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Hydrodynamics

® Hydrodynamics is an effective theory, i.e., re-
lies on separation of scales.

Assumes local equilibrium and describes
evolution of a fluid towards global equilib-
rium.

This evolution is slow, because of conserva-
tion laws.

® [s hydrodynamics a deterministic theory?

No. This would violate fluctuation-dissipation theorem.

® What is the role of the randomness and how do we describe it?

M. Stephanov Fluctuations in Hydrodynamics INT 2021 2/26



Critical point: intriguing hints
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“intriguing hint” (2015 LRPNS)
Motivation for phase Il of BES at RHIC and BEST topical collaboration.
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Theory/experiment gap: predictions assume equilibrium, but

Non-equilibrium physics is essential near the critical point.

Challenge: develop hydrodynamics with fluctuations capable of
describing non-equilibrium effects on critical-point signatures.

Also notable:
Fluctuations are the first step to extend hydro to smaller systems.
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Stochastic hydrodynamics

® Hydrodynamics relies on scale separation: Texpnsn > Teqlbren-
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® Slow variables obey conservation equations (9, 7" = 0):

oy = =V - Flux[y];
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Stochastic hydrodynamics

® Hydrodynamics relies on scale separation: Texpnsn > Teqlbren-
® Slow variables obey conservation equations (9, 7" = 0):
oy = =V - Flux[y];

® Stochastic variables ) = (7, J°) are local operators
coarse-grained (over “cells” b: {;c < b < L):

v

o = —V - (Flux[w] + Noise) (Landau-Lifshitz)
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Stochastic hydrodynamics

® Hydrodynamics relies on scale separation: Texpnsn > Teqlbren-
® Slow variables obey conservation equations (9, 7" = 0):
oy = =V - Flux[y];

® Stochastic variables ) = (7, J°) are local operators
coarse-grained (over “cells” b: {;c < b < L):

v

op = -V - (Flux[w] + Noise) (Landau-Lifshitz)

® Non-linearities + locality = UV divergences.
In numerical simulations — cutoff dependence.
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Deterministic approach

® Variables are one- and two-point functions:
Y = (¢) and G = (P) — () () — equal-time correlator

Nonlinearities lead to dependence of flux on G.

oy = =V - Flux[y, GJ; (conservation)
oG = L[G; ). (relaxation)
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Deterministic approach

® Variables are one- and two-point functions:
¥ = () and G = (Y1) — (V) () — equal-time correlator

Nonlinearities lead to dependence of flux on G.

oy = =V - Flux[y, GJ; (conservation)
oG = L[G; ). (relaxation)

® In Bjorken flow by Akamatsu et al, Martinez-Schaefer.
For arbitrary relativistic flow — by An et al (this talk).
Earlier, in nonrelativistic context, — by Andreev in 1970s.

# Advantage: equations are deterministic.

“Infinite noise” causes UV renormalization of EOS and transport
coefficients — can be taken care of analytically (1902.09517)

# Two- and higher-pt functions systematically describe deviations
from local equilibrium.
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Fluctuation dynamics near CP: Hydro+

Yin, MS, 1712.10305
Rajagopal et al, 1908.08539
® Hydro requires Texpnsn > Teqibrin- Du et al, 2004.02719

“Critical slowing down”: Teqibrtn ~ &2 — 0.

O Lok~ T;{;‘nsn — magnitude of flucts. determined by dynamics.
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Fluctuation dynamics near CP: Hydro+

Yin, MS, 1712.10305
Rajagopal et al, 1908.08539

® Hydro requires Texpnsn > Teqibrin- Du et al, 2004.02719

“Critical slowing down”: Teqibrtn ~ &2 — 0.

O Lok~ Té{gnsn — magnitude of flucts. determined by dynamics.
® Dynamics near CP requires two main ingredients:
® Critical fluctuations (£ — ~);

® Slow relaxation mode With Tequbrtn ~ €2 .
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Fluctuation dynamics near CP: Hydro+

Yin, MS, 1712.10305
Rajagopal et al, 1908.08539

® Hydro requires Texpnsn > Teqibrin- Du et al, 2004.02719

“Critical slowing down”: Teqibrtn ~ &2 — 0.

O Lok~ Té{g’nsn — magnitude of flucts. determined by dynamics.
® Dynamics near CP requires two main ingredients:

® Critical fluctuations (£ — ~);

® Slow relaxation mode With Tequbrtn ~ €2 .

® Both described by the same object: the two-point function
of the slowest hydrodynamic mode m = (s/n),
i.e., (om(z1) dm(xs)).
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Additional variables in Hydro+

® Hydro+ extends Hydro with new non-hydrodynamic d.o.f..

® Atthe CP the slowest (i.e., most out of equilibrium) new d.o.f. is
the 2-pt function (ymdm) of the slowest hydro variable:

Pg(x) = /A (dm () om (z_)) QA

wherex = (x4 +x_)/2and Az =z, —x_.

