Some new developments in relativistic point-coupling models

T. J. Buervenich¹, D. G. Madland¹, J. A. Maruhn², and P.-G. Reinhard³

¹Los Alamos National Laboratory ²University of Frankfurt ³University of Erlangen-Nuernberg

> INT03 workshop on Theories of Nuclear Forces & Nuclear Systems

> > December 3, 2003

Outline

- The relativistic mean-field point-coupling (RMF-PC) approach to nuclear ground states
- Current issues, puzzles, questions, ...
- Extensions of the model

observables

binding energy, radii, surface, single-particle energies, shell structure, ... for the whole nuclear chart further (on top of the mean field): excitations, collective states, ...

naturalness

additional nonlinear terms

Motivation

Successful models with point couplings

Fermi theory NJL model Skyrme-Hartree-Fock Effective Field Theories

$$\frac{1}{m^2 - q^2} \approx \frac{1}{m^2} + \frac{q^2}{m^4} + \dots$$

Predictive power comparable to Waleckatype relativistic mean-field (RMF) models with "meson exchange" low momentum: derivative expansion should work

does work

Features

Hartree and Hartree-Fock Link to relativistic "meson" models Link to nonrelativistic Skyrme-Hartree-Fock point-coupling models Test of power counting in finite nuclei EFT / DFT covariant framework: large scalar and vector potentials: saturation spin-orbit for free!

Philosophy of self-consistent mean-field models for nuclei

(to set the stage)

Construct an Effective Interaction (or an Energy Functional) between point-like nucleons

Introduce approximations and solve the reduced problem numerically

Adjust the coupling constants introduced through the interaction (6 to 10, 2 for pairing): a *force* is born (biased, thus there are many forces)

There is no 'best force': the adjustment procedure determines the predictive power for various observables

Predict nuclear ground-state observables throughout the nuclear chart and extrapolate

The relativistic mean-field (RMF) model

nucleons interact with each other through the exchange of various mesons (scalar, vector, isovector-vector, ...)

```
covariant Lagrangian
```

Hartree approximation (no exchange terms)

mean-field (field operators can be replaced by their expectation values)

historic view

no-sea (vacuum polarization is ignored)

RMF approximates the exact density functional of strongly interacting fermions [Hartree + exchange-correlation functional] - Effective Field Theory modern view

interaction due to mean meson fields or point-like (contact) interactions and derivatives

Building blocks

n principle all possible Lorentz invariants (isoscalar, isovector) should be there

Phenomenology, Symmetries, Approximations:

- large scalar and vector potentials
- density dependence
- derivatives (~ finite range)
- isovector channel
- Coulomb force
- pairing

$$(\bar{\psi}\psi)^2, \; (\bar{\psi}\gamma_\mu\psi)^2$$

$$(\bar\psi\psi)^3,\ (\bar\psi\psi)^4,\ (\bar\psi\gamma_\mu\psi)^4$$

$$(\partial_{\mu}\bar{\psi}\psi)^{2}, \ (\partial_{\mu}\bar{\psi}\gamma_{\nu}\psi)^{2}$$

$$(\bar{\psi}\gamma_{\mu}\vec{\tau}\psi)^{2}, \ (\partial_{\mu}\bar{\psi}\gamma_{\nu}\vec{\tau}\psi)^{2}$$

The RMF-PC Lagrangian

$$\mathcal{L} = \mathcal{L}^{\rm free} + \mathcal{L}^{\rm 4f} + \mathcal{L}^{\rm hot} + \mathcal{L}^{\rm der} + \mathcal{L}^{\rm em}$$

$$\mathcal{L}^{\text{free}} = \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi$$

$$\mathcal{L}^{\text{4f}} = -\frac{1}{2}\alpha_{\text{S}}(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{\text{V}}(\bar{\psi}\gamma_{\mu}\psi)(\bar{\psi}\gamma^{\mu}\psi) - \frac{1}{2}\alpha_{\text{TV}}(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) \cdot (\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)$$

