Exclusive and Semi-Inclusive Processes in Hard Scattering Kinematics at JLab

> H. Avakian (Jefferson Lab) GPD Workshop Seattle 2003

Hard scattering kinematics
SSA in DVCS and HMP
MC studies
Different methods and cuts
SIDIS and x,z factorization studies
Multiplicities
Spin Asymmetry (A₁)
Azimuthal Asymmetries
Summary

Utilizing high luminosity and large *x* coverage:

Study the transition between the nonperturbative and perturbative regimes of QCD

- ➢ test factorization
- measure higher twists
- ➢orbital angular momentum of quarks

H. Avakian GPD workshop Aug

Single pion production

Single Pion Production Kinematics

Hard scattering processes at JLab

Study x,z dependence for different observables

Compare with measurements at higher energies (HERMES,SMC)

➤ compare with realistic MC (LUND-MC, DVCS-MC)

Compare with QCD based predictions (assuming) factorization) for different observables, different final states

The CLAS Detector

Scattering of 5.7 GeV polarized electrons off polarized NH₃ and unpolarized hydrogen

 $> \sim 8M \pi^+ / 4M \gamma$ in DIS kinematics, SIDIS/DVCS Q²>1.5 GeV²,W²>4,y<0.85, HMP Q²>2.5 GeV²,W²>5,y<0.85

beam polarization 73% target polarization 72% (f=0.2)

Contributions to σ in ep->e'p' γ

$$\begin{aligned} |\mathcal{T}_{\rm BH}|^2 &= \frac{e^6}{x_{\rm B}^2 y^2 (1+\epsilon^2)^2 \Delta^2 \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left\{ c_0^{\rm BH} + \sum_{n=1}^2 c_n^{\rm BH} \cos\left(n\phi\right) + s_1^{\rm BH} \sin\left(\phi\right) \right\} \\ \mathcal{I} &= \frac{\pm e^6}{x_{\rm B} y^3 \Delta^2 \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left\{ c_0^{\mathcal{I}} + \sum_{n=1}^3 \left[c_n^{\mathcal{I}} \cos(n\phi) + s_n^{\mathcal{I}} \sin(n\phi) \right] \right\} , \end{aligned}$$

Extraction more complicated due to ϕ -dependent amplitude

H. Avakian GPD workshop Aug

CLAS 5.7 GeV: beam ssa

Monitor beam spin flips with DVCS SSA

A_{LU} in ep->e'p' γ

Two methods used so far: $A_{LU} = \langle \sin \phi \rangle / \langle \sin^2 \phi \rangle$ and $(N^+ - N^-) / (N^+ + N^-)$ provide different approximations of $s_2^{-1}(H, H)$.

Requirements for precision (<15%) measurements of GPDs from DVCS SSA:

Define relation between A_{LU} and s₂^I
effect of other non-0 moments
effect of finite bins
Define background corrections
pion contamination
ADVCS
radiative background

Azimuthal moments in ep->e'p'γ

 $A_{LU} = \langle \sin \phi \rangle / \langle \sin^2 \phi \rangle$ and $(N^+ - N^-) / (N^+ + N^-)$ are related to s_2^{-1}

H. Avakian GPD workshop Aug

MC:Contributions to σ in ep->e'p' π

$$\frac{d\sigma}{dt}(\gamma_L \ p \to \pi^0 \ p) = \frac{d\sigma}{dt}(x, Q^2) \bigg|_{t=t_{\min}} \times e^{B(t-t_{\min})},$$

where:

$$\left. \frac{d\,\sigma}{d\,t}(x,Q^2) \right|_{t=\mathrm{t_{min}}} = \frac{\alpha_S^{\,2}(Q^2)\cdot\mathrm{PF}(x,Q^2)\cdot\mathrm{UF}(x)}{Q^2(Q^2+M^2)^2}.$$

$$PF(x,Q^2) = \frac{Q^4 (1-x)^2}{(-Q^2 - 0.881721 x + Q^2 x)^2}.$$

UF(x) is defined by GPD H

Mankievicz, Piller Vanderhaeghen... hep-ph/9909534 H. Avakian GPD workshop Aug

MC/data comparison for π^0 (-t<0.5 GeV²)

