Institute for Nuclear Theory

Generalized Parton Distributions & Hard Exclusive Processes 2003

Color Gauge Invariance and Universality

F. Pijlman Vrije Universiteit Amsterdam

Universality of T-odd effects in single spin and azimuthal asymmetries D. Boer, P.J. Mulders and FP, hep-ph/0303034

Contents

- •Semi-inclusive deep inelastic scattering
- •Distribution and fragmentation functions
- •Lorentz invariance relations
- •Color gauge invariance
- •Universality
- •T-odd effects
- •Lorentz invariance relations revisited
- •Process dependency for fragmentation
- •Remarks

Semi Inclusive Deep Inelastic Scattering

Ellis, Furmanski, and Petronzio (1982): Diagrammatic Approach •partons are approximately on their mass shell

•partons are moving approximately collinear with the proton

Semi Inclusive Deep Inelastic Scattering

$2M\mathcal{W}_{\mu\nu}(q;P,S;P_h,S_h) = \int d^4p \ d^4k \ \delta^4(p+q-k) \operatorname{Tr}\left[\Phi(p)\gamma_{\mu}\Delta(k)\gamma_{\nu}\right]$ $\Phi_{ij}(p;P,S) = \int \frac{d^4\xi}{(2\pi)^4} \ e^{i p \cdot \xi} \langle P,S | \overline{\psi}_j(0)\psi_i(\xi) | P,S \rangle$ $\Delta_{ij}(k;P_h,S_h) = \sum_X \int \frac{d^4\xi}{(2\pi)^4} \ e^{i k \cdot \xi} \ \langle 0 | \psi_i(\xi) | P_h,X > < P_h,X | \overline{\psi}_j(0) | 0 \rangle$

4/23

Semi Inclusive Deep Inelastic Scattering

<u>Sudakov decomposition</u> (introduction of light-like vectors)

$$P = \frac{x_{\rm B}M^2}{Q\sqrt{2}}n_{-} + \frac{Q}{x_{\rm B}\sqrt{2}}n_{+}$$

$$P_h = \frac{z_hQ}{\sqrt{2}}n_{-} + \frac{M_h^2}{z_hQ\sqrt{2}}n_{+}$$

$$q = \frac{Q}{\sqrt{2}}n_{-} - \frac{Q}{\sqrt{2}}n_{+} + q_T$$

$$1 = n_{-} \cdot n_{+}$$

$$0 = n_{-} \cdot n_{-} = n_{+} \cdot n_{+}$$

$$\cdot q_T^2 \sim M^2$$

Up to $\left(\frac{M}{Q}\right)^2$ corrections:

$$\begin{split} \delta^4(p+q-k) &\approx \delta^2(p_T+q_T-k_T) \,\,\delta(p^++q^+) \,\,\delta(q^--k^-) \\ &\int \mathrm{d}^4 p \,\,\mathrm{d}^4 k \,\,\delta^4(p+q-k) \,\mathrm{Tr}\big[\Phi(p)\gamma_\mu \Delta(k)\gamma_\nu\big] \\ &\approx \int \mathrm{d}^2 p_T \mathrm{d}^2 k_T \delta^2(p_T+q_T-k_T) \,\mathrm{Tr}\big[\int \mathrm{d} p^- \Phi(p)\gamma_\mu \int \mathrm{d} k^+ \Delta(k)\gamma_\nu\big] \bigg| \begin{array}{c} p^+ = -q^+ \\ k^- = q^- \end{array} \\ &\mathbf{d.f.} \qquad \mathbf{f.f.} \end{split}$$

- •Distribution and fragmentation functions describe the soft physics
- •Distribution functions such as appearing in the tree level diagram of SIDIS are constrained by hermiticity, parity and time reversal. For fragmentation only hermicity and parity lead to constraints.
- •It turns out that there are more functions than degrees of freedom (amplitudes). Relations between the functions are described by *Lorentz Invariance Relations*.

