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Forward limit

= Recover forward parton distributions



Local limit

= Recover form factors



QCD matrix elements

Matrix element:
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Interpreting GPDs

* quark emitted and absorbed with L. m.f. (x+&) and

(x-E)

* quark/antiquark pair is emitted with L. m.f. (x+&)
and (E-x)



Types of GPDs

¢ Three fermion GPDs:
' |y eplp) = H(z, €, t) & E(z,€,t)
(' [Py i) = H(z,&,t) & E(x, &, t)

<p/‘&gﬂaw‘p> i HTq (CC, 57 t) & ETq (CI’), €7 t)
* Plus three gluon GPDs



GPDs on the Lattice

GPDs are non-local objects
On the Lattice: we can only measure
local matrix elements

= use light-cone OPE

reexpress GPDs in terms of generalized local currents
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GPDs from GFFs

Similarly:

<p/‘021[m-~un} p)

contains information on (n-1)st moment
of non-forward GPD via expansion
in terms of Generalized Form Factors



In practice: Matrix elements

Get matrix element (P'|O|P) from ratio
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This ratio ensures the correct cancellation of wave function
normalization and exponential factors for smeared

sources and sinks.



In practice: GFFs

Get generalized form factors from continuum expression
at fixed virtuality (but not necessarily
at fixed external momenta!), e.g.

<P/J@Eq7{MW5iDV}¢q\P> i
ALy )7 + BI(t) o (s ) pHAY

Then: Use all available index combinations
and external momenta at fixed # and compute the GFFs



Merits of our approach

x-dependence similar to forward parton dist.
(reconstruct via inverse Mellin-transform)

polynomiality condition:
&-dependence fully under control

t-dependence under good control by using
different (known) virtualities

Lattice method allows for model-independent
and assumption-free assessment of GPDs



Problems and shortcomings

* Primary concern: Fermions still far from chiral
regime

e Renormalization (continuum limit and lattice
artifacts)

* Theoretical understanding of partially quenching

* We will see: Problems can be hoped to be
resolved in the near future



What are sea and valence
quarks?

= =
T=U-N

S e N

FIG. 1. Connected (upper row) and disconnected (lower row)
diagrams contmibuting to hadron mainx elements. The left column
shows typical contmbutions of quarks and the right colummn shows
contributions of antiquarks.

Figure taken from PRD66, 034506 (2002)
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Figure taken from PRD62, 094503 (2000)



Current status of PQyPT

* Expressions available for spectroscopy
* finite volumes
* finite (and separate) lattice spacings
* finite (within range of PQyPT) quark masses

e different species of sea/valence quarks

(Wilson/GW and Clover/GW)

* To do: Matrix elements with Staggered/GW
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Our calculation

Wilson fermions for sea+valence quarks
Moderate/cheap price
Renormalization and continuum limit understood

Dithcult for light quark masses

O(a) cut-off effects



Exploratory study

Staggered sea and Domain-Wall valence quarks
Moderate/expansive price

Renormalization/continuum limit not yet
understood

Conceptual question-mark for staggered quarks

Light quarks possible until finite size effects show
B

O(Z°) cut-off effects



Numerical Results
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Numerical Results
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Summary

* GPDs are accessible primarily by Lattice
Simulations

* Primary concern is the chiral extrapolation

* First attempt to address the primary concern
BUT: results not conclusive so far!



Outlook

* Need to improve statistics and compute more
data points

* Need to compute renormalization constants

* Need to improve theoretical understanding of
staggered sea quarks and domain wall valence

quarks



