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Outline

form factor ⇒ charge distribution in position space

Deeply virtual Compton scattering (DVCS)

↪→ Generalized parton distributions (GPDs)

Probabilistic interpretation of GPDs as Fourier transforms of
impact parameter dependent PDFs

H(x, 0,−∆2
⊥) −→ q(x,b⊥)

H̃(x, 0,−∆2
⊥) −→ ∆q(x,b⊥)

E(x, 0,−∆2
⊥) −→⊥ distortion of PDFs when the target is trans-

versely polarized

Chromodynamik lensing and ⊥ single-spin asymmetries (SSA)

transverse distortion of PDFs
+ final state interactions

}

⇒ ⊥ SSA in γN −→ π+X
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Form factor vs. charge distribution (non-relativistic)

plane wave states have uniform charge distribution

↪→ meaningful definition of ρ(~r) requires that state is localized in
position space!

↪→ define localized state (center of mass frame)

∣

∣

∣

~R = ~0
〉

≡ N
∫

d3~p |~p〉

define charge distribution (for this localized state)

ρ(~r) ≡
〈

~R = ~0
∣

∣

∣
j0(~r)

∣

∣

∣

~R = ~0
〉
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Form factor vs. charge distribution (non-relativistic)

use translational invariance to relate to same matrix element that
appears in def. of form factor

ρ(~r) ≡
〈

~R = ~0
∣

∣

∣
j0(~r)

∣

∣

∣

~R = ~0
〉

= |N |2
∫

d3~p

∫

d3~p′ 〈~p′| j0(~r) |~p〉

= |N |2
∫

d3~p

∫

d3~p′〈~p′| j0(~0) |~p〉ei~r·(~p−~p′),

= |N |2
∫

d3~p

∫

d3~p′F
(

− (~p′ − ~p)
2
)

ei~r·(~p−~p′)

↪→ ρ(~r) =

∫

d3~q

(2π)3
F (−~q2)ei~q·~r
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Form Factors (relativistic)

Lorentz invariance, parity, current conservation ⇒

〈p′ |jµ(0)| p〉 =

{ (

pµ + pµ′
)

F (q2) (spin 0)

ū(p′)
[

γµF1(q
2) + iσµνqν

2M F2(q
2)

]

u(p) (spin 1
2 )

with qµ = pµ − pµ′.

issue: “energy factors” spoil simple interpretation of form factors
as FT of charge distributions
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Form Factor vs. Charge Distribution (relativistic)

wave packet

|Ψ〉 =

∫

d3p ψ(~p)
√

2E~p(2π)3
|~p〉 ,

E~p =
√

M2 + ~p2 and covariant normalization 〈~p′|~p〉 = 2E~pδ(~p
′ − ~p)

Fourier transform of charge distribution in the wave packet

ρ̃(~q) ≡
∫

d3xe−i~q·~x 〈Ψ| j0(~x) |Ψ〉

=

∫

d3p
√

2E~p2E~p′

Ψ∗(~p+ ~q)Ψ(~p) 〈~p′| j0(~0) |~p〉

=
1

2

∫

d3p
E~p +E~p′

√

E~pE~p′

Ψ∗(~p+ ~q)Ψ(~p)F (q2).
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Form Factor vs. Charge Distribution (relativistic)

Nonrelativistic case:

E~p +E~p′

2
√

E~pE~p′

= 1 and q2 = −~q2

↪→ Forier transform of charge distribution in the wave packet

ρ̃(~q) =

∫

d3pΨ∗(~p+ ~q)Ψ(~p)F (~q2)

choose Ψ(~p) very localized in position space
Ψ∗(~p+ ~q) ≈ Ψ∗(~p)

↪→ ρ̃(~q) = F (~q2)
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Form Factor vs. Charge Distribution (relativistic)

Relativistic corrections (example rms radius):

ρ̃(~q2) = 1 − R2

6
~q2 − R2

6

∫

d3p |Ψ(~p)|2 (~q · ~p)2
E2

~p

+

∫

d3p
∣

∣

∣
~q · ~∇Ψ(~p)

∣

∣

∣

2

− 1

8

∫

d3p |Ψ(~p)|2 (~q · ~p)2
E4

~p

,

[R2 defined as usual: F (q2) = 1 + R2

6 q
2 + O(q4)]

If one completely localizes the wave packet, i.e.
∫

d3p
∣

∣

∣
~q · ~∇Ψ(~p)

∣

∣

∣

2

→ 0, then relativistic corrections diverge

(∆x∆p ∼ 1)

R2

6

∫

d3p |Ψ(~p)|2 (~q · ~p)2
E2

~p

→ ∞,
1

8

∫

d3p |Ψ(~p)|2 (~q · ~p)2
E4

~p

→ ∞
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Form Factor vs. Charge Distribution (relativistic)

in rest frame, rel. corrections contribute ∆R2 ∼ λ2
C = 1

M2

identification of charge distribution in rest frame with Fourier
transformed form factor only unique down to scale λC

standard remedy: interpret F (~q) as Fourier transform of charge
distribution in Breit “frame” ~p′ = −~p (note: Breit “frame” is actually
a different frame for each ~q!)
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Form Factor vs. Charge Distribution (relativistic)

infinite momentum frame: rel. corrections governed by ~p·~q
E2

~p

and ~q2

E2
~p

consider wave packet Ψ(~p⊥) in transverse direction, with
sharp longitudinal momentum Pz → ∞
transverse size of wave packet r⊥, with
R� r⊥ � 1

