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Preliminaries

Definition of conformal transformations

Among the general coordinate transformations exist transformations
that only change the normalization of the metric

g (x) = glw(w') = w(z)gu(z) — ' =0==x
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History

e Electrodynamics is invariant under conformal transformations
(applications in electrostatic)

e massless Dirac equation is conformally invariant, too

e inspired by both scaling behaviour in high energy experiments and
second order phase transition phenomena conformal symmetry has
been intensively studied in field theory at the end of 60th and 70th

e in QCD conformal symmetry has been ‘discovered’ at short, light-
like distances, and at high energy (BFKL) around 80th (or before),
renewed interest in the 90th by different authors

e conformal field theories in two-dimensions



Conformal transformations in D = 4 Minkowski space

Global transformations

The maximal extension of the Poincaré group SO(3,1)

o — 2™ = Ax” with 27 =2° (6 parameter)

o' — 2" =" 4 a” (4 parameter)

that /eaves the light-cone invariant is given by

ot — 2" = Az dilatation
p p
" + a : :
ot — 2" = 4 special conformal transformations
14+ 2a x4+ a?x?

(IT,I 2" with Iz* = x*/x?), the conformal group SO(4, 2).

Lie—algebra

Global transformations are generated by infinitesimal ones.
The generators of Poincaré transformations satisfy

([P, P,] =0, i[Mag, Pu] = gauPs — gp.Pa
i[Mag, Ml = gouMpy — 98u.Mav — gaMg, + 95.May
and for dilatation D and special conformal transformations K, one has
D, P, =P,, i[D,K,]=-K,,
i[Mag, Ku] = 90, K — 95,.Ka, [Py, K] = —29,,D + 2M,,,
i(D,M,,| =K, K,] =0
Conformal symmetry can only hold for massless theories

exp {iAD} P exp {—iAD} = exp {2)\} P°.



Field theoretical representations

The conformal transformations of a generic field ®(x) are induced by
S B(0) = =2 B(0), Sp®(0) =L &(0), §-B(0)=0.

with ¢ is the scaling dimension. From the ‘little algebra’

"¢ = 0, M) = %o‘“’e,b, SHAY = g" YAl — gl A,
by = 1, Ly =3/2, by =1,
and by translations
P (z) = i[P", P(z)] = 0"P(x),
one finds
i ®(x) = iM", ®(2)] = (20" — 2"0" — ") (),
opP(zx) = i[D,P(x)] =(x-0+ 1) P(x),
SLD(z) = i[K', B(z)] = (zx“x.a — 229" 4 202" — zx,,z:“”) B ()

Casimir operators

e Poincaré group with W, = (1/2) €05, P*M"7 -
P°®(z) = M*®(z) W>d(z) = s(s+ 1)M*d(z),

e Conformal group, eigenvalues of Casimir operators are expressed by
spin s and scaling dimension £ :

1 uv 7 . 2
C2 = EM'LWM — KMP —4:D — D R Cg, C4



Collinear conformal group

An ultra-relativistic particle propagates close to the light-cone, thus

d(x) = P(an) = ¢(a), " = z_n" +z 0" + 2,

2 2 _
n"=n =0, n-n=1.

= an, light-like, one

Choosing the special conformal parameter a,
finds the following collinear conformal subgroup [projection on a line]

, €T_
r_- —>x_+c, xT_=Ar_

r_ —r = ,
1+ 2ax_

The fields are living on the light cone are classified with respect to their

spin projection s on the "+" direction:

Y4-P(a) = s P(a)

Then the global transformations are

. b
(o) = d'(a) = (ca+d) 2o (ZZL) L ad —be=1,

where a, b, c, d are real numbers and with the conformal spin

J=(49)/2 |

The conformal generators are
L_.=L; —iLs = (¢/2)K_,

L. = Li + iLs = —iP.,
E=(i/2)(D-M_,).

Lo = (i/2)(D+M_,),
satisfying the SL(2,R) ~ O(2,1) algebra

(Lo, L] = FLy, [L_,Li]=—-2Lo, [E,Lo]=0.



