Lattice Calculations of Form Factors and Moments of Parton and Generalized Parton Distributions

J. W. Negele

INT Workshop on Generalized Parton Distributions July 29, 2003

Collaborators

R. Brower

.

A. Pochinsky

R. Edwards

G. Fleming

P. Haegler

U. Heller

Th. Lippert

D. Renner

D. Richards

K. Schilling

W. Schroers

Outline

Introduction

Motivation

Parton and Generalized Parton Distributions

Transverse Fourier Transform

Forward matrix elements

Lattice calculation

SESAM results in heavy quark regime

Preliminary MILC results in chiral regime

Off-forward matrix elements

Lattice calculation: overdetermined fit

n = 1 Electromagnetic Form Factors

n = 2 Quark angular momentum

n = 3 Transverse size

Summary and Outlook

Introduction

- Special role of light cone correlation functions
 - Asymptotic freedom → Reaction theory perturbative
 - Measure matrix elements of light cone operators unambiguously
- Use lattice field theory to explore and understand these matrix elements as fully as possible
- Impact on experiment and on model building

Goals

- Quantitative calculation of hadron observables
 from first principles
 - **Comparison of theory and experiment**
 - **Credibility for predictions**
- Insight into hadron structure how QCD works
 - **Mechanisms**
 - Paths that dominate action instantons
 - Variational wave functions

Dependence on parameters

- N_c, N_F, Gauge group
- Dependence on m_q

Two Distinct Regions of QCD

- Heavy quark regime
 - Confinement
 - Flux tubes
 - Adiabatic potential
 - Isgur Wise function
- Light quark regime

Chiral symmetry breaking Instantons Zero modes: $\langle \bar{\psi}\psi \rangle = \pi \rho(0)$ Quarks propagate via 't Hooft interaction Zero modes dominate quark propagation Instantons alone yield observables similar to those from all gluons Low energy effective theory - chiral perturbation theory

Parton and Generalized Parton Distributions

High energy scattering measures light cone correlation functions

$$\mathcal{O}(x) = \int rac{d\lambda}{4\pi} e^{i\lambda x} ar{\psi}(-rac{\lambda}{2}n)
onumber n \mathcal{P} e^{-ig\int_{-\lambda/2}^{\lambda/2} dlpha \, n \cdot A(lpha n)} \psi(rac{\lambda}{2}n)$$

Deep inelastic scattering

Diagonal matrix element

 $\langle P | \mathcal{O}(x) | P
angle = q(x)$

Deeply virtual Compton scattering

Off-diagonal matrix element

 $egin{aligned} &\langle P'|\mathcal{O}(x)|P
angle &= \langle\gamma
angle H(x,\xi,t) + rac{i\Delta}{2m}\langle\sigma
angle E(x,\xi,t)\ \Delta &= P'-P, \quad t=\Delta^2, \quad \xi=-n\cdot\Delta/2 \end{aligned}$

Moments of PD's and GPD's

Expansion of

$$\mathcal{O}(x) = \int rac{d\lambda}{4\pi} e^{i\lambda x} ar{\psi}(-rac{\lambda}{2}n)
onumber n \mathcal{P} e^{-ig\int_{-\lambda/2}^{\lambda/2} dlpha \, n \cdot A(lpha n)} \psi(rac{\lambda}{2}n)$$

Generates tower of twist - 2 operators

$$\mathcal{O}_q^{\{\mu_1\mu_2...\mu_n\}} = \overline{\psi}_q \gamma^{\{\mu_1} i D^{\mu_2} \dots i D^{\mu_n\}} \psi_q$$

Diagonal matrix element

$$\langle P | \mathcal{O}_q^{\{ \mu_1 \mu_2 ... \mu_n \}} | P
angle \sim \int dx \, x^{n-1} q(x)$$

Off-diagonal matrix element

 $\langle P' | \mathcal{O}_q^{\{\mu_1\mu_2...\mu_n\}} | P
angle \sim \int dx \, x^{n-1} [H(x,\xi,t), E(x,\xi,t)] \
ightarrow A_{ni}(t), B_{ni}(t), C_n(t)$

J. W. Negele

INT 7-03

7

GPD's and Transverse Structure of Parton Distributions

M Burkardt, hep-ph/0005108,0207047

- Form factors in non-relativistic and relativistic systems:
- **Consider Fourier transform of density**

$$egin{aligned} \mathcal{F}_{\psi}(ec{q}) &\equiv \int d^{3}x \, e^{ec{q}\cdotec{x}} \langle \psi |
ho(x) | \psi
angle \ &= \int rac{d^{3}p}{\sqrt{2E_{p}2E_{p+q}}} \psi^{*}(ec{p}+ec{q}) \psi(ec{p}) \langle ec{p}+ec{q} |
ho(0) | ec{p}
angle \ &= \int rac{d^{3}p(E_{p}+E_{p+q})}{2\sqrt{E_{p}E_{p+q}}} \psi^{*}(ec{p}+ec{q}) \psi(ec{p}) F(q^{2}) \end{aligned}$$

Non-relativistic limit

$$egin{aligned} &rac{(E_p+E_{p+q})}{2\sqrt{E_pE_{p+q}}} o 1 \ &q^2 = (E_p-E_{p+q})^2 - ec{q}\,^2 o - ec{q}\,^2 \ &\int d^3p\,\psi^*(ec{p}+ec{q})\psi(ec{p}) o 1 \ &\mathcal{F}_p(q) o F(q^2) \end{aligned}$$

Transverse Fourier transform behaves the same for light cone wave functions

P⁺ enters like mass $\rightarrow \infty$

Formally, Galilean subgroup of Poincare Group

INT 7-03

Parton and Generalized Parton Distributions

Light cone correlation function

A⁺ = 0, Transverse position 0_{\perp}

$$\hat{\mathcal{O}}_q(x,0_{\perp}) = \int rac{dx^-}{4\pi} e^{ixp^+x^-} ar{q}(-rac{x^-}{2},0_{\perp}) \gamma^+ q(rac{x^-}{2},0_{\perp})$$