$$\begin{split} \Phi_{ij}(p;P,S) &= \int \frac{\mathrm{d}^{4}\xi}{(2\pi)^{4}} \ e^{ip\cdot\xi} \langle P,S | \overline{\psi}_{j}(0)\psi_{i}(\xi) | P,S \rangle \\ \Phi^{\dagger}(p,P,S) &= \gamma^{0}\Phi(p,P,S)\gamma^{0} \ [\text{Hermiticity}] \\ \Phi(p,P,S) &= \gamma^{0}\Phi(\bar{p},\bar{P},-\bar{S})\gamma^{0}[\text{Parity}] \end{split} \ \textbf{constraints} \\ \Phi(p,P,S) &= M \ A_{1} + A_{2} \ P + A_{3} \ \not{p} + i \ A_{1} \sum_{M=M}^{N} \frac{p \cdot S}{M} + i \ A_{5} \sum_{M=N}^{N} S \rangle \gamma_{5} + M A_{6} S \gamma_{5} \\ &+ A_{7} \ \frac{p \cdot S}{M} P \gamma_{5} + A_{8} \ \frac{p \cdot S}{M} k \gamma_{5} + A_{9} \ \frac{[P,\beta]}{2} \gamma_{5} + A_{10} \ \frac{[\not{p},\beta]}{2} \gamma_{5} \\ &+ A_{11} \frac{p \cdot S}{M} \frac{[P,\not{p}]}{2M} \gamma_{5} + A_{11} \sum_{M=M}^{M} \gamma_{5} +$$

 $\Phi^*(p, P, S) = (i\gamma_5 C)\Phi(\bar{p}, \bar{P}, \bar{S})(i\gamma_5 C)$ [Time reversal]

Fragmentation functions: no constraints from time reversal

$$\begin{aligned} \Delta(k, P_h, S) &= M_h B_1 + B_2 P_h + B_3 \not{k} + i B_4 \frac{[P_h, \not{k}]}{2M_h} + i B_5 (k \cdot S_h) \gamma_5 + M_h B_6 \not{S}_h \gamma_5 \\ &+ B_7 \frac{k \cdot S_h}{M_h} P_h \gamma_5 + B_8 \frac{k \cdot S_h}{M_h} \not{k} \gamma_5 + B_9 \frac{[P_h, \not{S}_h]}{2} \gamma_5 + B_{10} \frac{[\not{k}, \not{S}_h]}{2} \gamma_5 \\ &+ B_{11} \frac{k \cdot S_h}{M_h} \frac{[P_h, \not{k}]}{2M_h} \gamma_5 + B_{12} \frac{\epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} P_h^{\nu} k^{\rho} S_h^{\sigma}}{M_h} \end{aligned}$$

Jaffe, Ji NP, B 375 (1992) 527 Jaffe, Ji, PRL 71 (1993) 2547

$$\begin{split} \int \mathrm{d}p^{-}\Phi(p,P,S) &= \Phi(x,p_{T}) = \frac{1}{2} \Biggl\{ f_{1}(x,p_{T}^{2}) \not h_{+} + g_{1s}(x,p_{T}) \gamma_{5} \not h_{+} \\ &+ h_{1T}(x,p_{T}^{2}) \frac{\gamma_{5} \left[\not \beta_{T}, \not h_{+} \right]}{2} + h_{1s}^{\perp}(x,p_{T}) \frac{\gamma_{5} \left[\not p_{T}, \not h_{+} \right]}{2M} \\ &+ h_{1T}(x,p_{T}^{2}) \frac{\epsilon_{\mu\nu\rho\sigma}\gamma^{\mu}n_{+}^{\nu}p_{T}^{\rho}S_{T}^{\sigma}}{M} + h(\mathbf{t},\mathbf{p}_{T}^{2}) \frac{i\left[\not p_{T}, \not h_{+} \right]}{2M} \Biggr\} \\ &+ \frac{M}{2P^{+}} \Biggl\{ e(x,p_{T}^{2}) + f^{\perp}(x,p_{T}^{2}) \frac{\not p_{T}}{M} + g_{T}'(x,p_{T}^{2}) \gamma_{5} \not \beta_{T} \\ &+ g_{s}^{\perp}(x,p_{T}) \frac{\gamma_{5} \not p_{T}}{M} + h_{T}^{\perp}(x,p_{T}^{2}) \frac{\gamma_{5} \left[\not \beta_{T}, \not p_{T} \right]}{2M} + h_{s}(x,p_{T}) \frac{\gamma_{5} \left[\not h_{+}, \not h_{-} \right]}{2} \\ &- f_{T}(x,y_{T}2) e_{T}^{\rho\sigma} \gamma_{\rho} S_{T\sigma} - S_{L} f(x) p_{T}^{2}) \frac{e_{T}^{\rho\sigma} \gamma_{\rho} p_{T\sigma}}{M} \\ &- e_{I}(x,y_{T}) i \gamma_{5} + h(x,p_{T}^{2}) \frac{i\left[\not h_{+}, \not h_{-} \right]}{2} \Biggr\} \end{split}$$

