Determination of Parton Distribution Functions

Shunzo Kumano, Saga University

kumanos@cc.saga-u.ac.jp, http://hs.phys.saga-u.ac.jp

Generalized Parton Distributions and Hard Exclusive Processes INT, University of Washington, Seattle, U.S.A. June 23 - August 29, 2003

August 14, 2003

Contents

- Introduction
- Polarized PDFs in the nucleon AAC analysis (2000, new) Comments on v factory
- PDFs in nuclei
- Summary

Why PDFs ?

(1) basic interest to understand hadron structure

• perturbative & non-perturbative QCD

e.g. spin is a fundamental quantity

- (2) practical purpose: to describe hadron cross sections precisely
 For hadron reactions with Q²>1 GeV², accurate PDFs are needed.
 For example
 - exotic events at large Q ²: physics "beyond QCD"
 - heavy-ion reactions : quark-gluon plasma signature
 - neutrino reactions : v + O (neutrino properties)

Situation of PDFs?

(1) unpolarized PDFs in the nucleon **3 major groups (CTEQ, GRV, MRST)** \rightarrow well established from small x to large x (2) polarized PDFs in the nucleon several groups \rightarrow not established (3) PDFs in nuclei only a few papers

Introduction: current status

Parton distributions are determined by fitting various experimental data.

- $\mu + p \rightarrow \mu + X$ • electron/muon
- $\nu_{\mu} + p \rightarrow \mu + X$ • neutrino
- $p + p \rightarrow \mu^+ \mu^- + X$ • Drell-Yan
- direct photon $\mu/p + p \rightarrow \gamma + X$

•

(1) assume parton distributions at Q_0^2 (~1 GeV²) e.g. $f_i(x,Q_0^2) = A_i x^{\alpha_i} (1-x)^{\beta_i} (1+\gamma_i x)$ where $i = u_v, d_v, \bar{u}, \bar{d}, \bar{s}, g$

- calculate structure functions (2) at experimental Q^2 points
- (3) then, A_i , α_i , β_i , γ_i are determined in comparison with data

Recent unpolarized distributions

see http://durpdg.dur.ac.uk/hepdata/pdf.html

CTEQ6, JHEP 0207 (2002) 012; **GRV98**, Eur. Phys. J. C5 (1998) 461; **MRST02**, Eur. Phys. J. C28 (2003) 455.

Determination of Polarized Parton Distribution Functions

AAC (Asymmetry Analysis Collaboration) Studies on the polarized PDFs Y.Goto et al., Phys. Rev. D62 (2000) 034017. M. Hirai et al., to be submitted for publication.

http://spin.riken.bnl.gov/aac/ (Polarized PDF codes could be obtained from this site.) → measurement of g_1 $g_1^{LO} = \frac{1}{2} \sum_i e_i^2 (\Delta q_i + \Delta \overline{q}_i)$ proton, deuteron, ³He g₁ data with isospin symmetry \rightarrow valence and sea polarization $\Delta u_{u}, \Delta d_{u}, \Delta \overline{q}$ **quark spin content** $\Delta \Sigma = \Delta u_v + \Delta d_v + 6 \cdot \Delta \overline{q}$ experimentally $\int_{0}^{1} dx \Delta \Sigma(x) \approx 0.1 - 0.3$ rest of the spin ???

Papers on the polarized PDFs

workshop participants

- D. de Florian, L. N. Epele, H. Fanchiotti, C. A. Garcia Canal, and R. Sassot, Phys. Lett. B319 (1993) 285; Phys. Rev. D51 (1995) 37; D57 (1998) 5803; D62 (2000) 094025.
- M. Glück, E. Reya, M. Stratmann, and W. Vogelsang, Phys. Rev. D53 (1996) 4775 (1996); D63 (2001) 094005.
- T. Gehrmann and W. J. Stirling, Phys. Rev. D53 (1996) 6100.
- G. Altarelli, R. D. Ball, S. Forte, and G. Ridolfi, Nucl. Phys. B496 (1997) 337; Acta Phys. Pol. B29 (1998) 1145.
- C. Bourrely, F. Buccella, O. Pisanti, P. Santorelli, and J. Soffer, Prog. Theor. Phys. 99 (1998) 1017; Eur. Phys. J. C23 (2002) 487.
- L. E. Gordon, M. Goshtasbpour, and G. P. Ramsey, Phys. Rev. D58 (1998) 094017.
- SMC (B. Adeva et. al.), Phys. Rev. D58 (1998) 112002.
- E. Leader, A. V. Sidrov, and D. B. Stamenov, Phys. Rev. D58 (1998) 114028; Eur. Phys. J. C23 (2001) 479.
- Y.Goto et al. (AAC), Phys. Rev. D62 (2000) 034017.
- J. Bartelski and S. Tatur, Phys. Rev. D65 (2002) 034002.
- J. Blümlein and H. Böttcher, Nucl. Phys. B636 (2002) 225.