Algebraic aspects

Eigenvalues of E counts the twist t
1
E, ®(a)] = 5(6 —s)P(a) t=40—5s

Simplest representations

Multiplets are classified by the eigenvalues of > 5, ; ,[Li, [Li, ®()]]

[Lo, [Lo, ®(a)]] = [Lo, ()] + [Ly, [L, R()]] =7 () — 1)®(a)

The lowest member of the multiplet is characterized by

L) = 2O, a0y = ).

Applying the step-up operator
Ok—l—l = [L_|_, Ok] = (—n . a)Ok, O() = q)(O) .

provides a conformal tower of states wich have conformal spin projection

[Lo, O] = (k+ 7)O with £E=0,1,2,...,00 |

Action of the step-down operator is
[L_, Ok] = —k:(k: + 27 — 1)Ok_1 .

Decomposition of the primary field operator ® () in the states Oy

Pa) =3 (_O") Oy .
k=0

k!



Classification of two-(multi) particle operators

Conformal multiparticle operators O,, are constructed by reduction

(1] ® [i2] = Elir + j2 + 1] -

n>0

Li=Li;i+Ly;, L0”= 3 [Li,[Li,Oul] = ju(jn — 107,

i=0,1,2 ’
where 7,, = 71 + 72 + n. For the lowest state it is required that

[L—7 @,]zl ]2] =0 and [L07 @/1/2] = j”’ @I/Ll »J2

from which the CG coefficients, given by Legendre polynomials, follows

— —
d: — O+

— —
o1+ 0+

j1:J9 __ Qn  p(21-1,2j5-1) ‘
@n, _ 0_|_ CI)Jan, CI)J2

States with higher conformal spin projections are given by

O =1 (84.1 —|— 8+2) O ) [ Z n, @ZL,” = @ZL .

n,l n,n

10 e o 660606060 00
© o606 060 0 0 0 o
®© o606 060 0 0 o
Ly =(1/9)P4 1 © o 0o 06 0 0 o
6 © © o © o ®
©o o 0 0 o .
| (J1,72) = (1/2,1/2)
L =@G/2K | o oo o
2 e @
o
2 4 6 8 10

.jn, =1 +n



QCD example

Definite spin projection of fermionic field ¥ = ¥, + ¥ _:

1 1 1 1
Yy = E’Y—’)’Mb (3 = +§> , (LR §’Y+’Y—¢ (3 = —§> :

The components of a bilocal vector operator are classified by the twist:

twist-2: Qi (a, B) = P (B)y+4(a) = Q" (e, B),
twist-3:  Qu(a,B) = Ppyiv- + Py = QN2 4 QY
twist-d:  Q_(a, ) = Poy-tpo = Q7

and can be decomposed in conformal operators

Q. (z) = (i0y)" [?Z(CU) vy O (B+ /3+) ¢(90)] ,

Analogous treatment for gluonic operators gives at leading twist:

G (@) = (i0)" |G () O (Dy /04) G ()]

Remarks

e Higher twist two-particle operators are reducible to multiple particle
operators + lower twist operators by equation of motion.

e The spectrum of 3, 4, . . . -particle operators is degenerated.

e Such an algebraic classification can be also employed in the case
that conformal symmetry is broken, e.g., m # 0.



Conformal partial wave expansion

The conformal expansion on the operator level implies the partial
wave expansion for (generalized) distribution amplitudes, e.g., pion
distribution amplitude

(0][d(0)[0, a]v4y5u()lren| 7 (p)) = ’ipr+/0 du e "+ pr(u, p)

e ) = S LT 2w~ 1) 010 ()1 ()

n=0 n

At LO the conformal operators are multiplicative renormalizable:

as(p)
3( O)

where By = 11 — 2n;/3 and v?) are know from DIS

v = Cr (1— - ”i:l )
" (n—l—l)(n—l—Z) —

Alltogether, we have the solution of the ER-BL equation to LO

’Yn /60
<0|@;’1<u>|w+<p>>=( ) 018" (o) 7 ().

d as(p) [
M _2¢7r( 7#) — —/ dv V(O)(uav) ¢7T(U7/'L).
d 27 0
and the kernel has the following representation
1 > 6u(1 — u) (0) 3/2 3/2

This expansion does not hold true in NLO for MS scheme.



