Interference Fragmentation Functions: how to extract transversity and much more

Marco Radici

In collaboration with

- A. Bacchetta Univ. Regensburg
- A. Bianconi Univ. Brescia
- S. Boffi Univ. Pavia
- D. Boer V.U. Amsterdam
- R. Jakob Univ. Wuppertal

INT - Seattle Aug. 19th 2003

We need transversity:

• it completes the parton structure of N at leading twist

Distribution Function in quark-N helicity basis (Jaffe)

We like transversity because:

• transverse spin is related to helicity flip, suppressed in pQCD

$$\begin{array}{c} |\perp \ / \ T \rangle \thicksim |+\rangle \ \pm \ |-\rangle \\ d\sigma_{\perp \ / \ T} \propto \langle \perp \ / \ T | \ \dots \ |\perp \ / \ T \rangle \end{array} \right\} \qquad d\sigma_{\perp} - d\sigma_{T} \propto \langle +|\dots|-\rangle + \langle -|\dots|+\rangle$$

chiral-odd nature is a quantum mechanical effect related to soft physics and (possibly) to dynamical breaking of chiral symmetry

cont'ed

• $h_1(x,Q^2) = g_1(x,Q^2)$ in nonrelativistic theory, where $g_1 = 1$!

 $h_1 =$

difference \Rightarrow info on relativistic dynamics of quarks in N

• no $\delta g \Rightarrow$ no mixing with gluons in evolution \Rightarrow non-singlet DF-like evolution of $\delta q = h_1$

• tensor charge has $\gamma \neq 0$

 $\langle PS|\bar{q}^{f}i\sigma^{0i}\gamma_{5}q^{f}|PS\rangle|_{Q^{2}} = 2S^{i}\int dx \left[h_{1}^{f}(x,Q^{2}) - h_{1}^{\overline{f}}(x,Q^{2})\right] = 2S^{i}h_{1}^{f}(Q^{2}) \sim (\log Q^{2})^{-\gamma}$

- tensor charge is C-odd \Rightarrow does not couple to quark-antiquark, gluons, singlet DF \Rightarrow more valence quark-like content of h₁?
- inequalities: $|h_1(x)| \le f_1(x)$ (positivity) ; $|2h_1(x)| \le f_1(x) + g_1(x)$ (Soffer)
- from lattice: $\Sigma_f h_1^f = 0.562 \pm 0.088$ (Aoki et al.)

How to extract transversity (at leading twist) ?

no inclusive DIS

Double Spin Asymmetry

• <u>polarized DY</u> (Ralston-Soper '79): $p^{\uparrow} p^{\uparrow} \rightarrow l^{+} l^{-} X$ $A_{TT} = \frac{\sigma(p^{\uparrow}p^{\uparrow}) - \sigma(p^{\uparrow}p^{\downarrow})}{\sigma(p^{\uparrow}p^{\uparrow}) + \sigma(p^{\uparrow}p^{\downarrow})} = \frac{\sin^{2}\theta_{l}\cos 2\phi_{l}}{1 + \cos^{2}\theta_{l}} \frac{\sum_{f} e_{f}^{2}h_{1}^{f}h_{1}^{\overline{f}}}{\sum_{f} e_{f}^{2}f_{1}^{f}f_{1}^{\overline{f}}}$

but h_1 for antiquarks in p presumably small $\xrightarrow{P_1}$ and A_{TT} small (NLO) by Soffer inequality (Martin, Schaefer, Stratmann, Vogelsang)

• Seminclusive
$$\Lambda$$
 production: $\begin{cases} \mathbf{e} \ \mathbf{p}^{\uparrow} \to \mathbf{e}' \ \Lambda^{\uparrow} \mathbf{X} \\ \mathbf{p} \ \mathbf{p}^{\uparrow} \to \Lambda^{\uparrow} \mathbf{X} \end{cases} \begin{bmatrix} \mathbf{E704} \\ \mathbf{RHIC} \end{bmatrix} \xrightarrow{\mathbf{P}_{h}} \xrightarrow{\mathbf{A} \to \mathbf{P}_{h}} \xrightarrow{\mathbf{A$

 \Rightarrow transfer q[↑] not to h[↑] final hadron (DSA), but to orbital motion of h

 \Rightarrow SSA with intrinsic $\mathsf{P}_{h\perp}$ dependence not integrated \Rightarrow Collins effect

or SSA with higher spin in final state, e.g. ρ (see later)