Forward matrix element

$$q(x) = \langle P, S | \hat{\mathcal{O}} | P, S
angle$$

Off-forward matrix element

$$egin{aligned} rac{1}{2ar{p}}ar{u}(P',S')\left(\gamma^+H_q(x,\xi,t)+irac{\sigma^{+
u}\Delta_
u}{2M}E_q(x,\xi,t)
ight)u(P,S)\ &=\langle P',S'|\hat{\mathcal{O}}|P,S
angle \end{aligned}$$

$$ar{P}^{\mu} = rac{1}{2}(P^{\mu}+P'^{\mu}) \ \Delta^{\mu} = P^{\mu}-P'^{\mu} \ t = \Delta^{2} \ \xi = -rac{\Delta^{+}}{2P^{+}}$$

INT 7-03

• Limits

$$egin{aligned} H_q(x,0,0) &= q(x) \ &\sum_q e_q \int dx H(q,\xi,t) = F_1(t) \ &\sum_q e_q \int dx E(q,\xi,t) = F_2(t) \end{aligned}$$

Combine features of parton distributions and form factors

• Structure for $\xi = 0$

operator	$ar q \gamma^+ q$	$\int e^{ixp^+x^-}ar qx^+q$
forward m.e.	\boldsymbol{Q}	q(x)
off forward	F(t)	H(x,0,t)
density	ho(r)	$q(x,b_{\perp})$

Impact parameter dependent parton distribution

$$egin{aligned} q(x,b_{ot}) &= \langle p^+, R_{ot} = 0, \lambda | \hat{\mathcal{O}}(x,b_{ot}) | p^+, R_{ot} = 0, \lambda
angle \ \hat{\mathcal{O}}_q(x,b_{ot}) &= \int rac{dx^-}{4\pi} e^{ixp^+x^-} ar{q}(-rac{x^-}{2},b_{ot}) \gamma^+ q(rac{x^-}{2},b_{ot}) \end{aligned}$$

Note:

 $\xi=0
ightarrow P^{+\prime}=P^+$

Diagonal, positive density

Avoid uncertainty principle problems

Longitudinal: xP^+

Transverse: b_{\perp}

•Consider no helicity flip : $\lambda = \lambda'$

 $ar{u}(P')\sigma u(P)=0,ar{u}(P')\gamma^+u(P)=2P^+$

 $H_q(x,0,t)$

 $egin{aligned} &=\intrac{dx^-}{4\pi}e^{ixp^+x^-}\langle P',\lambda|ar{q}(-rac{x^-}{2},0_{ot})\gamma^+q(rac{x^-}{2},0_{ot})|P,\lambda
angle \ &=\langle P',\lambda|\hat{\mathcal{O}}_q(x,0_{ot})|P,\lambda
angle \end{aligned}$

Impact parameter dependent parton distribution

$$egin{aligned} q(x,b_{ot}) \ &= \langle P^+, R_{ot} = 0, \lambda | \hat{\mathcal{O}}(x,b_{ot}) | P^+, R_{ot} = 0, \lambda
angle \ &= |\mathcal{N}|^2 \int rac{d^2 P_{ot}}{(2\pi)^2} \int rac{d^2 P'_{ot}}{(2\pi)^2} \langle P^+, P'_{ot}, \lambda | \hat{\mathcal{O}}(x,b_{ot}) | P^+, P_{ot}, \lambda
angle \ &= |\mathcal{N}|^2 \int rac{d^2 P_{ot}}{(2\pi)^2} \int rac{d^2 P'_{ot}}{(2\pi)^2} \langle P^+, P'_{ot}, \lambda | \hat{\mathcal{O}}(x,0_{ot}) | P^+, P_{ot}, \lambda
angle e^{ib_{ot} \cdot (P_{ot} - P'_{ot})} \ &= |\mathcal{N}|^2 \int rac{d^2 P_{ot}}{(2\pi)^2} \int rac{d^2 P'_{ot}}{(2\pi)^2} \langle P^+, P'_{ot}, \lambda | \hat{\mathcal{O}}(x,0_{ot}) | P^+, P_{ot}, \lambda
angle e^{ib_{ot} \cdot (P_{ot} - P'_{ot})} \ &= |\mathcal{N}|^2 \int rac{d^2 P_{ot}}{(2\pi)^2} \int rac{d^2 P'_{ot}}{(2\pi)^2} H_q(x,0,-(P_{ot} - P'_{ot})^2) e^{ib_{ot} \cdot (P_{ot} - P'_{ot})} \ &\Delta_{ot} = P'_{ot} - P_{ot}, \quad ar{P}_{ot} = rac{1}{2} (P'_{ot} + P_{ot}) \end{aligned}$$

Then:

$$q(x,b_{\perp})=\int rac{d^2 \Delta_{\perp}}{(2\pi)^2} H(x,0,-\Delta_{\perp}^2) e^{-ib_{\perp}\Delta_{\perp}}$$

Thus, $\mathbf{H}(x, \xi = 0, -\Delta_{\perp}^2)$ measures Fourier transform of $\mathbf{q}(x, b_{\perp})$

Note: at x=1, one parton carries all momentum

- Single component in Fock space
- $\delta(b_{\perp})$
- Zero slope in $\Delta_{\perp}^2 = t$