Pz

take purely transverse momentum transfer

↪→ ρ̃(~q⊥) = F (~q2⊥)

↪→
form factor can be interpreted as Fourier transform of
charge distribution w.r.t. impact parameter in ∞ momen-
tum frame (without λC uncertainties!)
impact parameter measured w.r.t. ⊥ center of momentum
R⊥ =

∑

i∈q,g xir
i
⊥
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Same Derivation in LF-Coordinates

light-front (LF) coordinates

p+ =
1√
2

(

p0 + p3
)

p− =
1√
2

(

p0 − p3
)

form factor for spin 1
2 target (Lorentz invariance, parity, charge

conservation)

〈p′ |jµ(0)| p〉 = ū(p′)

[

γµF1(q
2) +

iσµνqν
2M

F2(q
2)

]

u(p)

with qµ = pµ − pµ′.

If q+ = 0 (Drell-Yan-West frame) then

〈

p′, ↑
∣

∣j+(0)
∣

∣ p, ↑
〉

= 2p+F1(−q2
⊥)
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F (q2
⊥) → ρ(r⊥) in LF-Coordinates

define state that is localized in ⊥ position:

∣

∣p+,R⊥ = 0⊥, λ
〉

≡ N
∫

d2p⊥

∣

∣p+,p⊥, λ
〉

Note: ⊥ boosts in IMF form Galilean subgroup ⇒ this state has
R⊥ ≡ 1

P+

∫

dx−d2x⊥ x⊥T
++(x) = 0⊥

(cf.: working in CM frame in nonrel. physics)

define charge distribution in impact parameter space

2p+ρ(b⊥) ≡ 1

2p+

〈

p+,R⊥ = 0⊥

∣

∣ j+(0−,b⊥)
∣

∣p+,R⊥ = 0⊥

〉
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F (q2
⊥) → ρ(r⊥) in LF-Coordinates

use translational invariance to relate to same matrix element that
appears in def. of form factor

ρ(b⊥) ≡ 1

2p+

〈

p+,R⊥ = 0⊥

∣

∣ j+(0−,b⊥)
∣

∣p+,R⊥ = 0⊥

〉

=
|N |2
2p+

∫

d2p⊥

∫

d2p′
⊥

〈

p+,p′
⊥

∣

∣ j+(0−,b⊥)
∣

∣p+,p⊥

〉

=
|N |2
2p+

∫

d2p⊥

∫

d2p′
⊥

〈

p+,p′
⊥

∣

∣ j+(0−,0⊥)
∣

∣p+,p⊥

〉

eiq⊥·b⊥

= |N |2
∫

d2p⊥

∫

d2p′
⊥F1(−q2

⊥)eiq⊥·b⊥

↪→ ρ(b⊥) =

∫

d2q⊥

(2π)2
F1(−q2

⊥)eiq⊥·b⊥
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Summary: Form Factor vs. Charge Distribution

fixed target: FT of form factor = charge distribution in position
space

“moving” target:
nonrelativistically: FT of form factor = charge distribution in
position space, where position is measured relative to center of
mass

relativistic corrections usually make idendification

F (q2)
FT↔ ρ(~r) ambigous at scale ∆R ∼ λC = 1

M

exceptions:
Breit “frame”
∞ momentum frame (→ Galilean subgroup of ⊥ boosts)
Reference point: transverse center of longitudinal momentum
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DIS −→ light-cone correlations
�
�

�
�

�
�

� �

light-cone coordinates:

x+ =
(

x0 + x3
)

/
√

2

x− =
(

x0 − x3
)

/
√

2

DIS related to correlations along light–cone

q(xBj) =

∫

dx−

2π
〈P |q(0−,0⊥)γ+q(x−,0⊥)|P 〉 eix−xBjP+

Probability interpretation!

No information about transverse position of partons! Hadron Tomography – p.15/70



Generalized Parton Distributions (GPDs)

∫

dx−

2π
eix−p̄+x

〈

p′
∣

∣

∣

∣

q̄

(

−x
−

2

)

γ+q

(

x−

2

)
∣

∣

∣

∣

p

〉

= H(x, ξ,∆2)ū(p′)γ+u(p)

+E(x, ξ,∆2)ū(p′)
iσ+ν∆ν

2M
u(p)

∫

dx−

2π
eix−p̄+x

〈

p′
∣

∣

∣

∣

q̄

(

−x
−

2

)

γ+γ5q

(

x−

2

)
∣

∣

∣

∣

p

〉

= H̃(x, ξ,∆2)ū(p′)γ+γ5u(p)

!+Ẽ(x, ξ,∆2)ū(p′)
γ5∆

+

2M
u(p)

where ∆ = p′ − p is the momentum transfer and ξ measures the longi-

tudinal momentum transfer on the target ∆+ = ξ(p+ + p+′
).
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Parton Interpretation