$$\mathcal{L}^{\text{hot}} = -\frac{1}{3}\beta_{\text{S}}(\bar{\psi}\psi)^{3} - \frac{1}{4}\gamma_{\text{S}}(\bar{\psi}\psi)^{4} - \frac{1}{4}\gamma_{\text{V}}[(\bar{\psi}\gamma_{\mu}\psi)(\bar{\psi}\gamma^{\mu}\psi)]^{2}$$

$$\mathcal{L}^{\text{der}} = -\frac{1}{2}\delta_{\text{S}}(\partial_{\nu}\bar{\psi}\psi)(\partial^{\nu}\bar{\psi}\psi) - \frac{1}{2}\delta_{\text{V}}(\partial_{\nu}\bar{\psi}\gamma_{\mu}\psi)(\partial^{\nu}\bar{\psi}\gamma^{\mu}\psi)$$

$$-\frac{1}{2}\delta_{\text{TV}}(\partial_{\nu}\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) \cdot (\partial^{\nu}\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)$$

$$\mathcal{L}^{em} = -eA_{\mu}\bar{\psi}[(1-\tau_{3})/2]\gamma^{\mu}\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

 $+BCS + \delta - force(volume) pairing$

BCS pairing

standard BCS formalism proton-proton / neutron-neutron pairing only

The assumption of a local δ -like interaction leads to a contribution to \mathcal{E} of the form

$$\mathcal{E}_{pair} = \frac{1}{4} \int d^3 r \; G(\vec{r}) \; \chi^2(\vec{r})$$

with the *pairing density*

$$\chi(\vec{r}) = -2\sum_{k>0} u_k v_k |\psi_k(\vec{r})|^2.$$

 δ -force pairing

 $G(\vec{r}) = constant = V_0.$

$$\mathcal{E}_{pair}^{\delta} = \frac{V_0}{4} \int d^3 r \ \chi^2(\vec{r}).$$

The pairing potential

+ cutoff

$$\Delta_q = \frac{V_0}{2} \ \chi_q$$

is mainly located inside the nucleus.

Adjustment of forces

form factor

```
binding energy [all forces]
diffraction radius [NL-Z2, PC-F1, SkI3/4]
surface thickness [NL-Z2, PC-F1, SkI3/4]
rms radius [NL-Z2, NL3, PC-F1, SkI3/4, SkP, SLy6]
neutron radius [NL3]
spin-orbit splitting [Skyrme forces]
isotope shift in lead [SkI3/4]
nuclear matter [NL3]
neutron matter [SLy6]
```

chisquared adjustment to magic and doubly-magic nuclei

Adjusting the parameters of the RMF model

observable	error	$^{16}\mathrm{O}$	$^{40}\mathrm{Ca}$	$^{48}\mathrm{Ca}$	56Ni	58Ni	$^{88}\mathrm{Sr}$	$^{90}\mathrm{Zr}$	$^{100}\mathrm{Sn}$	$^{112}\mathrm{Sn}$	$^{120}\mathrm{Sn}$	$^{124}\mathrm{Sn}$	$^{132}\mathrm{Sn}$	$^{136}\mathrm{Xe}$	$^{144}\mathrm{Sm}$	$^{202}\mathrm{Pb}$	$^{208}\mathrm{Pb}$	$^{214}\mathrm{Pb}$
$E_{\rm B}$	0.2~%	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+
$R_{ m dms}$	0.5~%	+	+	+	—	+	+	+	—	+	+	+	—	—	—	—	+	—
σ	1.5 %	+	+	+	_	—	_	+	_	_	_	_	_	_	_	_	+	_
$r_{ m rms}^{ m ch}$	0.5~%	—	+	+	+	+	+	+	—	+	—	+	—	—	—	+	+	+
$\Delta_{\rm p}$	$0.05 { m MeV}$	-	-	-	-	-	-	-	-	-	-	-	-	+	+	-	-	_
Δ_{n}	$0.05 {\rm ~MeV}$	-	-	-	-	-	-	-	-	+	+	+	-	-	-	-	-	-