INT 7-03

Light-Cone W.F. for DVCS Brodsky, Diehl & Hwang hep-ph/0009254

No Δ_{\perp} dependence for $x_1 \rightarrow 1$

$$\begin{aligned}
\sqrt{1-\xi^2} \ H_{(n\to n)}(\bar{x},\xi,t) &= \frac{\xi^2}{\sqrt{1-\xi^2}} \ E_{(n\to n)}(\bar{x},\xi,t) \tag{73} \\
&= \sqrt{1-\xi^{2-n}} \sqrt{1+\xi^{2-n}} \sum_{n,\lambda_i} \int \prod_{i=1}^n \frac{\mathrm{d}x_i \, \mathrm{d}^2 \vec{k}_{\perp i}}{16\pi^3} \ 16\pi^3 \delta \left(1-\sum_{j=1}^n x_j\right) \ \delta^{(2)}\left(\sum_{j=1}^n \vec{k}_{\perp j}\right) \\
&\times \delta(\bar{x}-x_1) \ \psi^{\dagger}_{(n)}(x'_i,\vec{k}'_{\perp i},\lambda_i) \ \psi^{\dagger}_{(n)}(y_i,\vec{l}_{\perp i},\lambda_i), \\
&\frac{1}{\sqrt{1-\xi^2}} \frac{\Delta^1 - i\Delta^2}{2M} \ E_{(n\to n)}(\bar{x},\xi,t) \tag{74} \\
&= \sqrt{1-\xi^{2-n}} \sqrt{1+\xi^{2-n}} \sum_{n,\lambda_i} \int \prod_{i=1}^n \frac{\mathrm{d}x_i \, \mathrm{d}^2 \vec{k}_{\perp i}}{16\pi^3} \ 16\pi^3 \delta \left(1-\sum_{j=1}^n x_j\right) \ \delta^{(2)}\left(\sum_{j=1}^n \vec{k}_{\perp j}\right) \\
&\times \delta(\bar{x}-x_1) \ \psi^{\dagger}_{(n)}(x'_i,\vec{k}'_{\perp i},\lambda_i) \ \psi^{\dagger}_{(n)}(y_i,\vec{l}_{\perp i},\lambda_i),
\end{aligned}$$

where

$$\begin{aligned} x_1' &= \frac{x_1 - \xi}{1 - \xi}, \quad \vec{k}_{\perp 1}' = \vec{k}_{\perp 1} - \frac{1 - x_1}{1 - \xi} \frac{\vec{\Delta}_{\perp}}{2} & \text{for the final struck quark,} \\ x_i' &= \frac{x_i}{1 - \xi}, \quad \vec{k}_{\perp i}' = \vec{k}_{\perp i} + \frac{x_i}{1 - \xi} \frac{\vec{\Delta}_{\perp}}{2} & \text{for the final } (n - 1) \text{ spectators,} \end{aligned}$$
(75)

and

$$y_{1} = \frac{x_{1} + \xi}{1 + \xi}, \quad \vec{l}_{\perp 1} = \vec{k}_{\perp 1} + \frac{1 - x_{1}}{1 + \xi} \frac{\vec{\Delta}_{\perp}}{2} \quad \text{for the initial struck quark,}$$
(76)
$$y_{i} = \frac{x_{i}}{1 + \xi}, \quad \vec{l}_{\perp i} = \vec{k}_{\perp i} - \frac{x_{i}}{1 + \xi} \frac{\vec{\Delta}_{\perp}}{2} \quad \text{for the initial } (n - 1) \text{ spectators.}$$

INT 7-03

J. W. Negele

13

Forward Matrix Elements

Experimentally measured quark and gluon distributions at $Q^2 = 5 \text{ GeV}$

Phenomenological fits to unpolarized data

CTEQ: http://www-spires.dur.ac.uk/hepdata/cteq.html

GRV: http://www-spires.dur.ac.uk/hepdata/grv.html

MRS: http://durpdg.dur.ac.uk/hepdata/mrs.html

Phenomenological fits to polarized data

GRSV: http://doom.physik.uni-dortmund.de/PARTON/index.html GS:http://www.desy.de/ gehrt/pdf

INT 7-03

Moments of quark and gluon distributions

Moments of quark distributions in the proton

$$\langle x^n \rangle_q = \int_0^1 \mathrm{d}x \, x^n \big(q(x) + (-1)^{n+1} \bar{q}(x) \big)$$
$$\langle x^n \rangle_{\Delta q} = \int_0^1 \mathrm{d}x \, x^n \big(\Delta q(x) + (-1)^n \Delta \bar{q}(x) \big)$$
$$\langle x^n \rangle_{\delta q} = \int_0^1 \mathrm{d}x \, x^n \big(\delta q(x) + (-1)^{n+1} \delta \bar{q}(x) \big)$$

where $q = q_{\uparrow} + q_{\downarrow}$ $\Delta q = q_{\uparrow} - q_{\downarrow}$ $\delta q = q_{\top} + q_{\perp}$ are related to matrix elements of twist-2 operators

$$\frac{1}{2} \langle PS | \bar{\psi} \gamma^{\{\mu_1} i D^{\mu_2} \cdots i D^{\mu_n\}} \psi | PS \rangle = 2 \langle x^{n-1} \rangle_q P^{\{\mu_1} \cdots P^{\mu_n\}}$$
$$\langle PS | \bar{\psi} \gamma^{\{\mu_1} \gamma_5 i D^{\mu_2} \cdots i D^{\mu_n\}} \psi | PS \rangle = \frac{2}{n} \langle x^{n-1} \rangle_{\Delta q} S^{\{\mu_1} P^{\mu_2} \cdots P^{\mu_n\}}$$
$$\langle PS | \bar{\psi} \sigma^{[\alpha \{\mu_1\}} \gamma_5 i D^{\mu_2} \cdots i D^{\mu_n\}} \psi | PS \rangle = \frac{2}{M} \langle x^{n-1} \rangle_{\delta q} S^{[\alpha} P^{\{\mu_1\}} P^{\mu_2} \cdots P^{\mu_n\}}$$
where $\{\} \Rightarrow$ symmetrization, $[] \Rightarrow$ antisymmetrization, and $S^2 = M^2$

Higher twist operators:

$$\langle PS | \bar{\psi} \gamma^{[\mu_1} \gamma_5 i D^{\{\mu_2\}} \cdots i D^{\mu_n\}} \psi | PS \rangle = \frac{1}{n} d_{n-1} S^{[\mu_1} P^{\{\mu_2\}} \cdots P^{\mu_n\}}$$