® Wigner transformed b/c dependence on x (~ L) is slow and
relevant Az < L. Scale separation similar to kinetic theory.

' \Am
L

M. Stephanov Fluctuations in Hydrodynamics INT 2021 8/26



Relaxation of fluctuations towards equilibrium

® As usual, equilibration maximizes entropy S = ). p; log(1/p;):

1
5(+)(€ana¢Q):S(6,n)—}—2/ (1 22_22+1)
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Relaxation of fluctuations towards equilibrium

® As usual, equilibration maximizes entropy S = ). p; log(1/p;):
1 PqQ ¢qQ )
sy (e,m, 0g) = s(e,n) + = /(l — —=+1
(+)( @) = slen) + 5 850 %0

® The equation for ¢ is a relaxation equation with rate

N(Q)~2DQ* for Q< ¢, D~1/JE
® Impact of fluctuations on hydrodynamics:
® “Renormalization” of bulk viscosity ¢ ~ 1/T'¢ ~ &3.

® (Non-analytic) frequency dependence of ((w) at w < I'¢.
“Long-time tails” (Kovtun-Yaffe 2003)
® Impact on observables: “memory” effects

Berdnikov-Rajagopal, Mukherjee-Venugopalan-Yin, ...
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Full relativistic hydrodynamics

An, Basar, Yee, MS, 1902.09517,1912.13456

® To embed Hydro+ into a unified theory for critical as well as non-
critical fluctuations we develop a general deterministic (hydro-
kinetic) formalism.

® Expand stochastic hydro egs. in {dm, op, du*} ~ ¢4
and then average, using equal-time correlator

Gap(r,y) = (da(z +v/2) dp(x —y/2)).

® What is “equal-time” in relativistic hydro?

® (p(x)p(x)) is singular (cutoff dependent). Renormalization?
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Equal time and confluent derivative

® We need equal-time correlator G = (¢(t, x4)o(t, x_)).
But what does “equal time” mean? Requires a frame choice.
The most natural choice is local u(z) (at z = (x4 + x_)/2).

® Confluent derivative wrt = at “y-fixed” takes this into account:
u(z + Az) using A(Ax)u(z + Ax) = u(x):

Az -VG(z,y) =
G(z + Az, A(Ax)~ly) — G(x,y).

A(Az) "ty

—, o not G(x + Az,y) — Glz,y).

® We define confluent equal time correlator G ag(z,y)
and its Wigner transform W (z, q)
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Sound-sound correlation and phonon kinetic equation

® After many miraculous cancellations we arrive at “hydro-kinetic”

equations for components of .

The longitudinal components, corresponding to p and «* fluctu-
ations at §(s/n) = 0, obey the following eq. (N = W1/ (wes|ql))

(U+U)'V+f'§q}NL=—7Lq2<NL T >

Cs ‘Q|
——
L[Ng] — Liouville op. N£0>

® Kinetic eq. for phonons with E = ¢4|q|, v = ¢5q/]q| (¢ - v = 0)

fu=—E(ay, +2v"wy,) —¢" 01 yu, —?LME.

inertial + Coriolis “Hubble”

® N is equilibrium Bose-distribution.
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Diffusive mode fluctuations

® Fluctuations of m = s/n and transverse components of u* obey

(entropy-entropy) L[Npm| = —2T (Nmm — %p) 4.
(entropy-velosity) L[Npil = =Ty + Ta) Ny + - ..

T
(velocity-velocity) L[N;;] = —2I, ( Nij — nw> +

® L is Liouville operator with v = f = 0, i.e., no propagation,
but relaxation: T'x = yxq?, where vx» = \/c, and v, = n/w.

$ “...” are terms ~ background grads, mixing Ny.m > Nimi <> Nij.

® Near critical point I'y is smallest, vy = A/c, ~ 1/§ — 0.

Nym equation decouples and matches Hydro+ (o = nNym).
Very nontrivially! An, Basar, Yee, MS, 1912.13456
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Beyond Hydro+

® Hydro+ breaks down when hydro frequency/rate is of order ¢ 2
due to next-to-slowest modes (V,,,; and N;;).

® The formalism extends Hydro+ to higher frequencies, i.e.,
shorter hydrodynamic scales (all the way to ¢.)

Fluctuations (V,,;) enhance conductivity for small w.
A

scaling
regime

Hydro (model H)

0 £3 £2 £l w
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Renormalization
® Expansion of (T'*¥) in fluctuations ¢ contains

d3q
5 Wiz, q).

(6(2)0(x)) = G(z,0) = / o

The integral is divergent (in equilibrium GO (z, ) ~ §3(y)).
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Renormalization
® Expansion of (T'*¥) in fluctuations ¢ contains

d3q
s Wiz, q).