∫

dx−

2π
eix−p̄+x

〈

p′
∣

∣

∣

∣

q̄

(

−x
−

2

)

γ+q

(

x−

2

)
∣

∣

∣

∣

p

〉

= H(x, ξ,∆2)ū(p′)γ+u(p)

+E(x, ξ,∆2)ū(p′)
iσ+ν∆ν

2M
u(p)

x is mean long. momentum fraction carried by active quark

In general no probabilistic interpretation since initial and final state
not the same

Instead: interpretation as transition amplitude
∫

dxH(x, ξ,∆2) = F1(∆
2) and

∫

dxE(x, ξ,∆2) = F2(∆
2)

↪→ GPDs provide a decomposition of form factor w.r.t. the momentum
fraction (in IMF) carried by the active quark

Actually H = H(x, ξ,∆2, q2), but will not discuss q2 dependence
of GPDs today!
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What is Physics of GPDs ?

Definition of GPDs resembles that of form factors

〈

p′
∣

∣

∣
Ô

∣

∣

∣
p
〉

= H(x, ξ,∆2)ū(p′)γ+u(p) + E(x, ξ,∆2)ū(p′)
iσ+ν∆ν

2M
u(p)

with Ô ≡
∫

dx−

2π eix−p̄+xq̄
(

−x−

2

)

γ+q
(

x−

2

)

↪→ relation between PDFs and GPDs similar to relation between a
charge and a form factor

↪→ If form factors can be interpreted as Fourier transforms of charge
distributions in position space, what is the analogous physical
interpretation for GPDs ?

Hadron Tomography – p.18/70



Form Factors vs. GPDs

operator

q̄γ+q

∫

dx−eixp+x−

4π q̄
(

−x−

2

)

γ+q
(

x−

2

)

forward
matrix elem.

Q

q(x)

off-forward
matrix elem.

F (t)

H(x, ξ, t)

position space

ρ(~r)

?
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Form Factors vs. GPDs

operator

q̄γ+q

∫

dx−eixp+x−

4π q̄
(

−x−

2

)

γ+q
(

x−

2

)

forward
matrix elem.

Q

q(x)

off-forward
matrix elem.

F (t)

H(x, 0, t)

position space

ρ(~r)

q(x,b⊥)

q(x,b⊥) = impact parameter dependent PDF

Hadron Tomography – p.20/70



Impact parameter dependent PDFs

define state that is localized in ⊥ position:

∣

∣p+,R⊥ = 0⊥, λ
〉

≡ N
∫

d2p⊥

∣

∣p+,p⊥, λ
〉

Note: ⊥ boosts in IMF form Galilean subgroup ⇒ this state has
R⊥ ≡ 1

P+

∫

dx−d2x⊥ x⊥T
++(x) = 0⊥

(cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

q(x,b⊥) ≡
∫

dx−

4π

〈

p+,R⊥ = 0⊥

∣

∣ q̄(−x
−

2
,b⊥)γ+q(

x−

2
,b⊥)

∣

∣p+,R⊥ = 0⊥

〉

eixp+x−

Hadron Tomography – p.21/70



Impact parameter dependent PDFs

use translational invariance to relate to same matrix element that
appears in def. of GPDs

q(x,b⊥) ≡
∫

dx−
〈

p+,R⊥ = 0⊥

∣

∣q̄(−x
−

2
,b⊥)γ+q(

x−

2
,b⊥)

∣

∣p+,R⊥ = 0⊥

〉

eixp+x−

= |N |2
∫

d2p⊥

∫

d2p′
⊥

∫

dx−
〈

p+,p′
⊥

∣

∣q̄(−x
−

2
,b⊥)γ+q(

x−

2
,b⊥)

∣

∣p+,p⊥

〉

eixp+x−
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Impact parameter dependent PDFs

use translational invariance to relate to same matrix element that
appears in def. of GPDs

q(x,b⊥) ≡
∫

dx−
〈

p+,R⊥ = 0⊥

∣

∣ q̄(−x
−

2
,b⊥)γ+q(

x−

2
,b⊥)

∣

∣p+,R⊥ = 0⊥

〉

eixp+x−

= |N |2
∫

d2p⊥

∫

d2p′
⊥

∫

dx−
〈

p+,p′
⊥

∣

∣ q̄(−x
−

2
,b⊥)γ+q(

x−

2
,b⊥)

∣

∣p+,p⊥

〉

eixp+x−

= |N |2
∫

d2p⊥

∫

d2p′
⊥

∫

dx−
〈

p+,p′
⊥

∣

∣ q̄(−x
−

2
,0⊥)γ+q(

x−

2
,0⊥)

∣

∣p+,p⊥

〉

eixp+x−

×eib⊥·(p⊥−p′

⊥
)
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Impact parameter dependent PDFs

use translational invariance to relate to same matrix element that
appears in def. of GPDs

q(x,b⊥) ≡
∫

dx−
〈

p+,R⊥ = 0⊥

∣

∣ q̄(−x
−

2
,b⊥)γ+q(

x−

2
,b⊥)