Conformal operator product expansion

The OPE of two currents (fields) with definite spin projections s 4, sp
and scale dimensions £ 4, {5 for xy, x| — 0, x_-fixed read

tat+tp—tn

— 1 2 n+k+sy1+s9o—s4—s 1,7
A@BO)=> S C () T e (o)

n=0 k=0 L
Additional conditions arise from conformal symmetry

2

[L_, A(z)B(0)] =~ {a?_ (24 4z - 8,) A(z) — % 7 8$A(x)} B(0)

[L—a ©le,;342_}¢] — _k(k + 27, — 1)@511,;342%_1 yJn = J1+J2 + 1.

They provide a recurrence relation for the Wilson coefficients

JA—JB + Jn+ ijAij

/ o ‘ ’ N CJ4]2 034]2 — Cn
n,k+1 (k’—|— 1)(k'+2]n) n,k n,k ( 1,0 )

that allow to resum the total derivatives

t st g—tn

A(z)B(0) ~ ic (i> i

1
X / du UJA—JBﬂn—l(l . u)jB_jlq“_j?Z_l@Z} "72(11,:6_) :
0

n+s1+s9o—s4—s
x 1 2 A B

B(]4 _jB +jna jB _jA ‘|‘7n)

Wilson-coefficients C,, can be often borrowed from known results:

o . t A4+ g—tn
2 ..
(P|A(2)B(0)|P)~ S C, (—) G A (pl iz Py
n=0 X




Conformal symmetry and
breaking in QCD

Energy-momentum tensor

Conformal symmetry for G = {P,, M., D, K, }

5aS = /d4a:5gﬁ =0, Lqcp = PilPp — EGZVGZV-F. .
implies the existens of 15 conserved currents

Ipo = 0%, Jyrap = 2a®s — 250",

Jy =z"e", J;é,a = (2azyaza — gaya:2) er,,

- EOM - -
where 8'“@Mz/ = O, @;u/ — (T)IJILM and

8udlh =0, O Ji =0 & 0 =

In QCD the improved energy—momentum tensor formally reads

02" = —guLaoop— GG+ [mmw %bDﬂp&bJr(m—W)]Jr---

where the trace is zero on classical level

QCD EOM
e v

0+..

In a quantized theory the trace anomaly appears due to UV divergencies:
(for instance in dimensional regularization d = 4 — 2¢,i.e.g”, = d)

pu/@QCD EOM d—4 —€g + B(g)

= (G G
g




Conformal Ward ldentities

Ward identies for Green functions are derived from the reparametrization
invariance of the path integral [Sarkar (74); D.M. (90), A.V. Belitsky (98)]

OITIO18 ()2 (2)]0) = +- [ DL[O@)]B(y)d(2) e/ ™
under infinitesimal transformations for G = {P,, M., D, K, }:

P(x) = ®'(x) = ®(z) + edc®(z) with §6P(x) = G(z,0)P(x),
and read in the renormalized theory

[G(y, 0y) + G (2, 0:)] (0| T[Quly (y)¥(2)|0) =
—(0|T (661Qut]) ¥ (y)1(2)10) = (O|T[Qu]w (y)¥(2) (66S5) 10)

Renormalization of composite operators in the MS-scheme

/& /ﬁ\ /%\ (Landau gauge)

Poincaré invariance gives constraints on the form of mixing:

1
n ZnmQm ’ nm:5nm (0) @) O(1 2
[Qu] = Z Qi +2<27r ntO0(a)))+0(1/€),
thus the conformal variations of the renormalized operator insertion are

5D[in] — ecan[(@nl], in = —1 Z {Za(l)Z_l} [le—l]a

nm

where £°" =43, anm () = a(nl)dpm with a(nl) =2(n—1) (n+H+3).