<u>SMC</u>: SSA in SIDIS on p[↑] A(π^+) = 11% ± 6% A(π^-) = -2% ± 6%

<u>E704</u>: SSA in $pp^{\uparrow} \rightarrow \pi X$

<u>DELPHI</u>: $e^+e^- \rightarrow \pi^+\pi^- X$

asymmetry ~ 6.3% of π^+ emission around the π^- jet axis

$$\begin{split} \frac{d\sigma_{OO}}{dxdydzd\vec{P}_{h\perp}} &= \frac{4\pi\alpha^2 s}{Q^4} \left\{ A(y)\mathcal{F}\left[xf_1(x,\vec{p}_T^2)D_1(z,\vec{k}_T^2)\right] + \ldots \right\} \\ \frac{d\sigma_{OL}}{dxdydzd\vec{P}_{h\perp}} &= \frac{4\pi\alpha^2 s}{Q^4} |\vec{S}_L| \left\{ \dots - 2(2-y)\sqrt{1-y} \sin\phi_h \frac{M}{Q} \times \left[\mathcal{F}\left[\frac{\vec{P}_{h\perp} \cdot \vec{k}_T}{M_h} x(xh_L - \frac{m}{M}g_{1L})H_1^{\perp}\right] \right] \\ &+ \mathcal{F}\left[\frac{\vec{P}_{h\perp} \cdot \vec{p}_T}{M} xh_{1L}^{\perp}\left(\frac{H}{z} + \frac{\vec{k}_T^2}{M_k^2}H_1^{\perp}\right)\right] \right] \right\} \\ \frac{d\sigma_{OT}}{dxdydzd\vec{P}_{h\perp}} &= \frac{4\pi\alpha^2 s}{Q^4} |\vec{S}_T| \left\{ \frac{\sin\phi_h}{M} \left[B(y)\mathcal{F}\left[\frac{\vec{P}_{h\perp} \cdot \vec{k}_T}{M_h} xh_1H_1^{\perp}\right] + A(y)\mathcal{F}\left[\frac{\vec{P}_{h\perp} \cdot \vec{p}_T}{M} xf_{1T}^{\perp}D_1\right] \right] + \ldots \right\} \\ A^{\sin\phi_h} \sim \left[\sum_f e_f^2 \left(-4|\vec{S}_L|\frac{M}{Q}D(y)x^2h_L^f(x)H_1^{\perp f(1)}(z) + |\vec{S}_T|A(y)xf_{1T}^{\perp f}(x)D_1^f(z) \right) \right] \\ &+ |\vec{S}_T|B(y)xh_1^f(x)H_1^{\perp f(1)}(z) + |\vec{S}_T|A(y)xf_{1T}^{\perp f}(x)D_1^f(z) \right) \right] \\ \times \left[\sum_f e_f^2 A(y)xf_1^f(x)D_1^f(z) \right]^{-1} + o(\frac{m}{M}) + o(\text{twist} - 3) \end{split}$$

Collins effect with transversely polarized target : $ep^{\uparrow} \rightarrow e'hX$ (or $pp^{\uparrow} \rightarrow hX$)

$$\langle \sin \phi_C \rangle_{OT}(x, y, z) \equiv \frac{\int d\phi_S d\vec{P}_{h\perp} \sin(\phi_h + \phi_S) (d\sigma(p^{\uparrow}) - d\sigma(p^{\downarrow}))}{\int d\phi_S d\vec{P}_{h\perp} (d\sigma(p^{\uparrow}) + d\sigma(p^{\downarrow}))}$$

$$= \frac{\int d\phi_S d\vec{P}_{h\perp} \sin(\phi_h + \phi_S) d\sigma_{OT}}{\int d\phi_S d\vec{P}_{h\perp} d\sigma_{OO}}$$

with $\phi_C = \phi_h + \phi_S$, does not break the convolution $\mathcal{F}[...]$ (unless assumptions on p_T – and k_T – dependence of DF and FF, typically of gaussian form)

Need SSA like (Boer & Mulders)

$$\langle \frac{|\vec{P}_{h\perp}|}{M_{h}} \sin \phi_{C} \rangle_{OT}(x, y, z) = |\vec{S}_{T}| \frac{B(y)}{A(y)} \frac{\sum_{f} e_{f}^{2} z h_{1}^{f}(x) H_{1}^{\perp f(1)}(z)}{\sum_{f} e_{f}^{2} f_{1}^{f}(x) D_{1}^{f}(z)}$$

- need to store $P_{h\perp}$ bin by bin
- beyond tree level, because of $P_{h\perp}$ dep., soft gluon contributions do not cancel \rightarrow resum them in Sudakov form factors, that largely dilute the SSA for $|P_{h\perp}| \ll Q^2$ (Boer,'02)
- evolution of h_1 and H_1^{\perp} (gluonic poles)? \rightarrow affect evolution of SSA (Boer, Mulders, Pijlman, '03)