(6(2)0(x)) = G(z,0) = / o

The integral is divergent (in equilibrium GO (z, ) ~ §3(y)).

® Such short-distance singularities can be absorbed into redefin-
ion of EOS (i.e., pressure) and transport coefficients:

(TH (z)) = eu*u” + p(e, n) A* 4+ IT" + {G(fc, O)}

= egupu” + pr(er,nr) AR + 11 + {é(w, O)} )
Constraints of 2nd law, conformality satisfied nontrivially.
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Theory/experiment gap: we have been discussing linearized
fluctuations and two-point correlators, but

non-Gaussian fluctuations are sensitive signatures of the critical point )
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Nonlinearity and multiplicative noise

An et al 2009.10742

® Now nonlinearity and multiplicative noise matter even more:
op=—V - (Flux[@] + Noise) . (Noise Noise) ~ 2Q[/] .

® General multivariable Langevin equation:

%?:’Eﬁﬂ+fﬂﬂﬂ§, ambiguous
Fokker-Plank equation (Ito calculus):

oP = (—EP + (QijP)J) . unambiguous

)

(Q=HHT).

® Different (e.g., Stratonovich) calculus/scheme = different F;.
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Physical (unambiguous) formulation

® Equilibrium solution obeys:
Probability flux = Fi Peq — (QijFeq) ; = (2 Feq)  »
le., F; = Py (M;jPeq) ;, where M = Q + .
® Define the problem in terms of physical properties

Onsager matrix M and entropy S = log Peq,

rather than F; = MijSJ + Mij,j (ltO)

M. Stephanov Fluctuations in Hydrodynamics INT 2021

18/26



Perturbation theory

® Small fluctuations are Gaussian

® Introduce expansion parameter: e.
Power counting: S” ~ e~1, so that v ~ /.

Then GS = (dv;, ... 0v;, )¢ ~ e L.

#® In hydrodynamics, small parameter is (¢/A)3: 1/q — wavelength
of fluctuations > 1/A — size of hydro cell (UV cutoff).
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Evolution equations for cumulants

Systematically truncate each equation to leading order:

OGS iy = [Miyj (S j1GRs, + 5ji2)]Pili2 +0(e),

1112

1
ath = |:7Mi1j (S7jkGi’LQZJ + S,gkéGnggzg)

111213 2

+ Mi1j,mG(7:ni2 (SJszig + 6ji3) ] + 0(62).

Piqi213
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Diagrammatic representation

51_7‘ = — Gflu.z,,z W
(o) = ——0— Siim T Misisi® DN

g
+
T
-

® Tree diagrams at leading order in «.

® At higher-orders loops describe feedback of fluctuations (e.g., long-time tails).
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Diffusion (nonlinear and stochastic)

® The prototype of hydrodynamics:

v

on=-V-J,
J=iva+ Ve,
X = A(#) is conductivity and & = «(#) is chem. potential (T = 1).
® Translate: i,j — «x, vy,

528

0Ny 0y
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Generalizing Wigner transform

o

Wh(z,q1,..

~,qn)5/dyf’

dg;
(2m)3

5@ (g1 +..-+an) RICTE IR I

.../dinn(ac—i-yl,...,:c—ﬁ—yn)

53 (yl t+...+ y") e*i(q1'y1+m+qn<yn);

n

Wn(w7 qi,-. -, qn)(zﬂ-)S

® Properties similar to the usual (n = 2) Wigner transform.

® Takes advantage of the scale separation:
long-scale xz-dependence and short-scale y,,-dependence.

® One wavevector is redundant: ¢; + ...+ q, = 0.
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Equations

N J
Wa(q1) = — [vaiWa(qz) + Aq1 - ]

Pqig2 ’

1
OWs(q1,q2) = — {qu?Wa(qmqs)

1
+=9'qi Wa(gqz2)Wa(gs) + N a1 - g2Wa(gs) :

2
Pqgig2q3

1
OWi(q,q2,q3) = — {qufWZ(qa,q&qzl)

1 1
+ E'VHQ%WQ(QZ)WQ(qIS)WZ(q4) + EW,Q%Wz(@)Wzs(Q& qs)
1 1
+§Xq1 - q2W3(gs3,q4) + 5)\”% - q2W2(q3)Wa(qa) )
Pqi192934q4
(v = A\a')

® Map from diagrams:
Sij — —a, S = —a”, Mi; = —Aqu - g2, M0 = —XN a1 - g2, , efc..
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® Two main features:
® Lag, or "memory”.

® Smaller Q — slower evolution.
Conservation laws.

® The magnitude of the observed
critical point signatures depends
on the scale of fluctuations

probed.

M. Stephanov
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Work in progress and outlook

® Non-gaussian fluctuations in full relativistic hydrodynamics.
® Connect fluctuating hydro with freezeout kinetics and implement

in full hydrodynamic code and event generator.
Compare with experiment.