Experimental data

Target	Exp.	x	Q ² GeV ²	Data #
Proton	EMC	0.015-0.466	3.5~29.5	10
	SMC	0.005-0.480	0.25~72.07	59
	E130	0.18-0.70	3.5~10.0	8
	E143	0.022-0.847	0.28~9.53	81
	HERMES	0.028-0.66	1.01~7.36	19
Deuteron	SMC	0.005-0.480	1.3~54.4	65
	E143	0.022-0.847	0.28~9.53	81
	E155	0.015-0.75	1.22-34.79	24
Neutron	E142	0.035-0.466	1.1~5.5	8
	E154	0.0174-0.5643	1.21~15.0	11
	HERMES	0.033-0.464	1.22~5.25	9
Total				375

x

Initial distributions

$$\Delta f_i(x, Q_0^2) = A_i x^{\alpha_i} (1 + \gamma_i x^{\lambda_i}) f_i(x, Q_0^2)$$

$$i = u_v, d_v, \bar{q}, g \qquad A_i, \alpha_i, \gamma_i, \lambda_i : \text{parameters}$$

 $\chi^{2} \text{ fit to the data [p, n (³He), d]} \qquad \chi^{2} = \sum_{i} \frac{(A_{1i}^{data} - A_{1i}^{calc})^{2}}{(\sigma_{A_{1i}}^{data})^{2}}$ $A_{1} \simeq \frac{g_{1}}{F_{1}} = g_{1} \frac{2 x (1 + R)}{F_{2}} \qquad R = \frac{F_{L}}{2 x F_{1}} = \frac{F_{2} - 2 x F_{1}}{2 x F_{1}}$

We analyzed with the following conditions.

- unpolarized PDF GRV98
- initial Q^2 $Q_0^2 = 1 \text{ GeV }^2$
- number of flavor $N_f = 3$
- **positivity** $|\Delta f(x)| \le f(x)$ (to be precise, $|\Delta \sigma| \le \sigma$)
- antiquark flavor: $\Delta \bar{u} = \Delta \bar{d} = \Delta \bar{s}$

ResultsTotal χ^2 LO χ^2 /d.o.f. = 0.896NLO χ^2 /d.o.f. = 0.834Total data375

Spin asymmetry A₁^p

x

Q² dependence of A₁^{**p**}

Parton distributions (Q²=1 GeV²)

First moments $(Q^2 = 1 \text{ GeV}^2)$

	$\Delta u_{\rm v}$	$\Delta d_{ m v}$	$\Delta \overline{q}$	Δg
LO	0.926	-0.341	-0.064	0.831
NLO	0.926	-0.341	-0.089	0.532

Spin content $\Delta\Sigma$ LO : 0.201 NLO : 0.051 rather small spin content in the NLO, $\Delta\Sigma=0.1\sim0.3$? \rightarrow check the antiquark distribution

"Spin content" $\Delta \Sigma$

$$\Delta \Sigma(x_{\min}) = \int_{x_{\min}}^{1} \Delta \Sigma(x) \, dx$$

$$\frac{\Delta \overline{q}}{\overline{q}} \propto x^{\alpha_{\overline{q}}} \quad (x \to 0)$$

AAC studies in progress

(1)re-analysis with SLAC-E155 (proton)

(2) errors of the polarized PDFs

by M. Hirai et. al.