14 functions coming from 9 amplitudes?
→ Lorentz Invariance Relations

Lorentz Invariance Relations:

$$\sigma = 2p \cdot P$$

$$\tau = p^{2}$$

$$\chi(x, k_{T}) = -x^{2}M^{2} + k_{T}^{2} + x\sigma$$

$$h_{1T}^{\perp(1)}(x) = \int d^{2}k_{T} \frac{k_{T}^{2}}{2M^{2}} \int d\sigma d\tau \ \delta(\tau - \chi(x, k_{T})) A_{11}(\sigma, \tau)$$

$$h_{T}(x) = \int d^{2}k_{T} \int d\sigma d\tau \ \delta(\tau - \chi(x, k_{T})) \left[-\frac{\sigma - 2xM^{2}}{2M^{2}} \right] A_{11}(\sigma, \tau)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}h_{1T}^{\perp(1)}(x) = \int \mathrm{d}^2k_T \frac{k_T^2}{2M^2} \int \mathrm{d}\sigma \frac{\partial A_{11}(\sigma,\chi)}{\partial\chi} \frac{\mathrm{d}\chi}{\mathrm{d}x}$$

$$= -\int \mathrm{d}^2k_T \frac{k_T^2}{2M^2} \int \mathrm{d}\sigma \frac{\partial A_{11}(\sigma,\chi)}{\partial k_T^2} \left[\sigma - 2xM^2\right]$$

$$= \int \mathrm{d}^2k_T \int \mathrm{d}\sigma A_{11}(\sigma,\chi) \left[\frac{\sigma - 2xM^2}{2M^2}\right]$$

$$= -h_T(x)$$

$$\begin{split} \dot{\Phi}(x, p_T) &= \frac{1}{2} \Biggl\{ f_1(x, p_T^2) \not h_+ + g_{1s}(x, p_T) \gamma_5 \not h_+ \\ &+ h_{1T}(x, p_T^2) \frac{\gamma_5 \left[\not S_T, \not h_+ \right]}{2} + h_{1s}^{\perp}(x, p_T) \frac{\gamma_5 \left[\not p_T, \not h_+ \right]}{2M} \\ &+ f_1^{\perp} \bigtriangledown r, p_T^2) \frac{\epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} n_+^{\nu} p_T^{\rho} S_T^{\sigma}}{M} + h_1^{\perp} \left(\bigtriangledown p_T^2 \right) \frac{i \left[\not p_T, \not h_+ \right]}{2M} \Biggr\} \\ &+ \frac{M}{2P^+} \Biggl\{ e(x, p_T^2) + f^{\perp}(x, p_T^2) \frac{\not p_T}{M} + g_T'(x, p_T^2) \gamma_5 \, \mathcal{S}_T \\ &+ g_s^{\perp}(x, p_T) \frac{\gamma_5 \not p_T}{M} + h_T^{\perp}(x, p_T^2) \frac{\gamma_5 \left[\not S_T, \not p_T \right]}{2M} + h_s(x, p_T) \frac{\gamma_5 \left[\not h_+, \not h_- \right]}{2} \\ &- f_T \bigtriangledown p_T 2) \, \epsilon_T^{\rho\sigma} \gamma_{\rho} S_{T\sigma} - S_L \, f_L^{\perp} \bigotimes p_T^2 \right) \frac{\epsilon_T^{\rho\sigma} \gamma_{\rho} p_{T\sigma}}{M} \\ &- d \bigtriangledown r, p_T) \, i \gamma_5 + h(x \bigotimes^p) \frac{i \left[\not h_+, \not h_- \right]}{2} \Biggr\} \end{split}$$

$$\Phi(p,P,S) = M A_1 + A_2 P + A_3 \not p + i \bigotimes_{\substack{D \\ M}} \frac{[P,\not p]}{2M} + i \bigotimes_{\substack{D \\ P}} p \cdot S)\gamma_5 + M A_6 \$ \gamma_5$$
$$+ A_7 \frac{p \cdot S}{M} P \gamma_5 + A_8 \frac{p \cdot S}{M} \$ \gamma_5 + A_9 \frac{[P, \$]}{2} \gamma_5 + A_{10} \frac{[\not p, \$]}{2} \gamma_5$$
$$+ A_{11} \frac{p \cdot S}{M} \frac{[P, \not p]}{2M} \gamma_5 + O \frac{\epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} P^{\nu} p^{\rho} S^{\sigma}}{M}$$

