Vector Meson Production in CLAS

Elton Smith, Jlab and the CLAS Collaboration

Generalized Parton Distributions and Hard Exclusive Processes Institute for Nuclear Theory Workshop June 23 – 27, 2003

Outline

- Summary of φ, ρ and ω photoproduction data at high-t
- Results of electroproduction of ρ and φ mesons at 4.2 GeV
- Signal extraction and quality of data for electroproduction of ω and φ mesons at 5.75 GeV
- Note: Analysis is proceeding on other channels
 - DVCS
 - $\Box \pi^0$ and η
 - □ Single spin asymmetries for γ , π^0 , etc

Exclusive reactions

High t

Leading twist factorization

G. Lepage and S. Brodsky Phys.Rev. D22 (1980) 2157

- All partons are involved
 Hard scattering amplitude
 Soft physics encoded in Distribution Amplitudes
- Large p_T inclusive hadronic scattering
 Exclusive hadronic two-body reactions
 Wide Angle Meson photoproduction
 Wide Angle Compton Scattering

Dimensional Counting rules

S.Brodsky G.Farrar Phys.Rev.Lett. 31 (1973) 1153 Phys.Rev. D11 (1975) 1303 $\begin{array}{c} -t \to \infty \\ t/s \text{ fixed} \end{array}$

 $ds/dt(ab \rightarrow ab)$ $\sim 1/s^{(n-2)} f_{ab}(t/s)$

High Q²

Hand bag factorization

- Only 1 active parton
- Hard scattering amplitude
- Soft physics encoded in

Generalized Parton Distributions

X.Ji Phys.Rev. D55 (1997) 7114 A.Radyushkin Phys.Rev. D56 (1997) 5524

- Deeply Virtual Compton Scattering
- Deeply Virtual Meson Production
- Wide Angle Compton Scattering
- Wide Angle Meson Photoproduction

CLAS Detector

CLAS Detector MC

Coverage for $ep \rightarrow e'pX$, E=4 GeV

Photoproduction Cross Sections

Elton Smith / INT June 23-27

$d\sigma/dt$ ρ^0 mesons

- The same 2-gluons coupling used in Φ photo-production
- ($f_2 + \sigma$) exchange at low momentum transfer
- quark-exchange parametrized through 'Saturated Regge Trajectories'
- quark-exchange dominates at large -t

Elton Smith / INT June 23-27

$d\sigma/dt$

 ω mesons

- The same model used in Φ and ρ photo-production Solution Full model = 2 gluons +
- correlations + π -exch. + f_2 -exchange + u-exchange
- No pQCD calculations available

Elton Smith / INT June 23-27

Limiting Cases for GPDsOrdinary Parton Distributions $(\Delta, t, \xi \rightarrow 0)$ $H_0(x,0) = q(x)$ unpolarized $\widetilde{H}_0(x,0) = \Delta q(x)$ polarized

Nucleon Form Factors (Sum Rules)

$$\int H_{\xi}(x,t) dx = F_{1}(t) \quad \text{Dirac}$$

$$\int \widetilde{H}_{\xi}(x,t) dx = g_{A}(t) \quad \text{Axial vector}$$

$$\int E_{\xi}(x,t) dx = F_{2}(t) \quad \text{Pauli}$$

$$\int \widetilde{E}_{\xi}(x,t) dx = h_{A}(t) \quad \text{Pseudoscalar}$$

Meson Production as a Filter

Use quantum numbers of meson to select appropriate combinations of parton distributions in nucleon. Pseudoscalers (polarized)

 $\pi^{0}: \Delta u_{v} - \frac{1}{2} \Delta d_{v}$ $\eta: \Delta u_{v} - \frac{1}{2} \Delta d_{v} + 2\Delta s_{v}$

Vector Mesons (unpolarized) ρ_L^0 : $u + \overline{u} + \frac{1}{2} (d + \overline{d})$; g ω_1^0 : $u + \overline{u} - \frac{1}{2} (d + \overline{d})$; g

$$\phi_{L}^{0}$$
: s + s; g

Program to determine GPD's

$$ep \rightarrow ep \rho^{0} \longrightarrow H^{2}, E^{2}$$

$$\pi^{+}\pi^{-}$$

$$en \pi^{+} \longrightarrow \widetilde{H}^{2}, \widetilde{E}^{2}$$

$$e p \gamma \longrightarrow H^{2}, E^{2}, \widetilde{H}^{2}, \widetilde{E}^{2}$$

$$\vec{e} p \rightarrow ep \gamma \longrightarrow H, E, \widetilde{H}$$

$$e\vec{p} \rightarrow en \pi^{+} \longrightarrow \widetilde{H} * \widetilde{E}$$

Other Channels

 $\vec{e} p \rightarrow eN(\eta,\pi)$ e No $e(\Lambda,\Sigma)$ K $e \Delta \pi$ efferson C Elton Smith / INT June 23-27

Kinematics

 $Q^2 x_B t M_{K+K-} \theta_{K+H} \phi_{K+H} \Phi$

ρ and ω signatures

Hadjidakis/IPN Orsay

The ρ and ω production

- $E_{\gamma} > 2 \text{ GeV}$ POMERON + $f_2 + \pi$ exchange
- $-t > 1 \text{ GeV}^2/c^2$ Quark interchange mechanisms

Experimentally

- $\gamma + p \rightarrow p + \rho^0 \rightarrow p + \pi^+ + (\pi^-)$ has 3 charged part in final state
- Large $\sigma \sim 15 \ \mu barn @ E_{\gamma} 3-4 \ GeV$
- Dominant in 2 pions production (~70% of $\sigma(\pi^+\pi^-)$ @ E_y 3-4 GeV)
- $\gamma + p \rightarrow p + \omega \rightarrow p + \pi^+ + (\pi^- + \pi^0)$ 3 charged part in final state
- Sizeable $\sigma \sim 3 \ \mu barn @ E_{\gamma} 3-4 \ GeV$
- Very small width (~ 8 MeV): good signal-noise ratio

Decay distribution from MC

Decay Distribution: $\rho_L \rightarrow \pi^+\pi^- \sim T \sin^2\theta_{cm} + 2L \cos^2\theta_{cm}$

Elton Smith / INT June 23-27

Conclusions from ρ analysis @ 4.2 GeV

- $d\sigma/dt \sim exp(1.3 \text{ GeV}^{-2} \text{ t})$ for $c\Delta \tau \sim 0.45 \text{ fm}$ ■ Exponent B = 1.3 GeV⁻² ~ 0.2 fm
- Both Regge and GPD models fail to reproduce data at large x (low W)
- Regge model reproduces σ_T , but fails for σ_L
- GPD model (frozen α_s, no D-term, b_{val}=5, b_{sea}=1) adequately represents the data

- Very small width (~ 4 MeV): good signal-noise ratio
- \bullet Not easy to measure due to the low σ and the kaons decay

with fluctuation time $\Delta \tau \sim 1/\Delta E$

Particle identification for K+ skim

K⁻ selection

ø peak

E = 5.75 GeV

ø yields

Summary of 5.75 data set

- Clear and clean signals for both ω and φ
 Limited angular analysis will be possible for both
- Analysis of ρ signal will follow in parallel with analysis for ω production
- These data will challenge theorists to develop a consistent picture for their description