Collins function $H_1^{\perp}(z)$: chiral odd and (naïve) T-odd \Leftrightarrow if no (h – X) FSI, then $\langle \sin \phi_{\rm C} \rangle = 0$ also sensitive to gluonic pole \Rightarrow model H₁[⊥] requires modelling FSI of h inside jet (Bacchetta, Kundu, Metz, Mulders, '01 & '02) H_1^{\perp} is the prototype of Interference Fragmentation Functions get it from $e^+e^- \to \pi^+ \; \pi^- \; X$ Ρ $|\mathbf{T}|$ P $\langle \cos 2\phi \rangle \sim \frac{\sum_{f} e_{f}^{2} H_{1}^{\perp f}(z_{1}) \overline{H}_{1}^{\perp f}(z_{2})}{\sum_{f} e_{f}^{2} D_{1}^{f}(z_{1}) \overline{D}_{1}^{f}(z_{2})}$ P_2 seen at DELPHI ; possibly at BELL/É <u>But</u>: • (Sudakov suppression)² beyond tree level (Boer,'01)

asymmetric background from hard gluon radiation and weak decays

Naive T- reversal transformation

system with some spin and momentum

flipping spin and momentum

|i >, |f > initial, final states of the system; T_{if} trans. matrix; T-rev. \rightarrow $|T_{if}|^2 = |T_{-f-i}|^2$

naive T- reversal transformation : T_{-i-f}

$$A = |T_{if}|^2 - |T_{-i-f}|^2$$

$$FSI \Rightarrow |i > \neq |f > ; A = 0 ; T - rev. = naive T - rev.$$

$$FSI \Rightarrow |i > \neq |f > ; T - rev. OK$$

$$but A \neq 0 \propto \Im m [Born \times rescatt.^*]$$

 \Rightarrow SSA with two unpolarized hadrons inside the same jet \rightarrow "?" effect

(again, suggested for the first time by <u>Collins</u>, Heppelmann & Ladinski, '94 ; but no analysis of new fragmentation structure nor quantitative calculations - see also Ji, '94)

asymmetry in

$$\sin \phi \propto P_1 imes P_2 \cdot S_T$$

again, no FSI
$$\rightarrow \langle \; sin \; \varphi \; \rangle$$
 = 0

(Jaffe, Jin, Tang, '98):

 $\sum_{X} |\pi, X\rangle_{out out} \langle \pi, X|$ could wash Collins effect away

FSI from interference of L=0 ($\sigma \rightarrow \pi \pi$) and L=1 ($\rho \rightarrow \pi \pi$) $\sum_{X} |\pi \pi, X\rangle \langle \pi \pi, X| \sim |(\pi \pi)_{L=0}\rangle \langle (\pi \pi)_{L=1}| + |(\pi \pi)_{L=1}\rangle \langle (\pi \pi)_{L=0}| \equiv D_{0M'}^{01} + D_{M0}^{10}$

 $\begin{aligned} \text{collinear ep}^{\uparrow} &\to \text{e'} \left(\pi^{+}\pi^{-}\right) \mathsf{X} \\ A^{\sin\phi} &\propto & |\vec{S}_{T}|h_{1}(x)(F_{-\frac{1}{2}\frac{1}{2}})^{01}_{01} D^{01}_{01} \\ &= & |\vec{S}_{T}|h_{1}(x)\delta\hat{q}_{I}(z) f(\delta^{\pi\pi}_{L}(M^{2}_{h})) \end{aligned}$

collinear factorization ok, but not general !

Fragmentation $q \rightarrow (h_1, h_2) X$ with unpolarized h_1, h_2

(Bianconi, Boffi, Jakob, Radici, '00)

hadronic
$$2MW^{\mu\nu} = \int dp^- dk^+ d\vec{k}_T d\vec{p}_T \,\delta(\vec{p}_T + \vec{q}_T - \vec{k}_T) \operatorname{Tr}\left[\Phi\gamma^{\mu}\Delta\gamma^{\nu}\right] \left| \begin{array}{c} p^+ = xP^+ \\ k^- = P_h^-/z \end{array} \right|_{k^- = P_h^-/z}$$

from hermiticity + parity invariance hermiticity $\Rightarrow C_i = C_i^*$, i=1-8 → \downarrow^{k} Time-reversal \Rightarrow C_i = C^{*}_i , i=1-4 C_i = -C^{*}_i , i=5-8

no FSI \Rightarrow C₅₋₈ = 0 \rightarrow C₅₋₈ generate T-odd functions

ξ+

(Boer, Mulders, Pijlman, '03)

insert all A⁻ and A_T gluons makes the nonlocal q-q correlator color gauge invariant up to twist-3 (1/Q)