INT 7-03	J. W. Negele	15
----------	--------------	----

Lattice Operators

Use irreducible representations of hypercubic group with minimal operator mixing and minimal non-zero momentum components

$$\langle x \rangle_q^{(a)} \quad 6_3^+ \quad \bar{\psi} \gamma_{\{1} \overleftrightarrow{D}_{4\}} \psi \qquad p$$

$$\langle x \rangle_q^{(b)} \quad 3_1^+ \quad \bar{\psi}\gamma_4 \overleftrightarrow{D}_4 \psi - \frac{1}{3} \sum_{i=1}^3 \bar{\psi}\gamma_i \overleftrightarrow{D}_i \psi \qquad 0$$

$$\langle x^2 \rangle_q \quad 8^-_1 \quad \bar{\psi} \gamma_{\{1} \overleftrightarrow{D}_1 \overleftrightarrow{D}_4\} \psi - \frac{1}{2} \sum_{i=2}^3 \gamma_{\{i} \overleftrightarrow{D}_i \overleftrightarrow{D}_4\} \psi \qquad p, m$$

$$\langle x^3 \rangle_q \quad 2_1^+ \quad \bar{\psi}\gamma_{\{1}\overleftrightarrow{D}_1\overleftrightarrow{D}_4\overleftrightarrow{D}_4\}\psi + \bar{\psi}\gamma_{\{2}\overleftrightarrow{D}_2\overleftrightarrow{D}_3\overleftrightarrow{D}_3\}\psi - \{3 \leftrightarrow 4\} \quad p, m^*$$

$$\langle 1 \rangle_{\Delta q} \quad 4^+_4 \quad \bar{\psi} \gamma^5 \gamma_3 \psi \qquad 0$$

$$\langle x \rangle^{(a)}_{\Delta q} \quad 6^-_3 \quad \bar{\psi} \gamma^5 \gamma_{\{1} \overleftrightarrow{D}_{3\}} \psi \qquad p$$

$$\langle x \rangle_{\Delta q}^{(b)} \quad 6_3^- \quad \bar{\psi} \gamma^5 \gamma_{\{3} \overleftrightarrow{D}_{4\}} \psi \qquad 0$$

$$\langle x^2 \rangle_{\Delta q} \quad 4_2^+ \quad \bar{\psi} \gamma^5 \gamma_{\{1} \overleftrightarrow{D}_3 \overleftrightarrow{D}_{4\}} \psi \qquad p$$

$$\langle 1 \rangle_{\delta q} \quad 6_1^+ \quad \bar{\psi} \gamma^5 \sigma_{34} \psi \qquad 0$$

$$\langle x
angle_{\delta q} \quad 8^-_1 \quad ar{\psi} \gamma^5 \sigma_{3\{4} \overleftrightarrow{D}_{1\}} \psi \qquad \qquad p$$

$$d_1 \qquad 6^+_1 \quad ar{\psi}\gamma^5\gamma_{[3}\overleftrightarrow{D}_{4]}\psi \qquad \qquad 0,M$$

$$d_2 \qquad 8^-_1 \quad ar{\psi}\gamma^5\gamma_{[1}\overleftrightarrow{D}_{\{3]}\overleftrightarrow{D}_{4\}}\psi \qquad \qquad p,M$$

where $(\bar{\psi}\overset{\leftrightarrow}{D}\psi)_n = \bar{\psi}_n U_{n,\mu}\psi_{n+\mu} - \bar{\psi}_{n-\mu}U_{n-\mu,\mu}^{\dagger}\psi_n$ $m \Rightarrow \text{mixing with same dimension operators}$ $m^* \Rightarrow \text{no mixing for Wilson or overlap}$ $M \Rightarrow \text{mixing with lower dimension for Wilson, not for overlap}$

Perturbative Renormalization

observable	γ	B^{LATT}	$B^{\overline{MS}}$	$Z(\beta = 6.0)$	$Z(\beta = 5.6)$
$\frac{\langle x \rangle_q^{(a)}}{\langle x \rangle_q^{(a)}}$	8/3	-3.16486	-40/9	0.9892	0.9884
$\langle x \rangle_q^{(b)}$	8/3	-1.88259	-40/9	0.9784	0.9768
$\langle x^2 \rangle_q$	25/6	-19.57184	-67/9	1.1024	1.1097
$\langle x^3 \rangle_q$	157/30	-35.35192	-2216/225	1.2153	1.2307
$\langle 1 \rangle_{\Delta q}$	0	15.79628	0	0.8666	0.8571
$\langle x \rangle_{\Delta q}^{(a)}$	8/3	-4.09933	-40/9	0.9971	0.9969
$\langle x \rangle_{\Delta q}^{\overline{(b)}}$	8/3	-4.09933	-40/9	0.9971	0.9969
$\langle x^2 \rangle_{\Delta q}$	25/6	-19.56159	-67/9	1.1023	1.1096
$\langle 1 \rangle_{\delta q}$	1	16.01808	-1	0.8563	0.8461
$\langle x \rangle_{\delta q}$	3	-4.47754	-5	0.9956	0.9953
d_1	0	0.36500	0	0.9969	0.9967
d_2	7/6	-15.67745	-35/18	1.1159	1.1242

 $O_{i}^{\overline{MS}}(Q^{2}) = \sum_{j} \left(\delta_{ij} + \frac{g_{0}^{2}}{16\pi^{2}} \frac{N_{c}^{2} - 1}{2N_{c}} \left(\gamma_{ij}^{\overline{MS}} \log(Q^{2}a^{2}) - (B_{ij}^{LATT} - B_{ij}^{\overline{MS}}) \right) \right) \cdot O_{j}^{LATT}(a^{2})$

Note mixing of $d_n \propto \gamma_5 \gamma_{[\sigma} \overleftrightarrow{D}_{\{\mu_1]} \cdots \overleftrightarrow{D}_{\mu_n\}}$ with $\frac{1}{a} \gamma_5 \gamma_{[\sigma} \gamma_{\{\mu_1\}} \cdots \overleftrightarrow{D}_{\mu_n\}}$ for Wilson fermions.

