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Elastic Form Factors (Nobel Prize 1961) are the fourier trans-
forms of the charge and current densities of the nucleon as a
function of the spatial coordinate transverse to the light cone
axis of the infinite momentum frame (IMF).

Deep Inelastic Structure Functions (Nobel Prize 1990) are the
parton densities as a function of longitudinal momentum (in the
IMF).

Inelastic Form Factors are the fourier transforms of the transi-
tion densities from the ground state to an excited state.

—But—

No model independent way to separate Resonant and Non-Resonant
terms.



The Q?-dependence of the Generalized Polarizabilities (GP) is
the fourier transform of the transition densities from the ground
state to the the virtual state created by a long wavelength
electric-dipole or magnetic-dipole field.
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In a single observable, Generalized Polarizabilities summarize in-
formation about the entire excitation spectrum of the proton.

With the GPs, we can form a picture of how the proton is dis-
torted by an external field:

Does the periphery (pion cloud?) distort more readily than the
core?

Do the electric and magnetic polarization responses differ from
their respective elastic form factors?

What is the relative magnitude of the paramagnetism (quark
spin-flip?) and dia-magnetism (Lenz’' law)?

Do the para- and dia-magnetic responses have different spatial
distributions?



Generalized Polarizabilities and Virtual Compton Scattering

i SRS

Bethe-Heitler VCS

VCS amplitude = [Bethe-Heitler 4+ Born] amplitudes
+ Low Energy Theorem (GP's)
+ Higher order terms (DR model).
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Low Energy Expansion of Virtual Compton Scattering
P.A.M. Guichon, G.Q. Liu, A.W. Thomas, Nucl. Phys. A, 591 606 (1995).
P.A.M. Guichon, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 41 125 (1998).
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Polarizabilities in Virtual and Real Compton Scattering
Spatial variation of response of proton to external
electric dipole or magnetic dipole field.
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Dispersion Relations (VCS amplitude up to =mN Threshold)
B. Pasquini et al., Eur. Phys. J. A 11, 185 (2001)

VCS Amplitude = =N Intermediate States + n¥t-channel exchange
(MAID2000)
+ two Low Energy ‘“constants” (functions of QQ).
AB(Q?) = o-meson t-channel exchange
~ 2B/ 1+ Q%A
Ala 4 8]1(Q%) = contact term

Aa(Q?) ~ Aa(0)/ [1+Q2//\a2}2

Dipole parameterizations not essential to analysis.



Results from JLab VCS experiment E93-050: H (e, e'p)y

Squared Missing Mass (MeV?)



[12] ([13]), the other ones are from this experiment. Together

included our results based on the Low Energy Theorem (O)
[4]. Some points are shifted in abscissa for better visibility.
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Dispersion Relations:
FIG. 3: World data on the structure functions Prr/G% and
Prr/GY%. The points at Q*=0 (0.33) GeV? are taken from ref. CM

Q%) < ap(Q?).

with the results presented in this letter (e, A) we have also /8 (Q2) strongly paramagnetic.

Diamagnetism dominated by polariz-

ability of pion in pion cloud?
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What do we learn from these results?

ap <K proton volume: Proton is intrisically relativistic

B < a: Strong diamagnetism

Evidence for sharp decrease in diamagnetism at low QQ.

From Dispersion Relations, we see that both a and 5 have strong
contributions from degrees of freedom beyond N intermediate
states—high energy degrees of freedom are responsible for the
low-energy phenomenon of polarizabilities

For Bps, DR suggest diamagnetism is dominated by o-meson
exchange in t-channel, which models pion-polarizability in pion-
cloud.
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Polarizabilities at High Q2
Spatial Distribution of Polarization Response

Duality? — GPD as € — 1, t — —Q?
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Compare with RCS

Ry = /H(w,£=0,t)dx

X

Dispersive Effects in Elastic e-p Scattering
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Missing Mass W=1.1 GeV and Q2=4 GeV?
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Projected missing
mass resolution for
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d’o/dK.d0.dQ,,™ (pb/GeV/sr?)
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Radiative Corrections to Elastic e-p Scattering

Discrepancy between Rosenbluth and Polarization measurements
of G /Gy is sensitive to Real part of dispersive amplitude (’)(aQED
Guichon & Vanderhaeghen hep-ph/0306007
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Two photon amplitude in elastic e-p Scattering

Imaginary part of 2+ amplitude in ep — ep

Afanasev, Akushevich, Merenkov, hep-ph/0208260

Measureable in elastic single spin asymmetries

Gorchtein & Vanderhaeghen 2003

(Transverse Beam Asymmetry 5-107° at Q2 =1 GeV?)

Calculable (?) via Optical Theorem from ep — N7...

Real part of 2+ amplitude in ep — ep

Calculable (?) from Imaginary part via Dispersion Relations plus
low energy terms (Polarizabilities).
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Conclusions

Generalized Polarizabilities give important insight to proton struc-
ture

High precision study of ep — epy possible with modest beam time
and existing equipment at JLab Hall A at Q2 = 3, 4 GeV=2.

Is there a connection between Dispersion Relations for General-
ized Polarizabilities at high Q2 and the Generalized Parton Dis-

tributions in the ¢t = —Q? limit?

ep — epy and Generalized Polarizabilities can provide important
input to dispersive effectis in elastic e-p scattering.
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