Results

preliminary

- Total χ^2 New : $\chi^2(/d.o.f.) = 346.33 (0.900)$ $\Delta g(x)=0: \chi^2(/d.o.f.) = 355.01 (0.922)$
- First moments $(Q^2 = 1 \text{ GeV}^2, \overline{\text{MS}} \text{ scheme})$

	Δu _v	Δd_v	Δq	Δg	ΔΣ
New			- 0.062 ±	0.499 ±	0.213 ±
	0.926	-0.341	0.023	1.268	0.138
$\Delta g(x)=0$	(fixed)	(fixed)	- 0.054 ±	0.00	0.259 ±
			0.011		0.063
AAC00			- 0.057 ±	$0.532 \pm$	0.241 ±
(NLO-2)			0.038	1.949	0.228

LSS01 (MS)	: /	∆g=0.680,	ΔΣ=0.210
GRSV01	:	0.427,	0.204
BB02 (SET4)	1	0.931,	0.150

New results vs. AAC2000

- $\Delta d_v(x)$ is almost the same as AAC2000
- ∆u_v(x), ∆q(x) and ∆g(x) are slightly changed by the E155 proton data

Errors of the PDFs *preliminary!*

reduction of the error band

Analysis with $\Delta g(x)=0$

Summary: AAC determination of the polarized PDFs

(1) 2000 version

- Q^2 dependence of A_1 especially at small Q^2
- positivity condition is taken into accout (unless, unphysical result: $|\Delta\sigma| >$
- issue of $\Delta \overline{q}(x)$ at small and large x

 $\Delta \bar{q}(x \rightarrow 0)$ issue \rightarrow the quark spin content $\Delta \Sigma$

• The obtained PDFs are available from http://spin.riken.bnl.gov/aac/.

(2) new analysis (2003)

- include E155 (p) data, errors of the polarized PDFs
- \rightarrow Errors of $\Delta \bar{q}$ and Δg become smaller; however,

 $\Delta \bar{q}$ and Δg are not well determined (especially Δg).

 Δg error is correlated with $\Delta \bar{q}$ error, $\Delta \Sigma = 0.213 \pm 0.136$, $\Delta g = 0.468 \pm 1$

- analysis with RHIC γ pseudo-data
- \rightarrow Including the pseudo-data in our χ^2 analysis,

Prospects

(1) new data are needed for the PDF determination

- fortunately, experiments are going on JLab, RHIC-Spin, COMPASS, HERMES, ...
- these new data should lead to accurate determina of the polarized PDFs (bright prospects!)

(2) possibilities in Japan

- J-PARC (Japan Proton Accelerator Research Complex primary proton beam: large-x physics
- Neutrino Factory (also in Europe / US) valence polarization, spin content, strange,

Comments on polarized PDFs

in v scattering

Polarized neutrino-proton scattering (CC)

$$\begin{split} W_{\mu\nu} &= \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right)F_1 + \frac{\hat{p}_{\mu}\hat{p}_{\nu}}{p\cdot q}F_2 - i\,\varepsilon_{\mu\nu\lambda\sigma}\frac{q^{\lambda}p^{\sigma}}{2p\cdot q}F_3 \qquad \text{where } \hat{p}_{\mu} = p_{\mu} - \frac{p\cdot q}{q^2}q_{\mu} \\ &+ i\,\varepsilon_{\mu\nu\lambda\sigma}\frac{q^{\lambda}s^{\sigma}}{p\cdot q}g_1 + i\,\varepsilon_{\mu\nu\lambda\sigma}\frac{q^{\lambda}(p\cdot q\ s^{\sigma} - s\cdot q\ p^{\sigma})}{(p\cdot q)^2}g_2 \\ &+ \left[\frac{\hat{p}_{\mu}\ \hat{s}_{\nu} + \hat{s}_{\mu}\ \hat{p}_{\nu}}{2p\cdot q} - \frac{s\cdot q\ \hat{p}_{\mu}\ \hat{p}_{\nu}}{(p\cdot q)^2}\right]g_3 + \frac{s\cdot q\ \hat{p}_{\mu}\ \hat{p}_{\nu}}{(p\cdot q)^2}g_4 + \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right)\frac{s\cdot q}{p\cdot q}g_5 \end{split}$$

new structure functions g₃, g₄, g₅

be careful about "various" definitions of g₃, g₄, g₅!