14 functions depending on 9 amplitudes5 relations:

$$g_{T}(x) = g_{1}(x) + \frac{d}{dx}g_{1T}^{(1)}(x)$$

$$g_{L}^{\perp}(x) = -\frac{d}{dx}g_{T}^{\perp(1)}(x)$$

$$h_{L}(x) = h_{1}(x) - \frac{d}{dx}h_{1L}^{\perp(1)}(x)$$

$$h_{T}(x) = -\frac{d}{dx}h_{1T}^{\perp(1)}(x)$$

$$h_{1L}^{\perp}(x, \mathbf{k}_{T}^{2}) = h_{T}(x, \mathbf{k}_{T}^{2}) - h_{T}^{\perp}(x, \mathbf{k}_{T}^{2})$$

$$10/23$$

Color Gauge Invariance

$$\Phi_{ij}(p;P,S) = \int \frac{\mathrm{d}^4\xi}{(2\pi)^4} \ e^{i p \cdot \xi} \langle P, S | \overline{\psi}_j(0) \psi_i(\xi) | P, S \rangle$$

Link operator: $U(0,\xi) = \mathcal{P}e^{-ig\int_0^{\xi} d\zeta \cdot A(\zeta)}$

Including several other diagrams

Efremov, Radyushkin, Theor.Math.Phys. 44 (1981) 774 Brodsky, Hwang, Schmidt, Phys.Lett.530 (2002) 99

11/23

Color Gauge Invariance

$$\Phi_{Aij}^{\alpha}(p, p-p_1; P, S) = \int \frac{\mathrm{d}^4\xi}{(2\pi)^4} \frac{\mathrm{d}^4\eta}{(2\pi)^4} e^{ip\xi} e^{ip_1(\eta-\xi)} \langle P, S | \bar{\psi}_j(0) g A^{\alpha}(\eta) \psi_i(\xi) | P, S | \bar{\psi}_j(0) g A^{\alpha}(\eta) \psi_i(\xi) | P, S | \bar{\psi}_j(0) g A^{\alpha}(\eta) \psi_i(\xi) | P, S | \bar{\psi}_j(0) g A^{\alpha}(\eta) \psi_j(\xi) | P, S | \bar{\psi}_j(0) g A^{\alpha}(\eta$$

$$2MW^{\mu\nu} = -\int d^4p_1 d^4p d^4k \,\delta^4(p+q-k) \operatorname{Tr}\left[\gamma_{\alpha} \frac{\not k - \not p_1 + m}{(k-p_1)^2 - m^2 + i\epsilon} \gamma^{\nu} \Phi^{\alpha}_A(p, p-p_1) \gamma^{\mu} \Delta(k)\right]$$

•1/Q effects
•Link along minus direction

$$\frac{p_1^+p_1^++k_T^-p_{1T}+m}{-2k^-p_1^++k_T^--p_{1T})^2-m^2+i\epsilon}$$

•Link in transverse direction
•1/Q effects
•Link along minus direction
 $\frac{p_1^+p_2^++p_2^--\gamma_T}{A_T^++a_T^+++a_T^++++a_T^+++a_T^+++a_T^+++a_T^++++a_T^++++a_T^+++a_T^+++a_T^+++++a_T^++++a_T^+$

Link in minus direction:

$$\Phi_{Aij}^{+}(p,p-p_1;P,S) = \int \frac{\mathrm{d}^4\xi}{(2\pi)^4} \frac{\mathrm{d}^4\eta}{(2\pi)^4} e^{ip\xi} e^{ip_1(\eta-\xi)} \langle P,S|\bar{\psi}_j(0)gA^+(\eta)\psi_i(\xi)|P,S\rangle$$