∣

∣p+,R⊥ = 0⊥

〉

eixp+x−

= |N |2
∫

d2p⊥

∫

d2p′
⊥

∫

dx−
〈

p+,p′
⊥

∣

∣ q̄(−x
−

2
,b⊥)γ+q(

x−

2
,b⊥)

∣

∣p+,p⊥

〉

eixp+x−

= |N |2
∫

d2p⊥

∫

d2p′
⊥

∫

dx−
〈

p+,p′
⊥

∣

∣ q̄(−x
−

2
,0⊥)γ+q(

x−

2
,0⊥)

∣

∣p+,p⊥

〉

eixp+x−

×eib⊥·(p⊥−p′

⊥
)

= |N |2
∫

d2p⊥

∫

d2p′
⊥H

(

x, 0,− (p′
⊥ − p⊥)

2
)

eib⊥·(p⊥−p′

⊥
)

↪→ q(x,b⊥) =

∫

d2∆⊥

(2π)2
H(x,−∆2

⊥)e−ib⊥·∆⊥
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Impact parameter dependent PDFs

q(x,b⊥) =

∫

d2∆⊥

(2π)2
H(x,−∆2

⊥)e−ib⊥·∆⊥

(∆⊥ = p′
⊥ − p⊥, ξ = 0)

q(x,b⊥) has physical interpretation of a density

q(x,b⊥) ≥ 0 for x > 0

q(x,b⊥) ≤ 0 for x < 0

Hadron Tomography – p.25/70



Discussion: GPD ↔ q(x,b⊥)

GPDs allow simultaneous determination of longitudinal
momentum and transverse position of partons

q(x,b⊥) =

∫

d2∆⊥

(2π)2
H(x, 0,−∆2

⊥)e−ib⊥·∆⊥

q(x,b⊥) has interpretation as density (positivity constraints!)

q(x,b⊥) ∼
〈

p+,0⊥

∣

∣b†(xp+,b⊥)b(xp+,b⊥)
∣

∣ p+,0⊥

〉

=
∣

∣b(xp+,b⊥)|p+,0⊥

〉
∣

∣

2 ≥ 0

↪→ positivity constraint on models
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Discussion: GPD ↔ q(x,b⊥)

Nonrelativistically such a result not surprising!
Absence of relativistic corrections to identification
H(x, 0,−∆2

⊥)
FT−→ q(x,b⊥) due to Galilean subgroup in IMF

b⊥ distribution measured w.r.t. RCM
⊥ ≡ ∑

i xiri,⊥

↪→ width of the b⊥ distribution should go to zero as x→ 1, since
the active quark becomes the ⊥ center of momentum in that limit!
↪→ H(x, t) must become t-indep. as x→ 1.

very similar results for impact parameter dependent polarized
quark distributions (nucleon longitudinally polarized)

∆q(x,b⊥) =

∫

d2∆⊥

(2π)2
H̃(x, 0,−∆2

⊥)e−ib⊥·∆⊥
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Discussion: GPD ↔ q(x,b⊥)

Use intuition about nucleon structure in position space to make
predictions for GPDs:
large x: quarks from localized valence ‘core’,
small x: contributions from larger ‘ meson cloud’
↪→ expect a gradual increase of the t-dependence (⊥ size) of
H(x, 0, t) as x decreases

small x, expect transverse size to increase

very simple model: Hq(x, 0,−∆2
⊥) = q(x)e−a∆2

⊥
(1−x) ln 1

x .
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Other topics

QCD evolution

extrapolating to ξ = 0
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The physics ofE(x, 0,−∆2
⊥)

So far: only unpolarized (or long. polarized) nucleon

In general, use ( ∆+ = 0)

∫

dx−

4π
eip+x−x

〈

P+∆,↑
∣

∣q̄(0) γ+q
(

x−
)
∣

∣P,↑
〉

= H(x,0,−∆2
⊥)

∫

dx−

4π
eip+x−x

〈

P+∆,↑
∣

∣q̄(0) γ+q
(

x−
)
∣

∣P,↓
〉

= −∆x−i∆y

2M
E(x,0,−∆2

⊥).

Consider nucleon polarized in x direction (in IMF)
|X〉 ≡ |p+,R⊥ = 0⊥, ↑〉 + |p+,R⊥ = 0⊥, ↓〉.