Renormalization of operator products in the MS-scheme

{gz} s] = —2 ;rgﬁ(g) /ddm {2;} (G2 )2 () + -

Thus the operator product needs renormalization at © = 0O

i[Qu(0)][(G},) (2)] = i[an(O)(GZV)Q(fB)]

+6%(a )Zznm (@ (0)] + (9+5( )Zan Qui—1(0)] + - - -

m=0 m=0

Renormalization constants are calculable from Feynman diagrams

LUK

D (k) gW D"(k) = Dag(k)
ZA~ . 2794 Dug(k) — Das(k) 27 95

A straigthforward LO calculation provides

1043 I e (0)~

€2W €27

[2l — (2u — 1)%] C*2(2u —1) = f: b (1)C22 (20 — 1)

/1duci/2(2u— 1) [ Cro(o — )= {u i _U}L

0 v(u — v)? v—=>1—v
— Z wnmen/Q(Qv —1).
m=0



Conformal Ward identies in the MS-scheme

n

[Dy+DJ(Qulep) (y,2) = =D (€ 6nm + Fnm] ([Qui] ) (y,2)

m=0

+§<[@mlmw>(y,z>+ .

n

K, + K HQul) (y,2) = i) [am)Snm~+Sn, (D{Qmi-1]91) (y,2)

m=0

+§<[@mlagw><y,z>+ .

with the conformal anomalies

2
S as C

Constraints for conformal anomalies

The conformal algebra implies constraints for the anomalies [D.M. 90]:

K-, Pi]==2D+M_4)=|501+1) -5 =-29 |,

D,k =K- = [a@) +3°0) +2225(1),5] =0 |,

The second constraint can be read as

Zﬁ(g)b(l)] n>m,

nm

20— 1) (0114 D) Y1) = [was), (0 ) +



and thus v{°) = 0 for n > m and at NLO (8y = 11 — 2N;/3):

(1) (0) VSB)

(0)
Tom = 2(n—m)(n—|—m—|—3) (

bnmfym + Wnm — BObnm) y TV > M

Restoration of conformal covariance

Can we restore conformal covariance?

Yes, for 7 = 0. The solution of the conformal constraints provide us
that the rotation to the basis of multiplicative renormalizable operators

. ~CS _ ~D S—1 4 A
nl—ZBanml with 477 =4~ =B 4B,

which is only given by the special conformal anomaly

A

2 ~C ~C ~C A Anm
B=1-J44+JR®J¥)—"---, jA::{Q(n>m)—}.
Rotating the special conformal anomaly in MS-scheme gives

B a(l) +45° DB ={2(n —1)(n+1+ 3+ Yun)Sum} -

Consequently, in the coformal subtraction (CS) scheme we have
[Dy+DQ ) (y,2) = — €7 + ynn] (Q) ¥3) (3,2),

[IC, +KUQ ) (,2) = i [ab]) + 2(n — Dyna] (T ) (y,2),

and so the final expected answer turns out to be true in the CS scheme

E:;an = en(as) = E:;an + ’Vn(as) ) Yn = VYnn
a(n,l) = an,l)+2(n— Dy (as) =2(n—0)L(as) +1).



Reconstruction of hard scattering
amplitudes and evolution kernels

The found results can be applied in two different ways:

e The CS scheme allows a trivial prediction for Wilson-coefficients
(NNLO) and anomalous dimensions (NLO, partly at NNLO) in
terms of the forward quantities known from deep inelastic scattering
at NNLO [D.M.]. The B proportional terms remain scheme depen-
dent and have either to be calculated (NNLO) or are fixed by a
“renormalization group improvement” [B.Melicz, D.M., K.Passek].

e In the MS scheme one can predict the remaining anomalous di-
mensions and Wilson-coefficients at NLO [A.V.Belitsky, D.M.] and
reconstruct the hard scattering amplitudes and evolution kernels
[A.V. Belitsky,D.M., A.Freund].

Flavour singlet anomalous dimensions

We consider now the operators

Ql,l
. l—n n . vector
O, = (204) (GS/2 3/2> with [ > n, for{ } case

axial vector
n—1

The constraints have the same form as in the non-singlet case:

a0+ 570+ 22600, 4] =0 and 4+ 1) - 570) = —25

Qo (& 0) P b 0 - QQ’? QG,S, ,-3,0: QQ,?C QG,S,C
0 a/)’ 0 bl’ G% GG’? ? G%c GG,?c '

~»



NLO conformal predictions

The special conformol anomaly

ﬁ,c(o) _ bA (0) +

is known from a LO calculation, e.g,

;5,(1):;5,[)(1)_'_,?1\1[)(1) with ,?ND(l) [ (O)d] (B i +'7 ) 4+ |:;$,(02g] :

where d,,;,, = by /a(n,m) and g,,,, = Wpm/a(n, m).