® First-order transition in fluctuating hydrodynamics?
® Loops, long-time tails, renormalization.

® Connection to path integral (SK) formulation.
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More




Separation of scales

Gz, y) = (o(x +y/2) p(x —y/2))

depends on z slowly (L), but on y —fast (feq ~ V'L < L).
L xr
-._______—__’_,—"”——__-~“~.Qb(ai
b Glay)

Similar to separation of scales in QFT in kinetic regime. (¢ > k)
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Scales

® Hydro cell size b: coarse-grain quantum operators over scale
b > . to leave only slow modes for which quantum fluctuatu-
ations are negligible compared to thermal, i.e., hw < kT.
gmic ~ gmfpa CS/T-

¢ = (T, J°) are classical stochastic variables.
® Hydrodynamic gradients scale L: must be L > b.

® Size of local equlibrium cell £, = ¢,: diffusion length in evolution
time scale, typically 7o, ~ L/cs

E* ~ \/ﬁw V ’YL/CS'
® ) < L implies the hierarchy:

bie Kb <l <L or T/es>A>q. >k (¢ =csk)
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Hydro+ vs Hydro: real-time bulk response

Hydrodynamics breaks down for processes faster than I' ~ £~3 — Hydro+

® Stiffness of eos (sound speed) is
underestimated in hydro (---):

cs — 0 at CP, but
only modes with w < I'¢ are
critically soft.

® Dissipation during expansion is
overestimated in hydro (---):

¢ — oo at CP, but
only modes with w < I'¢
experience large C.
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Confluent derivative, connection and correlator

Take out dependence of components of ¢ due to change of u(x):

Az - v¢ - A(AJ;)¢($ + Ax) - (b(x) ll(JlV\'ll(.’lf‘l»A.’I?)

A(Az)

Confluent two-point correlator:

G(z,y) = My/2) (d(x +y/2) $(z — y/2)) A(—y/2)"

(boost to u(x) — rest frame at midpoint)
?#GAB = auGAB — @EAG’CB - ‘DEBG'AC — (Z}za ya@GAB .

Connection @ corresponds to the boost A.

Connection & makes sure derivative is independent of the choice of
local space triad e, needed to expressy =z, —x_.

We then define the Wigner transform Wag(z, q) of Gap(z,y).
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Renormalization
Expansion of (T%) contains (¢(xz)é(x)) = G(x,0) = [ (&% W (x, q).

This integral is divergent (equilibrium G (z,y) ~ §3(y)).

M. Stephanov Fluctuations in Hydrodynamics INT 2021 32/26



Renormalization

Expansion of (T%) contains (¢(xz)é(x)) = G(x,0) = [ (&% W (x, q).

This integral is divergent (equilibrium G (z,y) ~ §3(y)).

%% (0) -~ (0) (1) W
o wh W(z,q) w_ +uv_->+ W
Tw Ou/q?

(~“OPE” or gradient expansion)

Yy
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Renormalization

Expansion of (T%) contains (¢(xz)é(x)) = G(x,0) = [ (&% W (x, q).

This integral is divergent (equilibrium G (z,y) ~ §(y)).

w (0) ~ WO ey W
W W(z,q) W&o WY+ w
Tw au/q2
(~“OPE” or gradient expansion)
q
| L 5 -
ek G(x,0) A° + Adu + G

ideal (EOS) visc. terms finite “93/2"
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Renormalization

Expansion of (T%) contains (¢(xz)é(x)) = G(x,0) = [ (&% W (x, q).

This integral is divergent (equilibrium G (z,y) ~ §3(y)).

w (0) ~ WO ey W
W W(z,q) W&o WY+ w
Tw au/q2
(~“OPE” or gradient expansion)
q
| L 5 -
ek G(x,0) A° + Adu + G

ideal (EOS) visc. terms finite “93/2"

(TR (2)) = eulu® + ple,n) AP + T + {G(m, o)}
— epufu? + pr(en nR) A + T+ {G(x,0)} .
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Renormalized e.o.s. and transport coefficients

® Fluctuation corrections to kinetic coefficients are positive.

® Corrections to pressure and bulk viscosity vanish for conformal e.o.s.

TA3

S 1 .
pr(er,mr) = pler,nr) + 2 ((l—ci—2T—|—cs)—|—§(1—cp))7

_ g LAY T
K T e YL 2y )]
A (1 L2 3. 2\ . 9 2
= — (1 —3T + 3¢ Z 12T+ 1— ,
(n o= (e (w( sae4 2 (1-30+ @) + 0= 4)
T2n2A c,T c?
AR = A+ P + = .
8 3miw? ( (Y + w27z )

[
gl

’Yﬁ ) 'yC

5, %\E/{:D7 Xz(alogX) .
w
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