↪→ unpolarized quark distribution for this state:

qX(x,b⊥) = q(x,b⊥) − 1

2M

∂

∂by

∫

d2∆⊥

(2π)2
E(x,−∆2

⊥)e−ib⊥·∆⊥
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The physics ofE(x, 0,−∆2
⊥)

qX(x,b⊥) in transversely polarized nucleon is transversely distorted
compared to longitudinally polarized nucleons !

mean displacement of flavor q (⊥ flavor dipole moment)

dq
y ≡

∫

dx

∫

d2b⊥qX(x,b⊥)by =
1

2M

∫

dxEq(x, 0, 0) = κp
q

with κp
u/d ≡ F

u/d
2 (0) = O(1 − 2) ⇒ dq

y = O(0.2fm)

CM for flavor q shifted relative to CM for whole proton by

∫

dx

∫

d2b⊥qX(x,b⊥)xby =
1

2M

∫

dxxEq(x, 0, 0)

↪→ not surprising to find that second moment of Eq is related to
angular momentum carried by flavor q
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physical origin for ⊥ distortion

�

� �
��

��

Comparison of a non-rotating sphere that moves in z direction with a
sphere that spins at the same time around the z axis and a sphere that
spins around the x axis When the sphere spins around the x axis, the
rotation changes the distribution of momenta in the z direction
(adds/subtracts to velocity for y > 0 and y < 0 respectively). For the
nucleon the resulting modification of the (unpolarized) momentum
distribution is described by E(x, 0,−∆2

⊥).
back
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simple model forEq(x, 0,−∆2
⊥)

For simplicity, make ansatz where Eq ∝ Hq

Eu(x, 0,−∆2
⊥) =

κp
u

2
Hu(x, 0,−∆2

⊥)

Ed(x, 0,−∆2
⊥) = κp

dHd(x, 0,−∆2
⊥)

with Hq(x, 0,−∆2
⊥) = q(x)e−a∆2

⊥
(1−x) ln 1

x and

κp
u = 2κp + κn = 1.673 κp

d = 2κn + κp = −2.033.

Satisfies:
∫

dxEq(x, 0, 0) = κP
q

Model too simple but illustrates that anticipated distortion is very
significant since

∫

dxEq ∼ κq known to be large!
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⊥ single-spin asymmetry

Example: left-right asymmetry in semi-inclusive γp→ π+ +X on
a ⊥ polarized target (~pγ ∝ ~ez, ~Sp ∝ ~ex, asymmetry ∝ ~ey)

Sivers mechanism: left-right asymmetry due to ⊥ asymmetry of
⊥-momentum dependent PDFs f(x,k⊥)

f(x,k⊥) =

∫

dy−d2y⊥

16π3
e−ixp+y−+ik⊥·y⊥

〈

p
∣

∣q̄(0, y−,y⊥)γ+q(0)
∣

∣ p
〉

.

gauge invariance → include Wilson line!
Naively, f(x,k⊥) = f(x,−k⊥), due to time-reversal invariance,
i.e. with above definition, Sivers asymmetry vanishes

identically [~pq ·
(

~pp × ~Sp

)

is T-odd]
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⊥ single-spin asymmetry

However, Brodsky et al. ⇒ Sivers asymmetry possible due to FSI!
Formal argument: include FSI in eikonal approximation

↪→ define f(x,k⊥) gauge invariantly

f(x,k⊥) =

∫

dy−d2y⊥

16π3
e−ixp+y−+ik⊥·y⊥

〈

p
∣

∣q̄(0, y−,y⊥)W †
y∞γ

+W0∞q(0)
∣

∣ p
〉

.

Wy∞ = P exp
(

−ig
∫ ∞

y− dz
−A+(y+, z−,y⊥)

)

indicates a

Wilson-line operator going from point y to infinity (FSI!).

Wilson line not invariant under T

↪→ Sivers asymmetry possibe [f(x,k⊥) 6= f(x,−k⊥)]
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⊥ single-spin asymmetry

Presence of phase factors in definition of Sivers distribution do
explain why SSA can be nonzero.

does not obviously explain:
why these “phase factors” give rise to such large ‘stable’
polarization effects? (example: ⊥ polarization in hyperon
production)
which sign should one expect in which reaction?

Hadron Tomography – p.37/70



Physical origin of SSA

mean ⊥ momentum of active quark in semi-inclusive DIS contains
term

〈k⊥〉 ∼
∫

dy−e−ixp+y− 〈

p
∣

∣q̄(0, y−,y⊥)W †
y∞∂⊥W0∞γ

+q(0)
∣

∣ p
〉

Physics of this term (for simplicity abelian case):
, this term simplifies as 〈k⊥〉 ∼ ...− g

∫ ∞

z− dy
−∂⊥A

+(y−, z⊥) which
has semi-classical interpretation as impulse experienced by the
active quark on its way out from ⊥ position z⊥.

↪→ mean ⊥ momentum obtained as correlation between PDF and
transverse impulse I⊥(z⊥) = g

∫ ∞

z− dy
−∂⊥A

+(y−, z⊥)

physics of this correlation −→ switch to impact parameter
representation
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Connection with ⊥ distortion of q(x,b⊥)

use simple potential model to estimate
I⊥(z⊥) ≡ ∂⊥

∫

dy−A+(y−, z⊥) =mean ⊥ impulse that the FSI
exert on active quark on its way out as function of the separation
from the CM

bx

by

I⊥
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Connection with ⊥ distortion of q(x,b⊥)

use simple potential model to estimate
I⊥(zT ) ≡ ∂⊥

∫

dy−A+(y−, z⊥)=mean ⊥ impulse that the FSI exert
on active quark on its way out as function of the separation from
the CM

bx

by

I⊥

bx

by

uX(x,b⊥)
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γp → πX in Breit frame