At leading twist :

$$\begin{aligned} \Delta(\vec{k}_{T}, P_{h}, R) &= \int dk^{+} \Delta(k, P_{h}, R) \Big|_{k^{-} = P_{h}^{-}/z} \\ &= \left. \oint_{X} \int \frac{d\xi^{+} d\vec{\xi}_{T}}{(2\pi)^{3}} \frac{d^{4} P_{X}}{(2\pi)^{4}} e^{ik \cdot \xi} \left\langle 0 | U_{[\infty, \xi]}^{T} U_{[-\infty, \xi]}^{+} \psi(\xi) | P_{1}, P_{2}, X \right\rangle \\ &\times \left\langle P_{1}, P_{2}, X | \overline{\psi}(0) U_{[0, -\infty]}^{+} U_{[0, \infty]}^{T} | 0 \rangle \right|_{\xi^{-} = 0} \end{aligned}$$

projections are semipositive definite in Dirac space \rightarrow probabilistic interpretation

 D_1 , G_1^{\perp} chiral-even ; H's chiral odd ; D_1 T-even ; the others T-odd

$$k = P_{1}^{-1}/P_{h}^{-1}$$

$$P_{1}^{-2} = M_{1}^{-2}$$

$$P_{2}^{-2} = M_{2}^{-2}$$

$$k = P_{1}^{-1}/P_{h}^{-1}$$

 $\Delta^{(\Gamma)}$ (z, ξ , \mathbf{k}_{T}^{2} , \mathbf{R}_{T}^{2} , $\mathbf{k}_{T} \cdot \mathbf{R}_{T}$)

each I.F.F. can be decomposed as :

$$\begin{aligned} \mathsf{FF}(z,\xi,\vec{k}_{T}^{2},\vec{k}_{T}^{2},\vec{k}_{T}\cdot\vec{R}_{T}) &= \mathsf{FF}^{e}(z,\xi,\vec{k}_{T}^{2},\vec{k}_{T}^{2},(\vec{k}_{T}\cdot\vec{R}_{T})^{2}) \\ &+ \frac{\vec{k}_{T}\cdot\vec{R}_{T}}{M_{h}^{2}} \mathsf{FF}^{o}(z,\xi,\vec{k}_{T}^{2},\vec{R}_{T}^{2},(\vec{k}_{T}\cdot\vec{R}_{T})^{2}) \end{aligned}$$

$$\int d\vec{k}_T \dots \frac{\epsilon_T^{ij} R_T^j}{M_h} H_1^{\swarrow'} + \frac{\epsilon_T^{ij} k_T^j}{M_h} H_1^{\perp} \dots$$
$$= \frac{\epsilon_T^{ij} R_T^j}{M_h} \left[H_1^{\triangleleft e} + H_1^{\perp o} \right]$$
$$\equiv \frac{\epsilon_T^{ij} R_T^j}{M_h} H_1^{\checkmark}$$

$$e p^{\uparrow} \rightarrow e' (h_{1} h_{2}) X$$
(Radici, Jakob, Bianconi, '02)
$$Iab plane$$

$$\frac{d\sigma}{dxdydzd\xi dM_{h}^{2}d\phi_{S}d\phi_{R}}$$

$$= \Phi_{p'p}(x,\vec{S}) \left(\frac{d\sigma^{eq}}{dy}\right)_{pp'}^{q\,q'} \Delta_{q'q}(z,\xi,M_{h}^{2},\phi_{R})$$

$$= \frac{2\alpha^{2}}{Q^{2}y} \left\{ A(y) f_{1}(x) D_{1}(z,\xi,M_{h}^{2}) + \lambda_{e}\lambda C(y) g_{1}(x) D_{1}(z,\xi,M_{h}^{2}) + B(y) \frac{|\vec{S}_{T}||\vec{R}_{T}|}{M_{h}} \sin(\phi_{S} + \phi_{R}) h_{1}(x) H_{1}^{\mathfrak{I}}(z,\xi,M_{h}^{2}) \right\}$$

$$A_{OT}^{\sin\phi} = \frac{\int d\phi_{S}d\phi_{R}d\xi \sin(\phi_{S} + \phi_{R}) [d\sigma(p^{\uparrow}) - d\sigma(p^{\downarrow})]}{\int d\phi_{S}d\phi_{R}d\xi [d\sigma(p^{\uparrow}) + d\sigma(p^{\downarrow})]}$$

$$= |\vec{S}_{T}| \frac{B(y)}{A(y)} \frac{\sum_{f} e_{f}^{2} h_{1}^{f}(x) (d\xi d\phi_{R} \frac{|\vec{R}_{T}|}{2M_{h}} H_{1}^{\mathfrak{I}}(z,\xi,M_{h}^{2}) - \alpha Sudakov form factor and Sudakov form fa$$