=

$$2MW^{\mu\nu} = -\int d^4p_1 d^4p d^4k \,\delta^4(p+q-k) \operatorname{Tr}\left[\gamma^- \frac{\not k - \not p_1 + m}{(k-p_1)^2 - m^2 + i\epsilon} \gamma^\nu \Phi^+_A(p, p-p_1) \gamma^\mu \Delta(k)\right]$$

•Pole lies in upper half plane
$$\frac{k^{-}\not n_{-}}{-2k^{-}p_{1}^{+}+(k_{T}-p_{1T})^{2}-m^{2}+i\epsilon}$$

•Link to + infinity

• $\eta^- - \xi^- > 0$

$$\begin{aligned} & -2k^{-}p_{1}^{-} + (k_{T} - p_{1T})^{2} - m^{2} + i\epsilon \\ & -\int d^{4}p d^{4}k \delta^{4}(p + q - k) \int \frac{d^{4}\xi d^{4}\eta}{(2\pi)^{8}} e^{ip\xi} (2\pi)^{3} \delta^{2}(\eta_{T} - \xi_{T}) \delta(\eta^{+} - \xi^{+}) \times \\ & \Theta(\eta^{-} - \xi^{-}) \langle P, S | \bar{\psi}(0) \gamma^{\mu} \Delta(k) \frac{\gamma^{-} \gamma^{+}}{-2} (2\pi i) \gamma^{\nu} g A^{+}(\eta) \psi(\xi) | P, S \rangle \\ & \int d^{4}p d^{4}k \delta^{4}(p + q - k) \int \frac{d^{4}\xi}{(2\pi)^{4}} e^{ip\xi} \times \\ & \langle P, S | \bar{\psi}(0) \gamma^{\mu} \Delta(k) \frac{\gamma^{-} \gamma^{+}}{-2} \gamma^{\nu}(-ig) \int_{\infty}^{\xi^{-}} d\eta^{-} A^{+}(\eta^{-}, \xi^{+}, \xi_{T}) \psi(\xi) | P, S \rangle \end{aligned}$$

13/23

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Color Gau	ige Invariance
$A_{T}^{\alpha} \mid G^{+\alpha} : U^{T}$ $\underline{\text{Link in transverse direction:}}$ $\Phi_{Aij}^{\alpha}(p, p - p_{1}; P, S) = \int \frac{d^{4}\xi}{(2\pi)^{4}} \frac{d^{4}\eta}{(2\pi)^{4}} e^{ipt}$ $\alpha = 1, 2$ $2MW^{\mu\nu} = -\int d^{4}p_{1}d^{4}pd^{4}k \delta^{4}(p+q-k) \operatorname{Tr} \left[\gamma\right]$	$\xi e^{ip_1(\eta-\xi)} \langle P, S \bar{\psi}_j(0) g A^{lpha}(\eta) \psi_i(\xi) P, S \rangle$ $\chi_{lpha} \frac{\not k - \not p_1 + m}{(1-\gamma)^2 - 2} \gamma^{ u} \Phi^{lpha}_A(p, p-p_1) \gamma^{\mu} \Delta^{\mu}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array}$
•Assume A_T is nonzero at \mathfrak{m}^{of} finfinity, omitting $\frac{d^4\xi}{(2\pi)^4} d^4p d^4k \ e^{ip\xi} \ \delta^4(p+q-k)$	$(k - p_1)^2 - m^2 + i\epsilon$ $-\int d^4 p_1 \frac{d^4 \eta}{(2\pi)^4} e^{ip_1(\eta - \xi)} \langle P, S \bar{\psi}(0) \gamma^{\mu} \Delta(k) \rangle$ $\frac{k_T - \not{p}_{1T} + m}{-2k^- p_1^+ + (k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^{\nu} g A^{\alpha}$	$\gamma_{\alpha} \times$ $(\eta^{-} = \infty)\psi(\xi) P, S\rangle$
•Perform \mathfrak{M}^{\frown} integrap $p_1^+ \to 0$ and write $A^{\alpha}(\eta_T) = \partial_{\eta_T}^{\alpha} \int_{\infty}^{\eta_T} \mathrm{d}\zeta \cdot A(\zeta)$	$-\int dp_1^- d^2 p_{1T} \frac{d\eta^+ d^2 \eta_T}{(2\pi)^3} e^{ip_1(\eta-\xi)} \langle P, S q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - \not p_{1T} + m}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - y}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - y}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - y}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - y}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - y}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - y}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - y}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - y}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot q_1 \frac{k_T - y}{(k_T - p_{1T})^2 - m^2 + i\epsilon} \gamma^\nu g \partial_{\eta_T}^\alpha \int_{\infty_T}^\eta d\zeta \cdot d\zeta \cdot \zeta \cdot \zeta$	$ar{\psi}(0)\gamma^{\mu}\Delta(k)\gamma_{lpha} imes A_{\infty^{-}}(\zeta)\psi(\xi) P,S angle \Big _{p_{1}^{+}=0}$
•Do a partial integration and use QCD equations of	$\langle P, S \bar{\psi}(0) \gamma^{\mu} \Delta(k)(-ig) \int_{\infty}^{\xi_T} \mathrm{d}\zeta \cdot A(\xi^{-1})$	$,\xi^+,\zeta_T)\psi(\xi) P,S\rangle$
motion Belitsky, Ji, Yuan, NP B 656	(2003) 165	14/23