~pγ ~pN d

u

π+

u, d distributions in ⊥ polarized proton have left-right asymmetry in
⊥ position space (T-even!)

attractive FSI deflects active quark towards the center of
momentum

↪→ FSI converts left-right position space asymmetry of leading quark
into right-left asymmetry in momentum

compare: convex lens that is illuminated asymmetrically
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Summary

DVCS allows probing GPDS

∫

dx−

2π
eixp+x−

〈

p′
∣

∣

∣

∣

q̄

(

−x
−

2

)

γ+q

(

x−

2

)
∣

∣

∣

∣

p

〉

GPDs resemble both PDFs and form factors:
defined through matrix elements of light-cone correlation, but
∆ ≡ p′ − p 6= 0.

t-dependence of GPDs at ξ=0 (purely ⊥ momentum transfer) ⇒
Fourier transform of impact parameter dependent PDFs q(x,b⊥)

↪→ knowledge of GPDs for ξ = 0 provides novel information about
nonperturbative parton structure of nucleons: distribution of
partons in ⊥ plane

q(x,b⊥) =
∫

d2∆⊥

(2π)2 H(x, 0,−∆2
⊥)e−ib⊥·∆⊥

∆q(x,b⊥) =
∫

d2∆⊥

(2π)2 H̃(x, 0,−∆2
⊥)e−ib⊥·∆⊥

q(x,b⊥), ∆q(x,b⊥) have probabilistic interpretation, e.g.
q(x,b⊥) > 0 for x > 0 Hadron Tomography – p.42/70



Summary

∆⊥

2ME(x,−∆2
⊥) describes how the momentum distribution of

unpolarized partons in the ⊥ plane gets transversely distorted
when is nucleon polarized in ⊥ direction.

(attractive) final state interaction converts ⊥ position space
asymmetry into ⊥ momentum space asymmetry

↪→ simple physical explanation for sign of left-right asymmetry in
semi-inclusive DIS

Similar mechanism also applicable to many other semi-inclusive
events, such as transverse polarizations in hyperon production.

published in: M.B., PRD 62, 71503 (2000), hep-ph/0105324, and
hep-ph/0207047; see also D. Soper, PRD 15, 1141 (1977).

Connection to SSA in M.B., PRD 66, 114005 (2002);
hep-ph/0302144.

Hadron Tomography – p.43/70



extrapolating to ξ = 0

bad news:ξ = 0 not directly accessible in DVCS since long.
momentum transfer necessary to convert virtual γ into real γ

good news: moments of GPDs have simple ξ-dependence
(polynomials in ξ)
↪→ should be possible to extrapolate!

even moments of H(x, ξ, t):

Hn(ξ, t) ≡
∫ 1

−1

dxxn−1H(x, ξ, t) =

[n−1
2 ]

∑

i=0

An,2i(t)ξ
2i + Cn(t)

= An,0(t) +An,2(t)ξ
2 + ...+ An,n−2(t)ξ

n−2 + Cn(t)ξn,
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i.e. for example

∫ 1

−1

dxxH(x, ξ, t) = A2,0(t) + C2(t)ξ
2.

For nth moment, need n
2 + 1 measurements of Hn(ξ, t) for same t

but different ξ to determine An,2i(t).

GPDs @ ξ = 0 obtained from Hn(ξ = 0, t) = An,0(t)

similar procedure exists for moments of H̃

back
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QCD evolution

So far ignored! Can be easily included because

For t� Q2, leading order evolution t-independent

For ξ = 0 evolution kernel for GPDs
same as DGLAP evolution kernel

likewise:

impact parameter dependent PDFs evolve such that different b⊥

do not mix (as long as ⊥ spatial resolution much smaller than Q2)
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↪→ above results consistent with QCD evolution:

H(x, 0,−∆2
⊥, Q

2) =
∫

d2b⊥q(x,b⊥, Q
2)e−ib⊥∆⊥

H̃(x, 0,−∆2
⊥, Q

2) =
∫

d2b⊥∆q(x,b⊥, Q
2)e−ib⊥∆⊥

where QCD evolution of H, H̃, q,∆q is described by DGLAP and is
independent on both b⊥ and ∆2

⊥, provided one does not look at scales
in b⊥ that are smaller than 1/Q.

back

Hadron Tomography – p.47/70



suppression of crossed diagrams
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density interpretation for q(x,b⊥)

express quark-bilinear in twist-2 GPD in terms of light-cone ‘good’
component q(+) ≡ 1

2γ
−γ+q

q̄′γ+q = q̄′(+)γ
+q(+) =

√
2q′†(+)q(+).

expand q(+) in terms of canonical raising and lowering operators

q(+)(x
−,x⊥) =

∫ ∞

0

dk+

√
4πk+

∫

d2k⊥

2π

∑

s

×
[

u(+)(k, s)bs(k
+,k⊥)e−ikx + v(+)(k, s)d

†
s(k

+,k⊥)eikx
]

,
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density interpretation for q(x,b⊥)

with usual (canonical) equal light-cone time x+ anti-commutation
relations, e.g.