adjustment to both binding energy and form factor pairing strengths are adjusted simultaneously with the mean-field parameters

prediction adjusted

surface thickness

rms radius

diffraction radius

binding energy

Current puzzles

- nuclear matter bulk properties differ in RMF and Skyrme-Hartree-Fock (SHF)
- wrong trends in binding energies
- asymmetry energy appears to be too large (~ 38 MeV) compared to empirical values of ~ 32 MeV
- surface thicknesses are too small (~5%)
- compressibility does not seem to be determined by groundstate observables
- axial fission barriers in RMF and SHF differ by up to factor of two for superheavies (trends already visible in actinides)

PC-F1 NL-Z2 SLy6 SkI4

SHE

axial symmetry reflection

asymmetry

TJB, M. Bender, J.A. Maruhn, P.-G. Reinhard, to appear in PRC

Some observations and findings

- both the isovector and the isoscalar channel need further adjustment
- in both channels the density dependence is not optimal
- energies and form factor compete in the adjustment procedure as do light and heavy systems
- isovector channel possibly absorbs mismatch of the isoscalar channel

Bulk properties of nuclear matter

modified fitting protocols

Type of adjustment	$\rho_0 [{\rm fm}^{-3}]$	E/A [MeV]	K [MeV]	m^*/m	$a_4 \; [\mathrm{MeV}]$
$ \begin{aligned} &\{Z Z \leq Ni\} \\ &\{Z Z \leq Zr\} \\ &\{Z Z \leq Sn\} \end{aligned} $	$\begin{array}{c} 0.151 \\ 0.150 \\ 0.151 \end{array}$	$16.25 \\ 16.22 \\ 16.18$	280 281 272	$0.61 \\ 0.61 \\ 0.61$	$36.7 \\ 38.0 \\ 38.2$
$\{Z Z \le Zr \text{ or } Z = Pb\}$	0.151	16.22	277	0.61	38.4
$\{Z Z \ge Sn\}$	0.152	16.24	267	0.61	37.8
no T=1 terms $a_4 != 34 \text{ MeV}$	$0.152 \\ 0.151$	$\begin{array}{c} 15.35\\ 16.12\end{array}$	$246\\268$	$\begin{array}{c} 0.61 \\ 0.61 \end{array}$	17.8 33.2
only E - error 0.2 % only E - error 0.5 MeV σ error 0.025 %	$0.150 \\ 0.150 \\ 0.147$	16.03 16.02 16.28	237 272 238	$0.61 \\ 0.61 \\ 0.62$	33.9 33.6 40.6

Different selections of nuclei

Where to go from here?

 an accurate and well adjusted mean-field is desirable for ground-states and all correlations on top of it (pairing, ground-state correlations, excited states, ...)

drip lines , superheavy nuclei, ...

extend / modify the current models

force for the complete nucleus - force only for energies / for the geometry / ...

guidance for important / physical terms ?

QCD scaling

scale the Lagrangian using two scales:

- $f_{\pi} = 93.5 \text{ MeV}$ pion decay constant
- $\Lambda = 770 \text{ MeV}$ QCD mass scale

$$\mathcal{L} = c_{lmn} \ (\frac{\bar{\psi}\psi}{f_{\pi}^2\Lambda})^l \ (\frac{\vec{\pi}}{f_{\pi}})^m \ (\frac{\partial^{\mu}, m_{\pi}}{\Lambda})^n \ f_{\pi}^2 \ \Lambda^2$$