Ι

Color Gauge Invariance

 $\frac{1/Q \text{ effects}}{\Phi_{Aij}^{\alpha}(p, p-p_1; P, S)} = \int \frac{\mathrm{d}^4\xi}{(2\pi)^4} \frac{\mathrm{d}^4\eta}{(2\pi)^4} e^{ip\xi} e^{ip_1(\eta-\xi)} \langle P, S | \bar{\psi}_j(0)gA^{\alpha}(\eta)\psi_i(\xi) | P, S \rangle$ $\alpha = 1, 2$ $2MW^{\mu\nu} = -\int \mathrm{d}^4p_1 \mathrm{d}^4p \mathrm{d}^4k \, \delta^4(p+q-k) \operatorname{Tr} \left[\gamma_{\alpha} \frac{k-p_1+m}{(k-p_1)^2-m^2+i\epsilon} \gamma^{\nu} \Phi_A^{\alpha}(p, p-p_1) \gamma^{\mu} \Delta(k) \right]$

Write propagator
$$\frac{-p_{1}^{+}\not{h}_{+}}{-2p_{1}^{+}k^{-} + (k_{T} - p_{1T})^{2} - m^{2} + i\epsilon} = \frac{\not{h}_{+}}{2k^{-}} \left(1 - \frac{(k_{T} - p_{1T})^{2} - m^{2}}{-2k^{-}p_{1}^{+} + (k_{T} - p_{1T})^{2} - m^{2} + i\epsilon}\right)$$
$$2MW^{\mu\nu} = -\int \frac{\mathrm{d}^{4}\xi}{(2\pi)^{4}} e^{ip\xi} \langle P, S | \bar{\psi}(0) \gamma^{\mu} \Delta(k) \gamma_{\alpha} \frac{\not{h}_{+}}{2k^{-}} \gamma^{\nu} g \left(A^{\alpha}(\xi) - A^{\alpha}_{\infty^{-}}(\xi)\right) \psi_{i}(\xi) | P, S \rangle$$

General result:

$$2MW^{\mu\nu} = -\int d^4p d^4k \ \delta^4(p+q-k) \ \text{Tr} \left[\gamma_{\alpha} \frac{\not h_+}{2k^-} \gamma^{\nu} \Phi^{\alpha}_G(p) \gamma^{\mu} \Delta(k) \right]$$
$$\Phi^{\alpha}_G(p) = \int \frac{d^4\xi}{(2\pi)^4} e^{ip\xi} \langle P, S | \bar{\psi}_j(0) g \int_{\infty^-}^{\xi^-} d\eta^- U(0,\eta^-) G^{+\alpha}(\eta^-,\xi^+,\xi_T) U(\eta^-,\xi) \psi_i(\xi) | P, S \rangle$$

Boer, NP B569 (2000) 505

Boer, Mulders, FP, hep-ph/0303034

Color Gauge Invariance

Summary

•By including diagrams with gluons, one can encode the physics in gauge invariant objects at leading and next to leading twist.

•The link in the distribution functions which appear in SIDIS run to + infinity, the link in the fragmentation functions run to - infinity.

•It turns out that the links in the fragmentation functions for $e^+ e^-$ annihilation run to + infinity. What about universality?

•The appearance of the link operator in the soft objects allows T-odd distribution functions since time-reversal cannot be used as a constraint.

•The T-odd distribution functions change sign comparing SIDIS with DY.