Calculations in Heavy Quark Regime

SESAM Configurations

- N_F = 2 Wilson fermions
- β **= 5.6**
- a = 0.92 fm (M_N)
- 16³ x 32 lattice
- L = 1.48 fm
- 200 configurations per quark mass
- pion masses (MeV)

754	868	962	M _N
744	831	897	r _o

Hadron Matrix Elements on the Lattice

- Measure $\langle \mathcal{O}
 angle$, for m_q , a, L
- Connected diagrams

$$p = 0$$

 $p \neq 0$

- Disconnected diagrams
- Extrapolate

 $m_q: m_\pi \to 140 \text{ MeV}$ $a \to \sim 0.05 \text{ fm}$ $L \to \sim 5.0 \text{ fm}$

• Note: For $\langle \mathcal{O}
angle_u - \langle \mathcal{O}
angle_d$, disconnected diagrams cancel

Calculation of Matrix Elements on Euclidean Lattice

 J^{\dagger} : Current with quantum numbers of proton $|\psi_{J}
angle = J^{\dagger}|\Omega
angle$ Trial function

Normalize:

$$\begin{split} \left\langle TJ(t_3) J^{\dagger}(t_1) \right\rangle &= \sum_n \left| \left\langle \psi_J \right| n \right\rangle \right|^2 e^{-E_n(t_3 - t_1)} \\ & \xrightarrow[t_3 - t_1 \gg 1]{} \left| \left\langle \psi_J \right| 0 \right\rangle \right|^2 e^{-E_0(t_3 - t_1)} \\ & \Longrightarrow \\ \left\langle 0 \left| \mathcal{O} \right| 0 \right\rangle &= \frac{\left\langle J \mathcal{O} J^{\dagger} \right\rangle}{\left\langle J J^{\dagger} \right\rangle} = \underbrace{\bigoplus}_{\bigoplus} \end{split}$$

J. W. Negele

Sequential source options:

Each $\mathcal{O}(2)S(2,1)$ generates S(2,3) to all t_3 Sink at fixed t_3 generates S(3,2)

INT 7-03

20

Calculation of Connected Diagrams

• Nucleon source: $J^{\alpha} = u^{\alpha}_{a} u^{\beta}_{b} (C\gamma_{5})_{\beta\beta'} d^{\beta'}_{c} \epsilon^{abc}$

- $\bullet\,$ Use upper two components of J
- Dirichlet boundary conditions for quarks in *t*-direction
- Gauge-invariant Wuppertal smearing of sources

$$\psi(x,t) \longrightarrow (1+\alpha \sum_{i=1}^{3} [U(x,i)\delta_{x,x+\hat{i}} + U^{\dagger}(x-\hat{i},i)\delta_{x,x-\hat{i}}])^{N}\psi(x,t)$$

Source Optimization

Overlap between $|\psi_J\rangle$ and $|0\rangle$

Optimize

Vary parameters in trial function to maximize P(0)

- o Crucial for accurate lattice measurements
- Tool to study physics of proton wave function

Lattice Measurement of Overlap

INT 7-03

J. W. Negele

J. W. Negele

J. W. Negele

Error Analysis

Observables in plateaus measured two ways:

- 1. Average over window $[t_{source} + \Delta, t_{sink} \Delta]$
- 2. Fit $R(t) = R_0 + \sum_i B_i (e^{C_i(t t_{source})} + e^{C_i(t_{sink} t)})$

Consistent within statistics,

Window average (1) most stable

Checked bootstrap distributions

 $\langle x \rangle_q^{(b)}$ for $\beta = 5.6$, $\kappa = 0.1575$

Ensembles of 25 and 204 configurations

J. W. Negele

Comparison of Quenched Calculations

J. W. Negele

27

Comparison of Full and Quenched QCD

J. W. Negele

28

Qualitative Behavior from Instantons

J. W. Negele

Qualitative Behavior from Instantons

J. W. Negele

30

Comparison of Results

Connected	QCDSF	QCDSF	Wuppertal	Quenched	Full QCD	Phenomenology
M. E.		(a=0)			(3 pts)	$(q\pm ar q)$
$\langle x \rangle_u$	0.452(26)			0.454(29)	0.459(29)	
$\langle x \rangle_d$	0.189(12)			0.203(14)	0.190(17)	
$\langle x \rangle_{u-d}$	0.263(17)			0.251(18)	0.269(23)	0.154(3)
$\langle x^2 \rangle_u$	0.104(20)			0.119(61)	0.176(63)	
$\langle x^2 \rangle_d$	0.037(10)			0.029(32)	0.031(30)	
$\langle x^2 \rangle_{u-d}$	0.067(22)			0.090(68)	0.145(69)	0.055(1)
$\langle x^3 \rangle_u$	0.022(11)			0.037(36)	0.069(39)	
$\langle x^3 \rangle_d$	-0.001(7)			0.009(18)	-0.010(15)	
$\langle x^3 \rangle_{u-d}$	0.023(13)			0.028(49)	0.078(41)	0.023(1)
$\langle 1 \rangle_{\Delta u}$	0.830(70)	0.889(29)	0.816(20)	0.888(80)	0.860(69)	
$\langle 1 \rangle_{\Delta d}$	-0.244(22)	-0.236(27)	-0.237(9)	-0.241(58)	-0.171(43)	
$\langle 1 \rangle_{\Delta u - \Delta d}$	1.074(90)	1.14(3)	1.053(27)	1.129(98)	1.031(81)	1.248(2)
$\langle x \rangle_{\Delta u}$	0.198(8)			0.215(25)	0.242(22)	
$\langle x \rangle_{\Delta d}$	-0.048(3)			-0.054(16)	-0.029(13)	
$\langle x \rangle_{\Delta u - \Delta d}$	0.246(9)			0.269(29)	0.271(25)	0.196(9)
$\langle x^2 \rangle_{\Delta u}$	0.04(2)			0.027(60)	0.116(42)	
$\langle x^2 \rangle_{\Delta d}$	-0.012(6)			-0.003(25)	0.001(25)	
$\langle x^2 \rangle_{\Delta u - \Delta d}$	0.05(2)			0.030(65)	0.115(49)	0.061(6)
δu_c	0.93(3)	0.980(30)		1.01(8)	0.963(59)	
δd_c	-0.20(2)	-0.234(17)		-0.20(5)	-0.202(36)	
d_2^u	-0.206(18)			-0.233(86)	-0.228(81)	
d_2^d	-0.035(6)			0.040(31)	0.077(31)	