{

br(k
+,k⊥), b†s(q

+,q⊥)
}

= δ(k+− q+)δ(k⊥− q⊥)δrs

and the normalization of the spinors is such that

ū(+)(p, r)γ
+u(+)(p, s) = 2p+δrs.

Note: ū(+)(p
′, r)γ+u(+)(p, s) = 2p+δrs for p+ = p′+, one finds for

x > 0

q(x,b⊥) = N ′
∑

s

∫

d2k⊥

2π

∫

d2k′
⊥

2π

〈

p+,0⊥

∣

∣ b†s(xp
+,k′

⊥)bs(xp
+,k⊥)

∣

∣p+,0⊥

〉

×eib⊥·(k⊥−k′

⊥
).
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density interpretation for q(x,b⊥)

Switch to mixed representation:
momentum in longitudinal direction
position in transverse direction

b̃s(k
+,x⊥) ≡

∫

d2k⊥

2π
bs(k

+,k⊥)eik⊥·x⊥

↪→

q(x,b⊥) =
∑

s

〈

p+,0⊥

∣

∣ b̃†s(xp
+,b⊥)b̃s(xp

+,b⊥)
∣

∣p+,0⊥

〉

.

=
∑

s

∣

∣

∣
b̃s(xp

+,b⊥)
∣

∣p+,0⊥

〉

∣

∣

∣

2

≥ 0.

back
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density interpretation for q(x)

express quark-bilinear in twist-2 PDF in terms of light-cone ‘good’
component q(+) ≡ 1

2γ
−γ+q

q̄′γ+q = q̄′(+)γ
+q(+) =

√
2q′†(+)q(+).

expand q(+) in terms of canonical raising and lowering operators

q(+)(x
−,x⊥) =

∫ ∞

0

dk+

√
4πk+

∫

d2k⊥

2π

∑

s

×
[

u(+)(k, s)bs(k
+,k⊥)e−ikx + v(+)(k, s)d

†
s(k

+,k⊥)eikx
]

,
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density interpretation for q(x)

with usual (canonical) equal light-cone time x+ anti-commutation
relations, e.g.

{

br(k
+,k⊥), b†s(q

+,q⊥)
}

= δ(k+− q+)δ(k⊥− q⊥)δrs

and the normalization of the spinors is such that

ū(+)(p, r)γ
+u(+)(p, s) = 2p+δrs.

(Note: ū(+)(p
′, r)γ+u(+)(p, s) = 2p+δrs for p+ = p′+)

Insert in

q(x) =

∫

dx−

2π
〈p|q(0−,0⊥)γ+q(x−,0⊥)|p〉 eix−xp+
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density interpretation for q(x)

one finds for x > 0

q(x) = N ′
∑

s

∫

d2k⊥

2π

∫

d2k′
⊥

2π
〈p| b†s(xp+,k′

⊥)bs(xp
+,k⊥) |p〉

= N ′
∑

s

∣

∣

∣

∣

∫

d2k⊥

2π
bs(xp

+,k⊥) |p〉
∣

∣

∣

∣

2

≥ 0.

antiquarks (x < 0) yield q(x) < 0

↪→ usually define positive antiquark distribution

q̄(x) ≡ −q(−x) (x > 0)

back
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Boosts in nonrelativistic QM

~x′ = ~x+ ~vt t′ = t

purely kinematical (quantization surface t = 0 inv.)

↪→ 1. boosting wavefunctions very simple

Ψ~v(~p1, ~p2) = Ψ~0(~p1 −m1~v, ~p2 −m2~v).

2. dynamics of center of mass

~R ≡
∑

i

xi~ri with xi ≡
mi

M

decouples from the internal dynamics
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Relativistic Boosts

t′ = γ
(

t+
v

c2
z
)

, z′ = γ (z + vt) x′
⊥ = x⊥

generators satisfy Poincaré algebra:

[Pµ, P ν ] = 0

[Mµν, P ρ] = i (gνρPµ − gµρP ν)
[

Mµν,Mρλ
]

= i
(

gµλMνρ + gνρMµλ − gµρMνλ − gνλMµρ
)

rotations: Mij = εijkJk, boosts: Mi0 = Ki.
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Galilean subgroup of⊥ boosts

introduce generator of ⊥ ‘boosts’:

Bx ≡M+x =
Kx + Jy√

2
By ≡M+y =

Ky − Jx√
2

Poincaré algebra =⇒ commutation relations:

[J3, Bk] = iεklBl [Pk, Bl] = −iδklP
+

[

P−, Bk

]

= −iPk [P+, Bk] = 0

with k, l ∈{x, y}, εxy = −εyx = 1, and εxx = εyy = 0.
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Together with [Jz, Pk] = iεklPl, as well as

[

P−, Pk

]

=
[

P−, P+
]

=
[

P−, Jz

]

= 0
[

P+, Pk

]

=
[

P+, Bk

]

=
[

P+, Jz

]

= 0.

Same as commutation relations among generators of nonrel. boosts,
translations, and rotations in x-y plane, provided one identifies

P− −→ Hamiltonian

P⊥ −→ momentum in the plane

P+ −→ mass

Lz −→ rotations around z-axis

B⊥ −→ generator of boosts in the plane,

back to discussion
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Consequences

many results from NRQM carry over to ⊥ boosts in IMF, e.g.