 $ep^{\rightarrow} \rightarrow e'(\pi \pi) X$ (HERMES) (Bacchetta & Radici, in preparation) $d\sigma = d\sigma_{OO} + S_1 d\sigma_{OI} ([twist-2=0] + twist-3) + S_T d\sigma_{OT} (twist-2)$ <u>1/Q contributions :</u> no contamination with • twist-3 projections $\Phi^{(\Gamma)}$, $\Delta^{(\Gamma)}$ **Sivers-like effects** • kinematic corrections (\sim 1/Q) from "T-frame" boost to " \perp – frame" $(\mathbf{q}_{\mathrm{T}}=-\mathbf{P}_{\mathrm{h}\perp}/\mathrm{z})$ $P_{1}=q_{1}=0$ $P_{T} = P_{hT} = 0$ • "leading-twist" quark-gluon-quark correlators $\Phi_{A}{}^{i}$ $\Phi_A^i = -\Phi_A^i + \Phi_D^i$ $\Delta_{A}{}^{i} = -\Delta_{\delta}{}^{i} + \Delta_{D}{}^{i}$ $A^{\sin \phi_R} \sim \left[B(y) | \vec{S}_T | \frac{|\vec{R}_T \perp|}{M_h} \sum_f e_f^2 h_1^f H_1^{\triangleleft f} \right]$ $+V(y)|\vec{S}_L|\frac{|\vec{R}_T\perp|}{Q}\left[\frac{M}{M_h}xh_L^fH_1^{\triangleleft,l}+g_1^f\frac{\tilde{G}^{\triangleleft,f}}{z}\right] \times \left|A(y)\sum_f e_f^2f_1^fD_1^f\right|^{-1}$

$$\begin{split} \underline{\text{twist-3 projections}} &: \quad \Delta^{(\Gamma)} = \frac{1}{4z} \int dk^+ \operatorname{Tr} \left[\Gamma \Delta(k, P_h, R) \right] \Big|_{k^- = P_h^-/z} \\ \Gamma = 1 \to \mathsf{E} \quad \mathbf{chiral-odd T-even} \\ \Gamma = \gamma^{\mathbf{i}} \gamma_5 \to \frac{\gamma_5 \frac{\epsilon_T^{ij} \gamma^{i} R_T^{j}}{M_h} G^{\triangleleft'}}{\gamma_5 \frac{\epsilon_T^{ij} \gamma^{i} k_T^{j}}{M_h} G^{\triangleleft'}} \quad \Gamma = \gamma^{\mathbf{i}} \to \frac{\epsilon_T^{ij} R_T^{j}}{M_h} D^{\triangleleft'}}{\Gamma = \mathbf{i} \gamma_5 \to 0} \\ \Gamma = \sigma^{\mathbf{i}} \to \mathbf{H} \quad \mathbf{chiral-odd T-odd} \quad \Gamma = \sigma^{\mathbf{i}} \to H^{\triangleleft} \quad \mathbf{chiral-odd T-odd} \\ \Gamma = \sigma^{\mathbf{i}} \to \mathbf{H} \quad \mathbf{chiral-odd T-odd} \quad \Gamma = \sigma^{\mathbf{i}} \to H^{\triangleleft} \quad \mathbf{chiral-odd T-odd} \\ \int d\vec{k}_T \Delta^{[\Gamma]} = \Delta(z,\xi,M_h^2,\phi_R) = \frac{M_h \sqrt{2}}{4zQ} \left\{ E + \frac{R_T}{M_h} D^{\triangleleft} + \sigma^{+-} H + \gamma_5 \frac{\epsilon_T^{ij} \gamma^{i} R_T^{j}}{M_h} G^{\triangleleft} \right\} \\ \mathbf{q} uark-gluon-quark \ \mathbf{correlators}: \end{split}$$

$$\Delta_A^i(z,\xi,M_h^2,\phi_R) = \frac{M_h}{2zQ} \left\{ \frac{R_T^i}{M_h} \tilde{D}^{\triangleleft} + \frac{\epsilon_T^{ij} R_T^j}{M_h} \gamma_5 \tilde{G}^{\triangleleft} - \frac{\gamma^i}{2} \left(\tilde{E} - i\tilde{H} \right) - iz \frac{R_T^i \not{R}}{M_h^2} H_1^{\triangleleft o(1)} \right\} \frac{\gamma^+}{2}$$

with

$$\tilde{D}^{\triangleleft} = D^{\triangleleft} - zD_1^{o(1)} \qquad \tilde{E} = E - z\frac{m}{M_h}D_1 \tilde{G}^{\triangleleft} = G^{\triangleleft} - zG_1^{\perp(1)} - z\frac{m}{M_h}H_1^{\triangleleft} \qquad \tilde{H} = H + 2zH_1^{\perp(1)}$$

LO evolution of $H_1^{(z)}(z, M_h^2)$ similar to $h_1(x)$ (Boer, '01)?