Chiral Extrapolation - Physics of the Pion Cloud

• Long-standing puzzle: Linear extrapolation in m_q yields serious discrepancies

$$\langle x \rangle_u - \langle x \rangle_d \sim 0.24 - 0.28 \quad (0.16)$$

 $g_A = \langle 1 \rangle_{\Delta u} - \langle 1 \rangle_{\Delta d} \sim 1.0 - 1.1 \quad (1.26)$

• Pion cloud essential component of nucleon

```
\mu_N, g_A
Suppressed with heavy quarks in small volume
Require:
```

Light quarks

Large volume: $L \ge 4\frac{1}{m_{\pi}}$

Full QCD

Chiral Perturbation Theory

Heavy baryon chiral perturbation theory for nucleon parton distributions

Chen & Ji, Arndt & Savage, Chen & Savage

$$\langle x^n \rangle_u - \langle x^n \rangle_d \sim a_n \left[1 - \frac{(3g_A^2 + 1)m_\pi^2}{(4\pi f_\pi)^2} \ln(m_\pi^2)) \right] + \text{analytic terms}$$

• Physical chiral extrapolation formula

hep-lat/0103006

$$\langle x^n \rangle_u - \langle x^n \rangle_d \sim a_n \left[1 - \frac{(3g_A^2 + 1)m_\pi^2}{(4\pi f_\pi)^2} \ln\left(\frac{m_\pi^2}{m_\pi^2 + \mu^2}\right) \right] + b_n m_\pi^2$$

J. W. Negele

Chiral Perturbation Theory

Consistent Results for Three Moments

Diamonds full QCD, squares MIT quenched, triangles QCDSF quenched

Chiral Extrapolation hep-lat/0209160

< *x* > quenched improved Wilson - QCDSF

Analogous Result for Magnetic Moment

D. Leinweber, D. Lu, and A. Thomas hep-lat/0103006

INT 7-03

J. W. Negele

Calculation in Chiral Regime

SESAM configurations

- N_f = 2 Wilson
- $N_{\pi} = 754, 868, 962 \text{ MeV}$

MILC configurations

- n_f = 3
- Asqtad Staggered sea quarks
- Domain wall valence quarks
- HYP smearing
- Preliminary results:
 - a = 0.13 fm
 - m_π = 343 MeV, 635 MeV
 - ~ 100 configurations
 - Unrenormalized

Asqtad Action: O(a²) Perturbatively Improved

Symanzik Improved glue $S_{a}(U) = c_{0} W^{1x1} + c_{1} W^{1x2} + c_{2} W^{cube}$

Smeared staggered fermions: S_f(V,U)

- Fat links remove taste changing gluons
- Lepage term: 5 link O(a²) correction of flavor conserving gluons
- Third-nearest neighbor Naik term (thin links)
- All terms tadpole improved

HYP Smearing

Three levels of SU(3) projected APE blocking mixes links within hypercubes

HYP Parameters

• Non-perturbative: Minimize dislocations by maximizing the minimum plaquette

Perturbative: remove flavor changing gluons

	α ₁	α2	α3
Non-pert.	0.75	0.60	0.30
Pert.	0.875	0.571	0.25

Precision Agreement in Full QCD

• Gold-Plated Observables Davies et al, hep-lat/0304004

Staggered quarks

Asqtad improved action

a = 0.13, 0.09 fm

 ${f Errors}\sim 3\%$

Gold-plated processes for 8/9 CKM elements

INT 7-03

Light Quark Plateaus

343 MeV

J. W. Negele

Onset of Unphysical Doublers

J. W. Negele

Momentum Fraction <x>

J. W. Negele

J. W. Negele

J. W. Negele

Off-forward matrix elements

Define generalized form factors

$$\bar{P} = \frac{1}{2}(P'+P), \quad \Delta = P'-P, \quad t = \Delta^2$$

$$\langle P'|O^{\mu_1}|P\rangle \sim \langle \gamma^{\mu_1}\rangle A_{10}(t)$$

+ $\langle \sigma^{\mu_1\alpha}\rangle \Delta_{\alpha}B_{10}(t)$

$$\begin{split} \langle P'|O^{\mu_1\mu_2}|P\rangle &\sim \langle \gamma^{\{\mu_1\}}\bar{P}^{\mu_2\}}A_{20}(t) \\ &+ \langle \sigma^{\{\mu_1\alpha\}}\Delta_\alpha\bar{P}^{\mu_2\}}B_{20}(t) \\ &+ \langle 1\rangle\Delta^{\{\mu_1}\Delta^{\mu_2\}}C_{20}(t) \end{split}$$

$$\begin{split} \langle P'|O^{\mu_1\mu_2\mu_3}|P\rangle &\sim \langle \gamma^{\{\mu_1\}}\bar{P}^{\mu_2}\bar{P}^{\mu_3\}}A_{30}(t) \\ &+ \langle \sigma^{\{\mu_1\alpha\}}\Delta_\alpha\bar{P}^{\mu_2}\bar{P}^{\mu_3\}}B_{30}(t) \\ &+ \langle \gamma^{\{\mu_1\}}\Delta^{\mu_2}\Delta^{\mu_3\}}A_{31}(t) \\ &+ \langle \sigma^{\{\mu_1\alpha\}}\Delta_\alpha\Delta^{\mu_2}\Delta^{\mu_3\}}B_{31}(t) \end{split}$$

INT 7-03

Correspondence of Moments and Generalized Form Factors

$$egin{aligned} n &= 1 \ \int dx H(x,\xi,t) &= A_{10}(t) \ \int dx E(x,\xi,t) &= B_{10}(t) \end{aligned}$$
 $n &= 2 \ \int dx x H(x,\xi,t) &= A_{20}(t) + C_2(t) 4\xi^2 \ \int dx x E(x,\xi,t) &= B_{20}(t) - C_2(t) 4\xi^2 \end{aligned}$
 $n &= 3$

 $\int dx x^2 H(x,\xi,t) = A_{30}(t) + A_{32}(t) 4\xi^2$ $\int dx x^2 E(x,\xi,t) = B_{30}(t) + B_{32}(t) 4\xi^2$

INT 7-03

Off-forward matrix elements

Limits

• Moments of parton distributions $\mathbf{t} \to \mathbf{0}$ $A_{n0}(0) = \int dx x^{n-1} q(x)$