Consistency checks

e In the flavor non-singlet sector the conformal prediction coincides
with the explicit NLO calculation.

e In the singlet sector the By proportional terms have been checked
by the calculation of Feynman graphs with quark bubble insertions.

e Four supersymmetric constraints, arising from the reduction of QCD
to supersymmetric N' = 1 Yang-Mills theory, for the off-diagonal
part of the anomalous dimensions are satisfied.

e Superconformal symmetry, which is anomalously broken, implies
four constraints for the special conformal anomaly. Evaluation of
the superconformal anomaly in LO shows that these constraints are
consistent with the special conformal anomaly.



Construction of evolution kernels to NLO

The result for the anomalous dimensions imply the following structure:

v =D(u,v)+G(u,v)— {V o Vv©® — @ VvV + [ V(O)] }(u V)

where the separate kernels are obtained by

° [ﬁ/(o), ci]nm & V(u,v) and gnm < g(u,v) (up to diagonal entries)
o 9“G(u,v) = G(u,v) arise from crossed ladder diagrams (no
subdivergencies and thus one can use six supersymmetric relations)

e D(u,v) has a simple representation as convolution of LO kernels

Extension of the support is unique and so the evolution for generalized
parton distributions is [D.M., D.Robaschik, B.Geyer, F.M.Dittes, J.Hotejsi (94)]:

u2iq(x n) zfld_y YV ey (WraC n+y> q(y,n)
du2 ™"’ _12|n| \nGQVv GGV I\ 2n ' 27 ’

Construction of hard scattering amplitudes

Physical motivation

Considering the Compton scattering process (or crossed channels)

v (q1) + h(p1) = v (a2) + h(p2)
in the generalized Bjorken kinematics

2
Aq .
V:p°q_>ooaQ2:_q2_>007§:_:Q_777:—q flxed7
W p-q p-q

where p = p1 + p2, A =pz —prand g = (1 + ¢2)/2.



Conformal prediction

The QCD dynamics is encoded in the hadronic tensor

Ty (p, A, q) =i / d*z e " (h(p2)| T Ju(z/2) Ty (—2/2) |h(p1)),

which is predicted to leading twist-two by the conformal OPE (8 = 0):

n(as)
00 2 D) n+1
7 2" B(n+1,n + 2)
T(wﬂ?an) = E :Cn(O‘S) (
=0 2 B(n4+24v,/2,n+24~v,/2)

1 n+1 1 — n+1+yn(as)/2

The normalization can be borrowed from DIS results (n = 0)
o2
cn(as) = c( J 4 = o (1) +— %4 O(a?) with 67(10) =1
T
and the renormalization group equation is diagonal
d  _cs cs
M@«Qn (0)) = —vn(as(p))(Q;(0)))

where -y, are completly (partial) known to NLO (NNLO):

2 3
*s _(0) *s (1) ¥ (2 3
Yn(as) = v . + ——." + O(«

Note:

conformal prediction for ¢! is exact (no 3y term)



Momentum fraction representation

The local conformal OPE prediction is related to the momentum fraction
representation by

don" C¥2(Z) ¢S (a,n, A% 1) = (QF(0)) (n, A%, 1?).
—1 n

Rotating to the MS scheme

c(0)

(1Qui] >>—ZBnm<<@ Y, Bom = Onm— 0> m)——tom

2w a(n, m)

allows the resummation of all conformal partial waves

€T ~ / = =T (55 Zaw) 7 (6 - -6 aten A% ),

nn

which coincedes with the explicit NLO calculation for quarks and gluons
[L. Mankiewicz et al.; X. Ji and J. Osborne (1998)]

Y



v*~v* -to- m transition form factor

Kinematics

2 2 2
* * @ —4q a +4q
Y (q1) + v (q2) — 7 (P), Q2:_( 1 . 2) __ % - 2

P-q qi—dq
w: 2 p— 2 2,
Q q1+Q2

n = 1.