 $\Delta = l + n - 2 \ge 0.$

- i) c_{lmn} of order unity (*natural*) if of physical significance
- ii) in principle this should involve a complete set of Lorentz invariants $\{1, \gamma_{\mu}, \gamma_5, \gamma_5 \gamma_{\mu}, \sigma_{\mu\nu}\}$ and the same coupled to isospin
- iii) maybe only a subset is needed

with QCD scaling so far successful for the best forces

RMF-PC force PC-FI

C. Const.	Magnitude	Dim.	Order	c_{lmn}
α_S	$-3.836 \cdot 10^{-4}$	MeV^{-2}	Λ^0	-1.64
eta_S	$+7.688 \cdot 10^{-11}$	${ m MeV^{-5}}$	Λ^{-1}	1.44
γ_S	$-2.899 \cdot 10^{-17}$	${ m MeV^{-8}}$	Λ^{-2}	2.69
δ_S	$-4.202 \cdot 10^{-10}$	${\rm MeV^{-4}}$	Λ^{-2}	-1.07
$lpha_V$	$+2.593 \cdot 10^{-4}$	MeV^{-2}	Λ^0	1.11
γ_V	$+3.908 \cdot 10^{-18}$	${ m MeV^{-8}}$	Λ^{-2}	-0.36
δ_V	$+1.173 \cdot 10^{-10}$	${ m MeV^{-4}}$	Λ^{-2}	-0.30
$lpha_{TV}$	$+3.456 \cdot 10^{-5}$	MeV^{-2}	Λ^0	0.59
δ_{TV}	$-5.237 \cdot 10^{-11}$	${\rm MeV^{-4}}$	Λ^{-2}	-0.53

TJB, D. G. Madland, J.A. Maruhn, and P.-G. Reinhard, PRC 65 (2002) 044308

Extended relativistic point-coupling models

 add new terms and adjust them with the standard adjustment protocols but with various algorithms

- complement adjustment protocols by additional observables (single-particle energies, spin-orbit and/or pseudo-spin splittings, energies / radii / neutron radii , ...)
- guidance: power counting (QCD scaling)

• ...

TJB, D. G. Madland, J.A. Maruhn, and P.-G. Reinhard, in preparation

compare also to work by Furnstahl et al., M.A. Huertas, ...

AHEAD

"nearest" minimum is found

Bevington (downhill)

for each new force: downhill plus MC runs with max. of 30 walkers and slow cooling

many walkers (diffusion Monte Carlo)

large region of the parameter space is explored

Simulated annealing (Monte Carlo)

Extending RMF-PC

mixed terms contribute to two potentials simultaneously

$$\mathcal{L} = \rho_S^2 + \rho_V^2 + \rho_S^2 \rho_V^2$$

$$V_{S} = 2\rho_{S} + 2\rho_{V}^{2}\rho_{S} = (2 + 2\rho_{V}^{2})\rho_{S}$$
$$V_{V} = 2\rho_{V} + 2\rho_{S}^{2}\rho_{V} = (2 + 2\rho_{S}^{2})\rho_{V}$$

'density dependent' coupling constants

(isoscalar / isovector) scalar / vector potentials become interdependent

various effects on energies and the form factor (geometry of the nucleus)