Form factors

$$A_{10}(t) = F_1(t)$$
 $B_{10}(t) = F_2(t)$

• Total quark angular momentum $J_q = \frac{1}{2} \left[A_{20}(0) + B_{20}(0) \right]$

t-Dependence

q(x,t): Transverse Fourier transform of light cone parton distribution at given x

 $x \rightarrow 1$: Single Fock space component – slope $\rightarrow 0$

x < 1: Transverse structure — slope steeper

INT 7-03

Lattice Calculation

Calculate Ratio

$$R_{\mathcal{O}}(\tau, P', P) = \frac{C_{\mathcal{O}}^{3\text{pt}}(\tau, P', P)}{C^{2\text{pt}}(\tau_{\text{snk}}, P')} \left[\frac{C^{2\text{pt}}(\tau_{\text{snk}} - \tau + \tau_{\text{src}}, P) \ C^{2\text{pt}}(\tau, P') \ C^{2\text{pt}}(\tau_{\text{snk}}, P')}{C^{2\text{pt}}(\tau_{\text{snk}} - \tau + \tau_{\text{src}}, P') \ C^{2\text{pt}}(\tau, P) \ C^{2\text{pt}}(\tau_{\text{snk}}, P)} \right]^{1/2}$$

Perturbative Renormalization

$$\mathcal{O}_{i}^{\overline{\text{MS}}}(\mu) = \sum_{j} Z_{ij}(\mu, a) \mathcal{O}_{j}^{\text{lat}}(a)$$
$$\langle P' | \mathcal{O}_{i}^{\overline{\text{MS}}} | P \rangle = \sqrt{E(P')E(P)} \sum_{j} Z_{ij} \overline{R}_{j}$$
$$\langle P' | \mathcal{O}_{\{\mu_{1}\mu_{2}...\mu_{n}\}}^{q} | P \rangle = \sum_{i} a_{i} A_{ni}^{q} + \sum_{j} b_{j} B_{nj}^{q} + cC_{n}^{q}$$

Schematic Form

$$\langle O_i^{cont} \rangle = \sum_j a_{ij} \mathcal{F}_j$$

 $\langle O_i^{cont} \rangle = \sqrt{E'E} \sum_j Z_{ij} \overline{R}_j$
 $\overline{R}_i = \frac{1}{\sqrt{E'E}} \sum_{jk} Z_{ij}^{-1} a_{jk} \mathcal{F}_k$
 $\equiv \sum_j a'_{ij} \mathcal{F}_j.$

Overdetermined set of equations Multiple representations

Multiple mumentum combinations

INT 7-03

Solution of Overdetermined Equations

Schematic form

$$R' = A' \cdot F$$

Minimize χ^2

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{\sum_{j=1}^{n+1} A_{ij}' \mathcal{F}_{j} - R_{i}'}{\sigma_{i}} \right)^{2}$$

Rescale

$$A_{ij} = A'_{ij} / \sigma_i$$
 $R_i = R'_i / \sigma_i$

Minimize

$$\chi^2 = |A \cdot F - R|^2$$

By singular value decomposition

For singular values, automatically minimize in residual subspace

N=2 Operators

3 diagonal operators

$$\begin{split} \mathcal{O}_1^{\mathrm{diag,n=2}} &=\; \frac{1}{2} \left[\mathcal{O}_{11} + \mathcal{O}_{22} - \mathcal{O}_{33} - \mathcal{O}_{44} \right] \\ \mathcal{O}_2^{\mathrm{diag,n=2}} &=\; \frac{1}{2^{1/2}} \left[\mathcal{O}_{33} - \mathcal{O}_{44} \right], \\ \mathcal{O}_3^{\mathrm{diag,n=2}} &=\; \frac{1}{2^{1/2}} \left[\mathcal{O}_{11} - \mathcal{O}_{22} \right], \end{split}$$

6 non-diagonal operators

$$\mathcal{O}_{\mu_1,\mu_2}^{\text{non-diag},n=2} = \frac{1}{2} \left[\mathcal{O}_{\mu_1\mu_2} + \mathcal{O}_{\mu_2\mu_1} \right] = \mathcal{O}_{\{\mu_1\mu_2\}}$$

Minimal subset: diag1,diag2 {2,0}

Equavalent momenta

Ν	1		2	3
\vec{P}'	(0,0	,0)	(0, 0, 0)	(0, 0, 0)
P	$(-p_l,$	0,0)	$(0, -p_l, 0)$	$(0, 0, -p_l)$
v ·····				
	4	5	6	7
	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	$(-p_l, 0, 0)$
	$(p_l, 0, 0)$	$(0, p_l, 0)$	$(0, 0, p_l)$	(0, 0, 0)

J. W. Negele

Overdetermined Form Factor Fits

Case	#Ops	# Mom
1	1	1
2	6	1
3	6	2
4	6	3
5	6	4
6	6	5
7	6	6
8	6	7

J. W. Negele

N=3 Operators

12 traceless, symmetric linear combinations

$$\mathcal{O}_{1}^{n=3} = \left(\frac{3}{2}\right)^{1/2} \left[\mathcal{O}_{\{122\}} - \mathcal{O}_{\{133\}}\right]$$

$$\mathcal{O}_{3}^{n=3} = \left(\frac{3}{2}\right)^{1/2} \left[\mathcal{O}_{\{211\}} - \mathcal{O}_{\{233\}}\right]$$

$$\mathcal{O}_{5}^{n=3} = \left(\frac{3}{2}\right)^{1/2} \left[\mathcal{O}_{\{311\}} - \mathcal{O}_{\{322\}}\right]$$

$$\mathcal{O}_{7}^{n=3} = \left(\frac{3}{2}\right)^{1/2} \left[\mathcal{O}_{\{411\}} - \mathcal{O}_{\{422\}}\right]$$

$$\mathcal{O}_{2}^{n=3} = \frac{1}{2^{1/2}} \left[\mathcal{O}_{\{122\}} + \mathcal{O}_{\{133\}} - 2\mathcal{O}_{\{144\}}\right]$$

$$\mathcal{O}_{4}^{n=3} = \frac{1}{2^{1/2}} \left[\mathcal{O}_{\{211\}} + \mathcal{O}_{\{233\}} - 2\mathcal{O}_{\{244\}}\right]$$

$$\mathcal{O}_{6}^{n=3} = \frac{1}{2^{1/2}} \left[\mathcal{O}_{\{311\}} + \mathcal{O}_{\{322\}} - 2\mathcal{O}_{\{344\}}\right]$$

$$\mathcal{O}_{8}^{n=3} = \frac{1}{2^{1/2}} \left[\mathcal{O}_{\{411\}} + \mathcal{O}_{\{422\}} - 2\mathcal{O}_{\{433\}}\right]$$

$$\mathcal{O}_{\mu_1,\mu_2,\mu_3}^{\text{non-diag},n=3} = \mathcal{O}_{\{\mu_1\mu_2\mu_3\}}$$