Due to parity conservation the hadronic tensor must be of the form

2 . 2 6
Tuz/(wan — 17 Q ) = 1€ €uvapqy ng’Yﬂ'(w7 Q)

F = \?/)Z];“ nfjo Cn@as(ﬂ),%> ¢n(p)+0 (é) :

n even

where in the conformal scheme the Wilson—coefficients read

Yn(as)

2n—|—1B 1 9 2 2
ufefon ) = ente Y (M
M

B(n+2+4+v,/2,n 42+ v,/2) \Q?

y /1d wn[u(l . u)]n+1+7n(as)/2
u Y
0 [1 — w(2u — 1)]r+1tmlas)/2

w—dependence

For (n 4+ 1) In(1 4+ v/1 — w?) > /2 it is exponentially suppressed:

Cn@)‘ozs,9> X wnexp{— (n—l— 1 —|—ﬁ> In (1—|— v 1 —wQ)},
0 2



i.e., C,, is strongly concentrated in |w| = 1, taking the value

yn(as)
( Q) cn(as)B(n +1,n 4 2) AN
C,lw = l‘ozs, — ) =
T B(n+2+ /2,7 + 3+ 7,/2) \2Q?
3+ 2n
= —|— O Qg
(n+1)(n+ 2) (exs)
C.°(w)
CHo(w = 1)

0 0.2 0.4 0.6 0.8 i

Restoration of the 8 proportional term

Either one can take the MS result or one requires that the partial waves
do not mix in the full theory:

u%%(u) = (s () B(1) with 8 (1) = S Bk (1) bm(is)

m=0
d _, Q . / Q I —
N@Cn (*’|O‘5(N)>;> = (as(p))C, (*’|O‘5(N)>;> , O, = z:: CrmBmn -

m=n

Moreover, we require the initial condition

1 (o, 2) | _, = Cnle]an@1).



What is and what can be measured?
Quasi—real photon limit w = 1

i) In this singular limit all partial waves contribute.
ii) In the CS scheme the prediction for the lowest one is parameter free
(independent on the factorization scale pi¢):

\/ﬁfr 1 _ as(pr) B O‘?(/ir)
2Q2 2

F’Yﬂ'(w — 17Q) —

s v

Q* 3
X 13.583 — 2.251n 2z + O(e)) ¢

Variation of photon virtualities |w| < 1

i) Variation of 0.4 < |w| < 0.8 allows to access the first few moments.
ii) Perturbative corrections essentially generate only a vertical shift.

0. 25~ ‘ ‘ : : 0.18

> w=1 NNLO for Q2 = 2GeV?
C(B 0.2/ 1 0.16;
T 0.15] 0.14; ¢po = {—0.6,0,0.6} 7
o 257
: 0.12
SN N0 =0
N 0.05 NNLO BLM+frozenasi 0.1
NNLO u, = Q |
0 2 4 ‘ 0 0.2 0.4 0.6 0

6 8
2Q* [GeV?]

Approximative equal photon virtualities |w| < 0.4

In this case we have a Bjorken like sume rule w* < 0.4:

2 weut
“ dwFy (w, Q) = V2

cpj(as(pr), @/ pr) + O (é) :

t
weu 0

A g Otg O{:z 4

T



Conclusions

Conformal symmetry holds for § = O in the perturbative QCD sector
and it is rather useful for several problems:

e Classification and partial wave decomposition of (generalized) dis-
tribution amplitudes.

e Solving of evolution equations, for instance, via the Hamiltonian
approach (discovering of hidden symmetries).

e Reconstruction of exclusive quantities, e.g., evolution kernels and
hard scattering amplitudes, from the corresponding forward results.

e Relating different observables, Crewther relation

Clas(pusim))D(as(pgry)) = 1 | verified in NNNLO

What else can be done with conformal symmetry?

e Evaluation of NNLO corrections: ~v*v* — n, v"v* — «n7n~,

DVCS.

e Conformal symmetry can be used for the evaluation of NLO correc-
tions in the twist-3 sector.

e Hopefully, conformal symmetry has the potential to understand
(better) twist-four corrections in exclusive channels.

e Is there something else in pQCD 7