⊥ boosts kinematical

Ψ∆⊥
(x,k⊥) = Ψ0⊥

(x,k⊥ − x∆⊥)

Ψ∆⊥
(x,k⊥, y, l⊥) = Ψ0⊥

(x,k⊥ − x∆⊥, y, l⊥ − y∆⊥)

Transverse center of momentum R⊥ ≡ ∑

i xir⊥,i plays role
similar to NR center of mass, e.g.

∫

d2p⊥ |p+,p⊥〉 corresponds to
state with R⊥ = 0⊥.

back
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⊥ Center of Momentum

field theoretic definition

p+R⊥ ≡
∫

dx−
∫

d2x⊥T
++(x)x⊥ = M+⊥

M+⊥ = B⊥ generator of transverse boosts

parton representation:

R⊥ =
∑

i

xir⊥,i

(xi = momentum fraction carried by ith parton)

back
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Poincaré algebra:

[Pµ, P ν ] = 0

[Mµν, P ρ] = i (gνρPµ − gµρP ν)
[

Mµν,Mρλ
]

= i
(

gµλMνρ + gνρMµλ − gµρMνλ − gνλMµρ
)

rotations: Mij = εijkJk, boosts: Mi0 = Ki. back
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Galilean subgroup of⊥ boosts

introduce generator of ⊥ ‘boosts’:

Bx ≡M+x =
Kx + Jy√

2
By ≡M+y =

Ky − Jx√
2

Poincaré algebra =⇒ commutation relations:

[J3, Bk] = iεklBl [Pk, Bl] = −iδklP
+

[

P−, Bk

]

= −iPk [P+, Bk] = 0

with k, l ∈{x, y}, εxy = −εyx = 1, and εxx = εyy = 0.

back
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Together with [Jz, Pk] = iεklPl, as well as

[

P−, Pk

]

=
[

P−, P+
]

=
[

P−, Jz

]

= 0
[

P+, Pk

]

=
[

P+, Bk

]

=
[

P+, Jz

]

= 0.

Same as commutation relations among generators of nonrel. boosts,
translations, and rotations in x-y plane, provided one identifies

P− −→ Hamiltonian

P⊥ −→ momentum in the plane

P+ −→ mass

Lz −→ rotations around z-axis

B⊥ −→ generator of boosts in the plane,

back
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Consequences of Galilean subgroup

many results from NRQM carry over to ⊥ boosts in IMF, e.g.

⊥ boosts kinematical

Ψ∆⊥
(x,k⊥) = Ψ0⊥

(x,k⊥ − x∆⊥)

Ψ∆⊥
(x,k⊥, y, l⊥) = Ψ0⊥

(x,k⊥ − x∆⊥, y, l⊥ − y∆⊥)

Transverse center of momentum R⊥ ≡ ∑

i xir⊥,i plays role similar
to NR center of mass, e.g. |p+,R⊥ = 0⊥〉 ≡

∫

d2p⊥ |p+,p⊥〉
corresponds to state with R⊥ = 0⊥.

back
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Proof that B⊥|p+,R⊥ = 0⊥〉 = 0

Use
e−iv⊥·B⊥ |p+,p⊥, λ〉 = |p+,p⊥ + p+v⊥, λ〉

↪→
e−iv⊥·B⊥

∫

d2p⊥|p+,p⊥, λ〉 =

∫

d2p⊥|p+,p⊥, λ〉

↪→
B⊥

∫

d2p⊥|p+,p⊥, λ〉 = 0

back
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Example

Ansatz: Hq(x, 0,−∆2
⊥) = q(x)e−a∆2

⊥
(1−x) ln 1

x .

↪→ q(x,b⊥) = q(x)
1

4πa(1 − x) ln 1
x

e
−

b
2
⊥

4a(1−x) ln 1
x
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Center of Mass Frame in NRQM

The boost operator in NRQM:

~R =
1

M

∑

i

mi~ri

satisfies (H =
∑

l
~p2

i

2mi
+ V (~ri))

[Rk, Pl] = −iδkl

[

~R,H
]

= i ~P

back
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Physical Meaning ofxBj = Q2

2p·q

�

�

Go to frame where q⊥ = 0, i.e.

Q2 = −q2 = −2q+q− 2p · q = 2q−p+ + 2q+p−

Bjorken limit: q− → ∞ , q+ fixed

↪→
xBj = − q+q−

q−p+ + q+p−
→ −q

+

p+
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Physical Meaning ofxBj = Q2

2p·q

xBj = − q+

p+

LC energy-momentum dispersion relation

k− =
m2 + k2

⊥

2k+

↪→ struck quark with k−′
= k− + q− → ∞ can only be on mass shell if

k+′
= k+ + q+ ≈ 0

↪→
k+ = −q+ ⇒ x ≡ k+

p+
= xBj

↪→ xBj has physical meaning of light-cone momentum fraction
carried by struck quark before it is hit by photon

back
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