Set of Lattice Monenta

(-1, 0, 0)	$(-2,\pm 1,0),(-2,0,\pm 1)$	$(1, \pm 1, 0), (1, 0, \pm 1)$	-3.090
(-1, 0, 0)	(-2, 0, 0)	(1, 0, 0)	-2.492
(-1, 0, 0)	$(-1, \pm 1, \pm 1)$	$(0, \pm 1, \pm 1)$	-1.844
(-1, 0, 0)	$(-1,\pm 1,0),(-1,0,\pm 1)$	$(0, \pm 1, 0), (0, 0, \pm 1)$	-1.246
(0, 0, 0)	$(\pm 1, \pm 1, 0), (\pm 1, 0, \pm 1), (0, \pm 1, \pm 1)$	$(\mp 1, \mp 1, 0), (\mp 1, 0, \mp 1), (0, \mp 1, \mp 1)$	-1.134
(-1, 0, 0)	$(0,\pm 1,0),(0,0,\pm 1)$	$(-1, \pm 1, 0), (-1, 0, \pm 1)$	-0.597
(-1, 0, 0)	(-1, 0, 0)	(0, 0, 0)	-0.052
(0, 0, 0)	$(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)$	$(\mp 1, 0, 0), (0, \mp 1, 0), (0, 0, \pm 1)$	0 502
(-1, 0, 0)	(0, 0, 0)	(-1, 0, 0)	0
(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	0
\overrightarrow{p}'	\xrightarrow{d}	\xrightarrow{b}	$t [\text{GeV}^2]$

n=1: Electromagnetic Form Factors

• Lattice results $m_{\pi} \sim 900 \text{ MeV}$

J. W. Negele

RMS Charge Radius

INT 7-03

J. W. Negele

n = 1 Axial Form Factor

J. W. Negele

Axial F.F. Dipole Masses

Axial u+d Form Factor

J. W. Negele

Pseudoscalar Form Factor

J. W. Negele

Pseudoscalar F.F. Dipole Masses

J. W. Negele

n=2: First x Moments

hep-lat/0304018

 $A^{u-d}_{20}(t), B^{u-d}_{20}(t), C^{u-d}_2(t)$

J. W. Negele

n=2: Quark Angular Momentum

Connected diagrams, $m_{\pi} = 900$ MeV, hep-lat/0304018

Quark Angular Momentum

INT 7-03

J. W. Negele

Quark Angular Momentum

Connected diagram contributions

к	0.1570	0.1565	0.1560
ΔΣ	0.666 ± 0.033	0.727 ± 0.028	$\texttt{0.684} \pm \texttt{0.018}$
2 J _q	0.730 ± 0.035	0.688 ± 0.024	0.682 ± 0.029
2 Lq	0.064 ± 0.048	-0.039 ± 0.037	-0.002 ± 0.034

J. W. Negele

n=2 Spin Dependent

J. W. Negele

n=2 Spin Dependent

J. W. Negele

n=1, 2, 3: x Dependence of Slope

- Transverse Fourier transform of light-cone parton distribution
- Expect slope → 0 as x → 1
- Expect higher moments have smaller slope
- Lattice results for n = 1, 2, 3 (mπ = 900MeV)
- Factorization Ansatz invalid

J. W. Negele

N = 1, 2, 3 Mass Dependence

INT 7-03

J. W. Negele
n=1,2:L x Dependence of Slope

J. W. Negele

Summary

- Generalized form factors characterize transverse structure of parton distribution
- Limit $A(0)_{20}^{u+d} + B(0)_{20}^{u+d}$ yields total angular momentum for quarks
- Developed an effective method to calculate
- Lattice moments will be valuable constraints, since experiments cannot fully determine function of three variables with convolutions
- Results in heavy pion world

Slope of H(x,0,t) decreases as x increases, confirming transverse size decreases

Factorized Ansatz ruled out

 $rac{Q^2 F_2(Q^2)}{\log^2(Q^2/\Lambda^2)F_1(Q^2)}\sim ext{constant, like experiment}$

Angular momentum from connected diagrams

67-73% from quark spin

0-6% from quark orbital

Beginning to get results in light pion world

Current and Future Effort

Π	L∕a	am_l	am_s	m_{π}	m_{π}^2	Configs
				MeV	GeV ²	
Г	20	0.1	0.1	609	.371	339
	20	0.05	0.05	522	.272	414
	20	0.03	0.05	448	.201	564
	20	0.02	0.05	391	.153	385
	20	0.01	0.05	304	.092	630
	28	0.01	0.05	305	.093	165+

Production with MILC configurations

MILC Lattices with a = 0.13 fm to be used with valence domain wall fermions

 20^3 a = 0.13 fm L = 2.6 fm m_{π} = 300 MeV

28³ a = 0.13 fm L = 3.64 fm m_{π} = 216 MeV

Finite volume effects: L = 2.6 and 3.6 fm Finite size effects: a = 0.13 and 0.09 fm

Current and Future Effort

- Calulational issues
 - Perturbative renormalization
 - Partially quenched chiral perturbation theory for staggered sea and GW valence
 - Disconnected diagrams
- Conceptual issues
 - Topology low modes with HYP
 - Multiple pions correctable with chiral perturbation theory?
 - Square root
 - Optimal U in covariant derivatives
 - Short distance properties