Situation complicated by presence of two hadrons in final state and by effect of gluonic pole (U^+/U^- links needed in SIDIS / e^+e^-)

No factorization proof available for I.F.F. (is it possible beyond $1/Q^2$ jet \leftrightarrow jet ?) still check "universality" of I.F.F. from $e^+e^- \rightarrow (\pi\pi) (\pi\pi)X$?

- collinear factorization \rightarrow no (Sudakov suppression)² as in Collins effect
- possibility at BELLE ; no asymmetric background from hard g expected

$$e^{+}e^{-} \rightarrow (\pi^{+}\pi^{-})_{jet 1} (\pi^{+}\pi^{-})_{jet 2} X$$
(Boer, Jakob, Radici, '03)
$$h_{1} \qquad h_{2} \qquad h_{3} \qquad h_{4} \qquad h_{6} \qquad h_{7} \qquad h_{7}$$

But also (at leading twist)...

$$\frac{d\sigma}{dzd\xi dM_h^2 d\phi_R d\overline{z} d\overline{\xi} d\overline{M}_h^2 d\overline{\phi}_R d\overline{q}_T dy d\phi_l} = \frac{6\alpha^2}{Q^2} z^2 \overline{z}^2 \left\{ \dots + A(y) |\vec{R}_T| |\vec{R}_T| \right.$$

$$\times \left[\sin(\phi_1 - \phi_R + \phi_l) \cos(\phi_1 - \overline{\phi}_R + \phi_l) \mathcal{F} \left[\hat{h} \cdot \vec{k}_T \hat{h} \cdot \vec{k}_T \frac{G_1^{\perp} \overline{G}_1^{\perp}}{M_h^2 \overline{M}_h^2} \right] \right.$$

$$+ \sin \qquad \cos \qquad \mathcal{F} \left[\hat{h} \quad \hat{g} \qquad \right] \\ + \cos \qquad \sin \qquad \mathcal{F} \left[\hat{g} \quad \hat{h} \qquad \right] \\ + \cos \qquad \cos \qquad \mathcal{F} \left[\hat{g} \quad \hat{g} \qquad \right] \right] \right\}$$

longitudinal jet handedness azimuthal asymmetry

$$\widehat{h}\equiv\widehat{\overline{P}}_{h\perp}$$
 ; $\widehat{g}^{i}=\epsilon_{T}^{ij}\widehat{h}^{j}$

$$A_{G}(y,z,M_{h}^{2},\overline{z},\overline{M}_{h}^{2}) = \frac{\langle \cos 2(\phi_{R}-\overline{\phi}_{R})\rangle}{\langle 1\rangle} = \frac{1}{4M_{h}^{2}\overline{M}_{h}^{2}} \frac{\sum_{f} e_{f}^{2} G_{1}^{\perp f} \overline{G}_{1}^{\perp f}}{\sum_{f} e_{f}^{2} D_{1}^{f} \overline{D}_{1}^{f}}$$

where
$$G_{1}^{\perp}(z, M_h^2) = \int d\xi d\phi_R d\vec{k}_T \, \vec{k}_T \cdot \vec{R}_T \, G_1^{\perp}(z, \xi, \vec{k}_T^2, \vec{R}_T^2, \vec{k}_T \cdot \vec{R}_T)$$

N.B.: unique case with chiral-even IFF and long. polarized fragmenting q In fact $\int d\xi d\phi_R d\vec{k}_T G_1^{\perp}(z,\xi,\vec{k}_T^2,\vec{R}_T^2,\vec{k}_T\cdot\vec{R}_T) = 0$ by parity invariance !

 $IFF(z,\xi(\cos\theta),M_{h}^{2}) = \sum_{n} IFF_{n}(z,M_{h}^{2}) P_{n}(\cos\theta)$

	n	P _n	polarization	i(k)	partial wave
FF _{ik}	0	1	no	0	S
P ₁	1	cos θ	longitudinal	L	р
θ	1	sin θ	transverse	Т	р
Ŷ_h	2	$\frac{1}{2}(3\cos^2\theta - 1)$	tensor	(i=k=) L	(l=l'=) p