Symbolic notation

$$\begin{split} \mathcal{L} &= \mathcal{L}^{\text{free}} + \mathcal{L}^{\text{4f}} + \mathcal{L}^{\text{hot}} + \mathcal{L}^{\text{der}} + \mathcal{L}^{\text{em}}, \\ \mathcal{L}^{\text{free}} &= \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi, \\ \mathcal{L}^{\text{4f}} &= -\frac{1}{2}\alpha_{\text{S}}(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{\text{V}}(\bar{\psi}\gamma_{\mu}\psi)(\bar{\psi}\gamma^{\mu}\psi) \\ &-\frac{1}{2}\alpha_{\text{TS}}(\bar{\psi}\vec{\tau}\psi) \cdot (\bar{\psi}\vec{\tau}\psi) - \frac{1}{2}\alpha_{\text{TV}}(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) \cdot (\bar{\psi}\vec{\tau}\gamma^{\mu}\psi), \\ \mathcal{L}^{\text{hot}} &= -\frac{1}{3}\beta_{\text{S}}(\bar{\psi}\psi)^{3} - \frac{1}{4}\gamma_{\text{S}}(\bar{\psi}\psi)^{4} - \frac{1}{4}\gamma_{\text{V}}[(\bar{\psi}\gamma_{\mu}\psi)(\bar{\psi}\gamma^{\mu}\psi)]^{2}, \\ \mathcal{L}^{\text{der}} &= -\frac{1}{2}\delta_{\text{S}}(\partial_{\nu}\bar{\psi}\psi)(\partial^{\nu}\bar{\psi}\psi) - \frac{1}{2}\delta_{\text{V}}(\partial_{\nu}\bar{\psi}\gamma_{\mu}\psi)(\partial^{\nu}\bar{\psi}\gamma^{\mu}\psi) \\ &-\frac{1}{2}\delta_{\text{TS}}(\partial_{\nu}\bar{\psi}\vec{\tau}\psi) \cdot (\partial^{\nu}\bar{\psi}\vec{\tau}\psi) - \frac{1}{2}\delta_{\text{TV}}(\partial_{\nu}\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) \cdot (\partial^{\nu}\bar{\psi}\vec{\tau}\gamma^{\mu}\psi), \\ \mathcal{L}^{\text{em}} &= -eA_{\mu}\bar{\psi}[(1-\tau_{3})/2]\gamma^{\mu}\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}. \end{split}$$

We can rewrite it using symbolic notation:

$$\mathcal{L} = S^2 + V^2 + S_T^2 + V_T^2 + S^3 + S^4 + V^4$$

+ derivative terms + Coulomb force

inverse Order in

0

2

3

4

 s^2, v^2, v_T^2, \dots s^{3} , sv^{2} , sv_{T}^{2} ,... $s^{4}, v^{4}, s^{2}v^{2}, s^{2}v_{T}^{2}, v^{2}v_{T}^{2}, \dots$ s⁵....

s⁶, v⁶, ...

(yet) no tensor terms, no isovector-scalar terms

$\mathcal{L}(1)$	=	$\mathcal{L} - S^3$
$\mathcal{L}(2)$	=	$\mathcal{L}(1) + S^6 + V^6$
$\mathcal{L}(2^{\circ})$	=	$\mathcal{L} + S^5 + S^6 + V^6$
$\mathcal{L}(3)$	=	$\mathcal{L}(1) - V^4 + S^6$
$\mathcal{L}(3)$	=	$\mathcal{L} - V^4 + S^5 + S^6$
$\mathcal{L}(3``)$	=	$\mathcal{L} - V^4 + S^5$
$\mathcal{L}(4)$	=	$\mathcal{L} + S^5$
$\mathcal{L}(5)$	=	$\mathcal{L} + S^5 + S^6$
$\mathcal{L}(6)$	=	$\mathcal{L}(1) + S^2 V^2$
$\mathcal{L}(6^{\circ})$	=	$\mathcal{L} + S^2 V^2$
$\mathcal{L}(7)$	=	$\mathcal{L}(1) + V^2 V_{\mathrm{T}}^2$
$\mathcal{L}(7^{\circ})$	=	$\mathcal{L} + V^2 V_{\mathrm{T}}^2$
$\mathcal{L}(8)$	=	$\mathcal{L}(1) + S^2 V^2 + V^2 V_{\mathrm{T}}^2$
$\mathcal{L}(8')$	=	$\mathcal{L} + S^2 V^2 + V^2 V_{\mathrm{T}}^2$
$\mathcal{L}(9)$	=	$\mathcal{L}(1) + S^2 V^2 + S^2 V_{\rm T}^2 + V^2 V_{\rm T}^2$
$\mathcal{L}(9)$	=	$\mathcal{L} + S^2 V^2 + S^2 V_{\rm T}^2 + V^2 V_{\rm T}^2$
$\mathcal{L}(10)$	=	$\mathcal{L} + SV^2 + SV_{\mathrm{T}}^2$
$\mathcal{L}(11)$	=	$\mathcal{L} - V^4 + SV^2 + SV_{\rm T}^2$
$\mathcal{L}(12)$	=	$\mathcal{L} - V^4 - S^4 + SV^2 + SV_{\rm T}^2$
$\mathcal{L}(13)$	=	$\mathcal{L}(1) + S^2 V^2 + S^2 V_{\rm T}^2 + V^2 V_{\rm T}^2 + S^6$
$\mathcal{L}(13')$	=	$\mathcal{L} + S^2 V^2 + S^2 V_{\rm T}^2 + V^2 V_{\rm T}^2 + S^5 + S^6$
$\mathcal{L}(14)$	=	$\mathcal{L}(1) + S^2 V^2 + S^2 V_{\rm T}^2 + V^2 V_{\rm T}^2 + S^6 + V^6$
$\mathcal{L}(14')$	=	$\mathcal{L} + S^2 V^2 + S^2 V_{\rm T}^2 + V^2 V_{\rm T}^2 + S^5 + S^6 + V^6$