$$\frac{d(\sigma_{\lambda_{p}=-1}^{CC} - \sigma_{\lambda_{p}=+1}^{CC})}{dx \, dy} = \frac{G_{F}^{2} Q^{2}}{\pi (1 + Q^{2} / M_{W}^{2})^{2} xy} \left\{ \left[-\lambda_{\ell} y(2 - y) x g_{1}^{CC} - (1 - y) g_{4}^{CC} - y^{2} x g_{5}^{CC} \right] \right. \\ \left. + 2 x y \frac{M^{2}}{Q^{2}} \left[\lambda_{\ell} x^{2} y^{2} g_{1}^{CC} + \lambda_{\ell} 2 x^{2} y g_{2}^{CC} + \left(1 - y - x^{2} y^{2} \frac{M^{2}}{Q^{2}} \right) x g_{3}^{CC} \right. \\ \left. - x \left(1 - \frac{3}{2} y - x^{2} y^{2} \frac{M^{2}}{Q^{2}} \right) g_{4}^{CC} - x^{2} y^{2} g_{5}^{CC} \right] \right\}$$

$$g_5^{\nu(p+n)/2} - g_5^{\overline{\nu}(p+n)/2} = -(\Delta s + \Delta \overline{s}) + (\Delta c + \Delta \overline{c})$$

Possibilities at v factory

S. Forte, M. L. Mangano, G. Ridolfi Nucl. Phys. B602 (2001) 585.

Determination of

Nuclear Parton Distribution Functions

http://hs.phys.saga-u.ac.jp/nuclp.html

(Nuclear PDF codes could be obtained from this site.)

Refs. (1) M. Hirai, SK, M. Miyama, Phys. Rev. D64 (2001) 034003. (2) to be submitted for publication.

Purposes

- nuclear mechanisms in the high-energy region
- heavy-ion reactions: quark-gluon plasma signature
- neutrino physics: nuclear effects in $v + {}^{16}O$

Today's talk on

- χ^2 analysis method, used data
- results

Nuclear modification $F_2^A = \sum_i e_i^2 x \left[q_i(x) + \bar{q}_i(x) \right]_A$ Nuclear modification of F_2^A / F_2^D iswell known in electron/muon scattering.

Nuclear parton distributions (per nucleon) if there were no modification $A u^A = Z u^p + N u^n$, $A d^A = Z d^p + N d^n$

Isospin symmetry:
$$\mathbf{u}^{n} = \mathbf{d}^{p} \equiv \mathbf{d}$$
, $\mathbf{d}^{n} = \mathbf{u}^{p} \equiv \mathbf{u}$
 $\rightarrow \mathbf{u}^{A} = \frac{\mathbf{Z} \mathbf{u} + \mathbf{N} \mathbf{d}}{\mathbf{A}}$, $\mathbf{d}^{A} = \frac{\mathbf{Z} \mathbf{d} + \mathbf{N} \mathbf{u}}{\mathbf{A}}$

Take into accont the nuclear modification by the factors w_i(x,A)

$$\begin{aligned} \mathbf{u}_{v}^{A}(\mathbf{x}) &= \mathbf{w}_{u_{v}}(\mathbf{x}, A) \ \frac{\mathbf{Z} \ \mathbf{u}_{v}(\mathbf{x}) + \mathbf{N} \ \mathbf{d}_{v}(\mathbf{x})}{A} \\ \mathbf{d}_{v}^{A}(\mathbf{x}) &= \mathbf{w}_{d_{v}}(\mathbf{x}, A) \ \frac{\mathbf{Z} \ \mathbf{d}_{v}(\mathbf{x}) + \mathbf{N} \ \mathbf{u}_{v}(\mathbf{x})}{A} \\ \mathbf{\bar{q}}^{A}(\mathbf{x}) &= \mathbf{w}_{\bar{q}}(\mathbf{x}, A) \ \mathbf{\bar{q}}(\mathbf{x}) \\ \mathbf{g}^{A}(\mathbf{x}) &= \mathbf{w}_{g}(\mathbf{x}, A) \ \mathbf{g}(\mathbf{x}) \end{aligned}$$

Functional form of w_i(**x**,**A**)

$$\mathbf{f}_{i}^{A}(\mathbf{x}) = \mathbf{W}_{i}(\mathbf{x},A) \mathbf{f}_{i}(\mathbf{x}), \quad \mathbf{i} = \mathbf{u}_{v}, \mathbf{d}_{v}, \mathbf{\bar{q}}, \mathbf{g}$$

first, assume the A dependence as $1/A^{1/3}$

then, use

$$w_{i}(x,A) = 1 + (1 - 1/A^{1/3}) \frac{a_{i} + b_{i}x + c_{i}x^{2} + d_{i}x^{3}}{(1 - x)^{\beta_{i}}}$$