 P_2

$$\Delta_{\mathbf{q}'\mathbf{q}} = \frac{1}{2} \begin{pmatrix} D_{1,OO}(z, M_h^2) + D_{1,OL}(z, M_h^2) \cos \theta + & ie^{i\phi_R} \frac{|\vec{R}_T|}{M_h} \sin \theta \\ D_{1,LL}(z, M_h^2) & \frac{1}{4}(3\cos^2\theta - 1) & \times \left(H_{1,OT}^{\triangleleft}(z, M_h^2) + H_{1,LT}^{\triangleleft}(z, M_h^2) \cos \theta\right) \\ \hline -ie^{-i\phi_R} \frac{|\vec{R}_T|}{M_h} \sin \theta \\ \times \left(H_{1,OT}^{\triangleleft}(z, M_h^2) + H_{1,LT}^{\triangleleft}(z, M_h^2) \cos \theta\right) & D_{1,OO}(z, M_h^2) + D_{1,OL}(z, M_h^2) \cos \theta + \\ D_{1,LL}(z, M_h^2) & \frac{1}{4}(3\cos^2\theta - 1) \end{pmatrix} \end{pmatrix}$$

$$\begin{split} \Delta_{q'\,q}(z,\boldsymbol{\xi}(\cos\theta),M_{h}^{2}) &= \sum_{n} \Delta_{q'\,q,n}(z,M_{h}^{2}) P_{n}(\cos\theta) \\ &= (\Delta_{q'\,q})_{M'M}^{L'L} 4\pi Y_{LM}Y_{L'M'}^{*} \equiv (\Delta_{q'\,q})_{M'M}^{L'L}(z,M_{h}^{2}) D_{MM'}^{LL'}(\theta,\phi_{R}) \\ (\Delta_{q'\,q})_{M'M}^{L'L} &= \frac{1}{8} \begin{pmatrix} \left(\Delta_{++}\right)_{M'M}^{L'L} & \left(\Delta_{+-}\right)_{M'M}^{L'L} \\ \left[\left(\Delta_{+-}\right)_{M'M}^{L'L}\right]^{*} & \left(\Delta_{++}\right)_{M'M}^{L'L} \\ \left[\left(\Delta_{+-}\right)_{M'M}^{L'L}\right]^{*} & \left(\Delta_{++}\right)_{M'M}^{L'L} \\ 0 & \frac{p_{1_{OO}}}{2\sqrt{3}} \frac{p_{1_{OL}}}{p_{1_{OI}}} & 0 \\ \frac{p_{1_{OO}}}{\sqrt{3}} \frac{p_{1_{OL}}}{p_{1_{OO}}} \frac{p_{1_{OO}}}{\sqrt{3}} \frac{p_{1_{IL}}}{p_{1_{OI}}} \\ \frac{p_{1_{OO}}}{\sqrt{3}} \frac{p_{1_{OL}}}{p_{1_{OO}}} \frac{p_{1_{OO}}}{p_{1_{OO}}^{2} + \frac{2}{3} D_{1_{IL}}} 0 \\ \frac{p_{1_{OO}}}{\sqrt{3}} \frac{p_{1_{OL}}}{p_{1_{OO}}} \frac{p_{1_{OO}}}{p_{1_{OO}}^{2} + \frac{2}{3} D_{1_{IL}}} \\ \frac{p_{1_{OO}}}{p_{1_{OO}}} \frac{p_{1_{OO}}}{p_{1_{OO}}^{2} + \frac{2}{3} D_{1_{IL}}} 0 \\ \frac{p_{1_{OO}$$

Two different I.F.F. isolate transversity

 \Rightarrow LO evolution similar to $h_1(x)$?

 \Rightarrow similar content of Collins function H₁[⊥](z) ?

Model realization of I.F.F.: spectator model (Jakob, Mulders, Rodrigues, '97) Spectator model (Radici, Jakob, Bianconi, '02)

"Feynman" rules asymptotic $\sim (1-z)^{2\alpha-1} = (1-z)^{-3+2q+2|\Delta\lambda|}$ (Joffe, Khoze, Lipatov) cut off large virtualities $\rightarrow \Lambda$ fragmenting quark $k^2 = \frac{z}{1-z}k_T^2 + \frac{1}{1-z}m_q^2 + \frac{1}{z}M_h^2 \neq m_q^2$ units from $\left[\int d^2 \vec{k}_{\perp} d^2 \vec{R}_{\perp} D_1(z,\xi,k_{\perp}^2,\vec{k}_{\perp}\cdot\vec{R}_{\perp})\right] = \#$ off-shell spectator $\Upsilon^{q\pi q} = N_{q\pi} \frac{1}{|\kappa^2 - \Lambda_{\pi}^2|^{\frac{3}{2}}} \gamma_5 \quad ; \ \kappa = k, \ k - P_{\pi} ;$ $\Lambda_{\pi} = 0.4 \text{ GeV} \qquad \sim \frac{1}{3} g_{\pi N N}$ π T (Jakob, Mulders, Rodrigues) $\bigcap_{\rho} \left(\Upsilon^{\rho \pi \pi} \right)^{\nu} = f_{\rho \pi \pi} R_{h}^{\nu}$ (Joffe, Khoze, Lipatov) $(S_ ho)^{\mu u} = rac{1}{P_h^2 - m_ ho^2 + \mathrm{i} m_ ho \Gamma_ ho} \left(-g^{\mu u} + rac{P_h^\mu P_h^ u}{P_h^2} ight) ~;~ \Gamma_ ho = rac{f_{ ho\pi\pi}^2 m_ ho}{4\pi} rac{m_ ho}{12} \left(1 - rac{4m_\pi^2}{m_ ho^2} ight)^{rac{1}{2}}$ resonance $\frac{f_{\rho\pi\pi}^2}{4\pi} = 2.84 \pm 0.50$ p

