzo
(26)

and integrating the several coefficients of the ex-
pansion of Eq. (26) we obtain the coefficients of

the expansion of R of BL:

. m" 4 [2 —n/2] {1 _p2 — m?2
— (4m2(n - 3) 2m?
n—6)(p% —m? ° n — 2
_|_( )(p ) + (n—3)M _|_} (27)

4m*(n — 5) 2m2(n — 5)



2. We have recalculated all integrals of pion-nucleon
scattering of

T. Becher and H. Leutwyler, JHEP 0106, 017
(2001)

3. Our approach reproduces the results of

J. L. Goity, D. Lehmann, G. Prezeau and J. Saez,
Phys. Lett. B 504, 21 (2001)

4. Applying IR renormalization in EFT with explicit
vector mesons in the antisymmetric tensor field
representation and analyzing the diagrams contribut-
ing to the electromagnetic form factors of the nu-
cleon to O(Q*) we observe that in

B. Kubis and U. G. Meissner, Nucl. Phys. A 679,
698 (2001)

all relevant loop integrals have been actually taken
into account.



Two-loop self-energy diagram

A typical integral of the nucleon self-energy

7 / dnkldnkQ
2 aY)

(k$ — M?)(k3 — M?)[(p + k1 + k2)? — m?]
Order of I: Q2"5;

If first M — 0 and then p2 — m? — 0,
12 — F(p27m27 Mzan) + Mn_QG(pzamza MQ,TL)

+ M2 H(p?, m?, M2, n). (28)

F, G, and H can be expanded in nonnegative inte-
ger powers of M2,



The Taylor expansion of F in M? reads

Fro S S 22 - m?) i)+
4,j=0 1=0

(p2 — m2)2n=5 ( M

21+2j o
02 — mz)

> w2 - m) )
=0

(29)
As p2 —m? ~ M ~ @Q, the part proportional to
(p? — m?2)2"—> satisfies the power counting. The
other part contains terms which violate the power
counting. In the IR renormalization, all terms of
this series has to be subtracted. [generated by
diagrams of Fig. X (c)]. In the EOMS scheme we
only need to subtract those terms which violate the
power counting.

The subtraction terms:

SFEOMS = 5o + 610(p” — m?)

+ d20(p? — m?)2 + 501 M2, (30)

SFR = 6FEOMS 4 530(p” — m?)° + 611(p° — m*) M +
(31)



The second term of I»:

M" 2 G~ Z ZZ( 1)323b< )(Z’)x

i,,1=0 a=0 b=0

{Mn—2—|-2z'—|—j-|—b(p2 - )l z(] C)Lb +

n—2, 2 2\n+a—3 M SAEAR
M (p —m ) p2 . m2 X

2-mdl2 ) (32)

T r!
<S ) - sl(r —s)!

The term nonanalytic in p2—m? is of order Q2n—>tqa,
The first part of Eq. (32) contains terms that are
analytic in p? — m? but give rise to contributions
which are nonanalytic in M:

(p

where

~ M2 (myn) [1 - (2 — m2)| B 2)

5 (47T)n/2 4+ ...

(33)




where

m"4r (2 —n/2)
(4m)/2(n —3)

The first term in Eqg. (33) violates the power count-

ing and cannot be directly absorbed by a countert-
erm.

A(m,n) = (34)

To renormalize the diagram of Fig. X (a), diagrams
of Fig. X (b) have to be taken into account. The
corresponding countertems originate in the renor-
malization of the one-loop diagrams of Fig. Y (a)
and (b).

Both diagrams ~ Q" 3. Both need to be renor-
malized.
Up to order @, the subtraction terms read

AMEOMS L AMEPMS L 2ig2A(m, n) (35)

and



AMZ, + BMG; ~

ig?A(m,m) {2 = {0+ 0% + (0 - )2 - 2m21},
(36)

These counterterms give a contribution to the self-
energy, Fig. X (b). The corresponding expressions
read

—iZESMS ~ —A(m, n) I, (37)
and
2 2
—is IR~ —A(m,n) [1 S ] I, (38)
2m
where

Mn—2r(1 — n/2)
(47T)n/2 ’

The contribution of Eqg. (38) exactly cancels the
contributions of Eq. (33) which are explicitly shown,
including the part which violates the power count-
ing. In the EOMS scheme only first term of Eq. (33)
Is subtracted.

In =




The third part of I reads

1

s S (Y S (1)

p =0 J

[2p - (k1 + k)] [M (ky + k2)2)?
(k3 —14i0T)(k5 — 1 4i0t)
It satisfies the power counting.

t/‘ d"k1d" ko

All terms violating the power counting are canceled
in the sum of the diagrams in Fig.X in both the IR
and the EOMS renormalization.

In case where first p?2 — m? — 0 and then M — 0,
the renormalization procedure remains exactly the
same, i.e., the counterterms are the same and the
renormalized diagram satisfies the power counting.



Summary

e Manifestly Lorentz invariant formulation of the
baryon chiral perturbation theory possesses con-
sistent power counting provided that appropri-
ately chosen renormalization scheme is applied.

e T he IR regularization by Becher und Leutwyler
can be re-formulated in a form which can be
easily applied to diagrams with an arbitrary num-
ber of propagators with various masses (e.g.
resonances) and/or diagrams with several fer-
mion lines as well as to multi-loop diagrams.