H. Avakian GPD workshop Aug

Angular and mass distribution of DVCS photons

H. Avakian GPD workshop Aug

DVCS MC: separating DVCS photons

ϕ -dependence of M_X^2 for γ and π^0

Collinearity cut (for $ep[\gamma]$ sample)

$$\mathcal{P}_1 = -\frac{1}{y(1+\epsilon^2)} \{J + 2K\cos(\phi)\}, \qquad \mathcal{P}_2 = 1 + \frac{\Delta^2}{\mathcal{Q}^2} + \frac{1}{y(1+\epsilon^2)} \{J + 2K\cos(\phi)\}$$

H. Avakian GPD workshop Aug

Correction factor as a function of bin size

Comparing A_{LU} extraction methods for DVCS

A_{LU} from MC (false sin2 ϕ)

Fit with P1*sin(ϕ)+P2*sin(2* ϕ)+P3

No sin2 ϕ in generator !

DVCS A_{LU} extracted from MC (ep->e'p'[γ])

H. Avakian GPD workshop Aug 21

DVCS t-dependence (CLAS 5.7 GeV vs MC)

H. Avakian GPD workshop Aug

Exclusive pions: CLAS 4.3 vs. 5.7GeV

Beam SSA in HMP: x,t-dependence

H. Avakian GPD workshop Aug

SSA t-dependence (CLAS 5.7GeV)

Contributions to σ in Polarized SIDIS

Semi-Classical Models

Collins effect:

asymmetric fragmentation

Orbital momentum generated in string breaking and $q\overline{q}$ pair creation produces left-right asymmetry from transversely polarized quark fragmentation (Artru-hep-ph/9310323).

Sivers effect: asymmetric distribution

In the transversely polarized proton **u** quarks are shifted down and **d** quark up giving rise to SSA (Burkardt-hep-ph/02091179). The shift (~ 0.4 fm) is defined by spin-flip GPD **E** and anomalous magnetic moment of proton.

Collins Effect:

Left-right asymmetry in the fragmentation of transversely polarized quarks²⁸

Semi-Classical Models

Collins effect:

asymmetric fragmentation

Orbital momentum generated in string breaking and $q\overline{q}$ pair creation produces left-right asymmetry from transversely polarized quark fragmentation (Artru-hep-ph/9310323).

Sivers effect: asymmetric distribution

In the transversely polarized proton **u** quarks are shifted down and **d** quark up giving rise to SSA (Burkardt-hep-ph/02091179). The shift (~ 0.4 fm) is defined by spin-flip GPD **E** and anomalous magnetic moment of proton.

Sivers Effect:

Left-right asymmetry in the distribution function

LUND-MC vs Polarized CLAS data

Factorization studies in CFR at CLAS

LUND-MC: Dilution in NH₃

Polarized target: x,z factorization studies at 5.7GeV

Longitudinally Pol Target: SSA for π^+

H. Avakian GPD workshop Aug

Beam SSA: sin Moment

A_{LU} x-dependence: CLAS 4.3 vs. 5.7 GeV

Factorization studies in CFR at CLAS

Summary

- Current CLAS data are consistent with a partonic picture, and can be described by a variety of theoretical models
 - DVCS SSA consistent with GPD based predictions
 - No x/z-dependence observed in single and double spin asymmetry measurements in SIDIS (consistent with factorization).
 - Spin and azimuthal asymmetries in agreement with HERMES and SMC.
 - Single-Spin asymmetries extracted for SIDIS π + are in agreement with predictions from χQSM model .
 - Kinematic distributions in agreement with LUND-MC
 - Global analysis of SSA for polarized beam and target needed to separate different contributions and extract underlying distribution functions (GPDs ,TMDs,...).