Input parameters from : phenomenology $(m_{\pi}, m_{\rho}, \Gamma_{\rho} ...)$ spectator model $(\Lambda_{\pi}, \Lambda_{\rho}, m_{q})$

 $q\pi q$ vertex strength $N_{q\pi}$ from "Goldberger-Treiman" (Glozman et al., '98)

$$\begin{split} \frac{g_{\pi qq}^2}{4\pi} &= \left(\frac{g_q^A}{g_N^A}\right)^2 \left(\frac{m_q}{m_N}\right)^2 \frac{g_{\pi NN}^2}{4\pi} = \left(\frac{3}{5}\right)^2 \left(\frac{340}{939}\right)^2 14.2 = 0.67 \\ \frac{(g_{\rho qq}^V + g_{\rho qq}^T)^2}{4\pi} &= \left(\frac{g_q^A}{g_N^A}\right)^2 \left(\frac{m_q}{m_N}\right)^2 \frac{g_{\rho NN}^{V2}}{4\pi} \left(1 + \frac{g_{\rho NN}^T}{g_{\rho NN}^V}\right)^2 = \left(\frac{3}{5}\right)^2 \left(\frac{340}{939}\right)^2 0.55(1 + 6.105)^2 = 1.31 \\ \Rightarrow N_{q\pi} = 0.715 \ N_{q\rho} & \text{Hp. 1:} \sim 0.15 \\ \text{Then qpq vertex strength } N_{q\rho} \ \text{from } \int dz \ z \ D_1(z) \leqslant 1 & \text{Hp. 2:} \sim 0.5 \\ (m_\rho - \Gamma_\rho \leqslant M_h \leqslant m_\rho + \Gamma_\rho) \\ Im(\rho \text{ propagator}) \sim m_\rho \ \Gamma_\rho \ \rightarrow \text{T-odd I.F.F.} & Re(\) \sim (M_h^2 - m_\rho^2) \rightarrow D_1 \\ \text{Spectator model at LO:} & \cdot H_1^\perp = 0 & \cdot \text{flavor symmetry} \\ \hline D_1^{U \rightarrow \pi^+ \pi^-} (..\xi \dots \mathbf{k}_T \cdot \mathbf{R}_T) = D_1^{d \rightarrow \pi^- \pi^+} (..\xi \dots \mathbf{k}_T \cdot \mathbf{R}_T) = D_1^{d \rightarrow \pi^+ \pi^-} (..(1 - \xi) \dots \mathbf{k}_T \cdot (-\mathbf{R}_T)) \\ \text{But then } \int d\xi \ d\phi_R \ d\mathbf{k}_T & \text{``````} \rightarrow D_1^{U \rightarrow \pi^+ \pi^-} (z, M_h^2) = D_1^{d \rightarrow \pi^+ \pi^-} (z, M_h^2) \end{split}$$

 $ep^{\uparrow} \rightarrow e' (\pi^+ \pi^-) X$ at leading twist with m_{ρ} - $\Gamma_{\rho} \leqslant M_h \leqslant m_{\rho}$ + Γ_{ρ}

Conclusions

extraction of transversity:

- DSA seem less favourable at present; SSA more promising
- when SSA beyond tree level, Collins effect very involved \rightarrow better study azimuthal asymmetry of two unpolarized hadrons in the same current fragmentation region \rightarrow I.F.F. (possible at HERMES, RHIC, COMPASS..)
- present data use longitudinally polarized targets \rightarrow require twist-3 calculations \rightarrow complicated extraction of h₁; wait for data on transversely polarized targets (test model calculations of I.F.F.)

I.F.F. :

- some theoretical issues still to be solved (factorization ...)
- get info from e⁺e⁻ (BELLE)
- interesting connection with jet handedness
- azimuthal asymmetries relating G_1^{\perp} to g_1 and g_{1T} (explore CP violations from QCD vacuum, violation of Burkhardt-Cottingham sum rule)

Fragmentation functions Database (Jakob,Radici) http://www.pv.infn.it/~radici/FFdatabase (linked from CTEQ and Durham web pages)