 $a_i, b_i, c_i, d_i, \beta_i$: parameters to be determined by χ^2 analysisFermi motion: $\frac{1}{(1-x)^{\beta_i}} \rightarrow \infty$ as $x \rightarrow 1$ if $\beta_i > 0$ Shadowing: $w_i(x \rightarrow 0, A) = 1 + (1 - 1/A^{1/3}) a_i < 1$ Fine tuning: b_i, c_i, d_i

Constraints

• Nuclear charge

$$Z = A \int dx \left[\frac{2}{3} (u^{A} - \bar{u}^{A}) - \frac{1}{3} (d^{A} - \bar{d}^{A}) - \frac{1}{3} (s^{A} - \bar{s}^{A}) \right]$$
$$= A \int dx \left(\frac{2}{3} u_{V}^{A} - \frac{1}{3} d_{V}^{A} \right)$$

• Baryon number

$$\mathbf{A} = \mathbf{A} \int \mathbf{d}\mathbf{x} \, \frac{1}{3} \left(\mathbf{u}_{\mathrm{V}}^{\mathrm{A}} + \mathbf{d}_{\mathrm{V}}^{\mathrm{A}} \right)$$

• Momentum

$$\mathbf{A} = \mathbf{A} \int \mathbf{d}\mathbf{x} \, \mathbf{x} \, (\mathbf{u}_{v}^{\mathbf{A}} + \mathbf{d}_{v}^{\mathbf{A}} + \mathbf{6} \, \overline{\mathbf{q}}^{\mathbf{A}} + \mathbf{g}^{\mathbf{A}})$$

Three parameters can be determined by these conditions.

Analysis conditions

• parton distributions in the nucleon

MRST01 – **LO** (Λ_{OCD} =220 MeV)

- Q^2 point at which the parametrized PDFs are defined: $Q^2 = 1 \text{ GeV}^2$
- used experimental data: $Q^2 \ge 1 \text{ GeV}^2$
- total number of data: 1106

761 (F_2^{A}/F_2^{D}) + 293 $(F_2^{A}/F_2^{A'})$ + 52 (Drell-Yan)

• subroutine for the χ^2 analysis: CERN - Minuit

$$\chi^{2} = \sum_{i} \frac{\left(\mathbf{R}_{i}^{data} - \mathbf{R}_{i}^{calc}\right)^{2}}{\left(\boldsymbol{\sigma}_{i}^{data}\right)^{2}}$$
$$\mathbf{R} = \frac{\mathbf{F}_{2}^{A}}{\mathbf{F}_{2}^{D}}, \ \frac{\mathbf{F}_{2}^{A}}{\mathbf{F}_{2}^{A'}}, \ \frac{\boldsymbol{\sigma}_{DY}^{pA}}{\boldsymbol{\sigma}_{DY}^{pA'}}, \quad \boldsymbol{\sigma}_{i}^{data} = \sqrt{\left(\boldsymbol{\sigma}_{i}^{sys}\right)^{2} + \left(\boldsymbol{\sigma}_{i}^{stat}\right)^{2}}$$

Analysis results

small nuclei

Be/D

medium-size nuclei

large nuclei

$\mathbf{F}_{2}^{\mathbf{A}}/\mathbf{F}_{2}^{\mathbf{A'}}$

Drell-Yan

Nuclear corrections for Ca

Comments on

Future Experimental Studies

of Nuclear PDFs

Valence quark $\frac{1}{2} [F_3^{\nu N} + F_3^{\overline{\nu}N}]_{CC} \cong u_v + d_v$

- test of shadowing models F₃ (valence) vs. F₂ (sea) shadowing
- accurate determination of nuclear PDFs

• $s = (p_1 + p_2)^2$ RHIC: $\sqrt{s} = 0.2$ TeV LHC: $\sqrt{s} = 5.5$ TeV

• pQCD: $Q^2 \ge a$ few GeV²

$$x \approx \frac{\sqrt{m_{\mu\mu}^{2}}}{\sqrt{s}} \ge \frac{1}{200} = 0.005 \text{ RHIC}$$
$$\ge \frac{1}{5500} = 0.0002 \text{ LHC}$$

Gluon distributions

Summary

(1) χ^2 analysis for the nuclear PDFs

Computer codes could be obtained from http://hs.phys.saga-u.ac.jp/nuclp.html.

- (2) Nuclear PDF studies are still premature.
 - \rightarrow analysis refinements
 - \rightarrow experimental effors:
 - RHIC, LHC, eRHIC, JPARC, v factory, ...