•Sivers effect is related to the Qiu-Sterman mechanism.

•Transverse momentum dependent fragmentation functions (T-even and T-odd) which appear in SIDIS and e⁺ e⁻ annihilation cannot be compared due to the two sources for T-odd functions.

Allowance of T-odd distribution functions

The link structure does not transform into itself under time reversal:

$$\begin{split} \Phi(x, p_T) &= \frac{1}{2} \Biggl\{ f_1(x, p_T^2) \not h_+ + g_{1s}(x, p_T) \gamma_5 \not h_+ \\ &+ h_{1T}(x, p_T^2) \frac{\gamma_5 [\not S_T, \not h_+]}{2} + h_{1s}^{\perp}(x, p_T) \frac{\gamma_5 [\not p_T, \not h_+]}{2M} \\ &+ f_{1T}^{\perp}(x, p_T^2) \frac{\epsilon_{\mu\nu\rho\sigma}\gamma^{\mu}n_+^{\nu}p_T^{\rho}S_T^{\sigma}}{M} + h_1^{\perp}(x, p_T^2) \frac{i[\not p_T, \not h_+]}{2M} \Biggr\} \\ &+ \frac{M}{2P^+} \Biggl\{ e(x, p_T^2) + f^{\perp}(x, p_T^2) \frac{\not p_T}{M} + g_T'(x, p_T^2) \gamma_5 \, \mathcal{S}_T \\ &+ g_s^{\perp}(x, p_T) \frac{\gamma_5 \not p_T}{M} + h_T^{\perp}(x, p_T^2) \frac{\gamma_5 [\not S_T, \not p_T]}{2M} + h_s(x, p_T) \frac{\gamma_5 [\not h_+, \not h_-]}{2} \\ &- f_T(x, p_T 2) \, \epsilon_T^{\rho\sigma} \gamma_{\rho} S_{T\sigma} - S_L \, f_L^{\perp}(x, p_T^2) \frac{\epsilon_T^{\rho\sigma} \gamma_{\rho} p_{T\sigma}}{M} \\ &- e_s(x, p_T) \, i\gamma_5 + h(x, p_T^2) \frac{i[\not h_+, \not h_-]}{2} \Biggr\} \end{split}$$

$$\begin{split} \Phi(p,P,S) &= M A_1 + A_2 \ P + A_3 \ \not p + i \ A_4 \ \frac{[P,\not p]}{2M} + i \ A_5(p \cdot S)\gamma_5 + M A_6 \$ \gamma_5 \\ &+ A_7 \ \frac{p \cdot S}{M} P \gamma_5 + A_8 \ \frac{p \cdot S}{M} \And \gamma_5 + A_9 \ \frac{[P, \$]}{2} \gamma_5 + A_{10} \ \frac{[\not p, \$]}{2} \gamma_5 \\ &+ A_{11} \frac{p \cdot S}{M} \frac{[P, \not p]}{2M} \gamma_5 + A_{12} \frac{\epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} P^{\nu} p^{\rho} S^{\sigma}}{M} \end{split}$$

<u>T-odd distribution functions change</u> <u>sign comparing DY with SIDIS</u>

 $\Phi^*(p, P, S) = (i\gamma_5 C)\Phi(\bar{p}, \bar{P}, \bar{S})(i\gamma_5 C) \text{ [Time reversal]}$ $\Phi^{[+]*}(p, P, S) = (i\gamma_5 C)\Phi^{[-]}(\bar{p}, \bar{P}, \bar{S})(i\gamma_5 C) \text{ [Time reversal]}$