Extensions

- 3rd and 4th order mixed terms
- mixings include isoscalar/ isovector and scalar/vector terms
- 5th and 6th order scalar and vector (6th only) terms

 no isovector-scalar terms since nuclear ground-state observables only determine the sum of (linear) isovectorvector and isovector-scalar terms

force	# cc (mf)	# w.d.	χ^2_{dof}	χ^2_{pt}	χ^2_{tot}	χ^2_{BE}	χ^2_{ff}	adjustment
PC-F1	9	8	2.75	2.11	99	62	35	MC+B
PC-F1'	9	7	2.28	1.74	82	40	41	ISO
HILL S								
L(4)	10	8	2.34	1.74	82	40	41	B (sP1')
L(5)	11	8	2.4	1.74	82	40	41	B (sP1')
L(6')	10	8	2.71	2.02	95	57	36	B (sP1)
L(6')	10	8	2.26	1.68	79	40	38	B+C (sP1')
L(6')	10	7	2.23	1.66	78	35	42	MC 1
$L(7^{\prime})$	10	10	2.26	1.68	79	42	37	B+C (sP1')
L(7)	10	10	2.54	1.89	89			B (sP1)
L(8')	11	10	2.68	1.94	91			B(sP1)
L(8')	11	8	2.2	1.6	77	35	41	B+C (sP1p
L(9')	12	7	2.42	1.70	80	41	39	B (sP1')
L(9)	12	5	2.97	2.09	99	50	49	MC 1
L(10)	11	10	2.56	1.85	87	51	35	B (sP1)
$L(10^{\circ})$	11	9	2.24	1.62	76	37	37	B (sP1')
L(11)	10	9	5.7	4.3	202	58	139	B (sP1)
L(11)	10	9	2.80	2.09	98	46	46	B(sP1')
L(13)	14	7	2.52	1.6	78	39	39	B(sP1')
L(14')	15	7	2.63	1.68	79	39	40	B(sP1')

excellent for tin! (but never only consider one chain alone ...)

Fitting to energies only

L6': $+ S^{2}V^{2}$ L3': $-V^{4} + S^{5,6}$ L7': $+V^{2}V_{T}^{2}$

improvements so far result from increased compatibility of energy and form factor

Neutron matter

wrong curvature: generic feature of RMF forces

SLy6 has been adjusted to the neutron matter EOS

density dependence of asymmetry energy

neutron star poperties

neutron matter EOS not determined by nuclear ground-state observables

extended models may provide enough freedom to simultaneously describe neutron matter and finite nuclei

some of them: better chisquared at the cost of smaller (and too small) a_4

possible next steps: adjustment to both nuclei and neutron matter calculations / isovectorsensitive observables

- with a few additional parameters enhancements are possible
- (yet) no dramatic improvements have been obtained so far
- form factor vs. binding energies
- neutron matter description may be possible
- isovector properties are still an issue
- new freedom demands more (new / different) observables
- density dependence powers of k_F vs. powers of density ?
- isovector-scalar terms in nuclear ground states (effective mass splittings, ls-, pseudo-spin splittings) ?