Sivers effect and the Qiu-Sterman mechanism

$$\begin{split} \int d^2 p_T \; p_T^{\alpha} \Phi^{[\pm]}(x, p_T) &= \int \frac{d^4 \xi}{(2\pi)^4} d^2 p_T dp^- \; p_T^{\alpha} e^{ip\xi} \langle P, S | \bar{\psi}_j(0) U^{[\pm]} \psi_i(\xi) | P, S \rangle \\ & A^+ = 0 \\ &= \int \frac{d^4 \xi}{(2\pi)^4} d^2 p_T dp^- \; e^{ip\xi} \langle P, S | \bar{\psi}_j(0) (i\partial_{\xi}^{\alpha}) \mathcal{P} e^{-ig\int_0^{\xi_T} d\zeta \cdot A_{\pm\infty^-}(\zeta)} \psi_i(\xi) | P, S \rangle \\ &= \int \frac{d^4 \xi}{(2\pi)^4} d^2 p_T dp^- \; e^{ip\xi} \langle P, S | \bar{\psi}_j(0) U^{[\pm]} \left[A_{\pm\infty^-}(\xi) + i\partial_{\xi}^{\alpha} \right] \psi_i(\xi) | P, S \rangle \\ \int d^2 p_T \; p_T^{\alpha} \left[\Phi^{[+]}(x, p_T) - \Phi^{[-]}(x, p_T) \right] \; = \; \int \frac{d\xi^-}{2\pi} e^{ip\xi} \langle P, S | \bar{\psi}_j(0) U^{[\pm]} \left[A_{\infty^-}^{\alpha}(0) - A_{-\infty^-}^{\alpha}(0) \right] \psi_i(\xi) | P, S \rangle \\ & \left[\text{gauge independent} \right] \; = \; \int \frac{d\xi^-}{2\pi} e^{ip\xi} \langle P, S | \bar{\psi}_j(0) \int_{-\infty}^{\infty} d\eta^- U(0, \eta) G^{+\alpha}(\eta) U(\eta, \xi) \psi_i(\xi) | P, S \rangle \\ & \xi_T = 0 \\ & \xi^+ = 0 \end{split}$$

$$f_{1T}^{\perp(1)}(x) = \frac{-1}{4MS_T^2} \int \frac{\mathrm{d}\xi^-}{4\pi} \, e^{ip^+\xi^-} \epsilon_{T\alpha\beta} S_T^\beta \langle P, S | \bar{\psi}(0) \gamma^+ \int_{-\infty}^{\infty} \mathrm{d}\eta^- U(0,\eta^-) G^{+\alpha}(\eta^-) U(\eta^-,\xi^-) \psi(\xi^-) | P, S \rangle$$

Boer, Mulders, FP, hep-ph/0303034

20/23

•Due to the two sources for T-odd functions, k_T dependent functions (T-odd and T-even) measured in SIDIS and $e^+ e^-$ can not be compared.

If final state interactions would not be present, then the T-odd functions would simply change sign as for distribution functions
If link effects would not appear then the signs would not change.

Lorentz Invariance Relations violated?

$$\Phi_{ij}(p;P,S,n_{-}) = \int \frac{\mathrm{d}^4\xi}{(2\pi)^4} \ e^{i\,p\cdot\xi} \langle P,S|\overline{\psi}_j(0)U(0,\xi;n_{-})\psi_i(\xi)|P,S\rangle$$

$$\begin{split} \Phi(P,k,n_{-}) &= MA_{1} + PA_{2} + \not kA_{3} + \frac{i[P,\not k]}{2M}A_{4} \\ &+ \frac{M^{2}}{P \cdot n_{-}}\not h_{-}B_{1} + \frac{iM}{2P \cdot n_{-}}[P,\not h_{-}]B_{2} + \frac{iM}{2P \cdot n_{-}}[\not k,\not h_{-}]B_{3} \end{split}$$

$$g_{T}(x) = g_{1}(x) + \frac{d}{dx}g_{1T}^{(1)}(x)$$

$$g_{L}^{\perp}(x) = -\frac{d}{dx}g_{T}^{\perp(1)}(x)$$

$$h_{L}(x) = h_{1}(x) - \frac{d}{dx}h_{1L}^{\perp(1)}(x)$$

$$h_{T}(x) = -\frac{d}{dx}h_{1T}^{\perp(1)}(x)$$

$$h_{T}(x, \mathbf{k}_{T}^{2}) = h_{T}(x, \mathbf{k}_{T}^{2}) - h_{T}^{\perp}(x, \mathbf{k}_{T}^{2})$$

Goeke, Metz, Pobylitsa, Polyakov, hep-ph/0302028

Remarks

•The resummation of certain diagrams leads to fully gauge invariant distribution and fragmentation functions.

•The link dependence could violate the Lorentz Invariance Relations.

•Transverse momentum integrated distribution and fragmentation functions are not process dependent.

•The sign of T-odd distribution functions depends on the process.

•The Sivers effect and the Qiu-Sterman mechanism are related.

•Transverse momentum dependent fragmentation functions which are measured in DIS and $e^+ e^-$ annihilation can not be compared.