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Hydrodynamics

Hydrodynamics is an effective theory, i.e., re-
lies on separation of scales.

Assumes local equilibrium and describes
evolution of a fluid towards global equilib-
rium.

This evolution is slow, because of conserva-
tion laws.

Is hydrodynamics a deterministic theory?

No. This would violate fluctuation-dissipation theorem.

What is the role of the randomness and how do we describe it?
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Critical point: intriguing hints

Where on the QCD phase boundary is the CP?
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“intriguing hint” (2015 LRPNS)

Motivation for phase II of BES at RHIC and BEST topical collaboration.
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Theory/experiment gap: predictions assume equilibrium, but

Non-equilibrium physics is essential near the critical point.

Challenge: develop hydrodynamics with fluctuations capable of
describing non-equilibrium effects on critical-point signatures.

Also notable:
Fluctuations are the first step to extend hydro to smaller systems.
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Stochastic hydrodynamics

Hydrodynamics relies on scale separation: τexpnsn � τeqlbrtn.

Slow variables obey conservation equations (∂µTµν = 0):

∂tψ = −∇ · Flux[ψ];

Stochastic variables ψ̆ = ( T̆ i0, J̆0 ) are local operators
coarse-grained (over “cells” b: `mic � b� L):

∂tψ̆ = −∇ ·
(

Flux[ψ̆] + Noise
)

(Landau-Lifshitz)

Non-linearities + locality⇒ UV divergences.
In numerical simulations – cutoff dependence.
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Deterministic approach

Variables are one- and two-point functions:
ψ = 〈ψ̆〉 and G = 〈ψ̆ψ̆〉 − 〈ψ̆〉〈ψ̆〉 – equal-time correlator

Nonlinearities lead to dependence of flux on G.

∂tψ = −∇ · Flux[ψ,G]; (conservation)

∂tG = L[G;ψ]. (relaxation)

In Bjorken flow by Akamatsu et al , Martinez-Schaefer.
For arbitrary relativistic flow – by An et al (this talk).
Earlier, in nonrelativistic context, – by Andreev in 1970s.

Advantage: equations are deterministic.

“Infinite noise” causes UV renormalization of EOS and transport
coefficients – can be taken care of analytically (1902.09517)

Two- and higher-pt functions systematically describe deviations
from local equilibrium.
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Fluctuation dynamics near CP: Hydro+

Yin, MS, 1712.10305
Rajagopal et al, 1908.08539

Du et al, 2004.02719Hydro requires τexpnsn � τeqlbrtn.

“Critical slowing down”: τeqlbrtn ∼ ξ3 →∞.

ξmax ∼ τ1/3
expnsn – magnitude of flucts. determined by dynamics.

Dynamics near CP requires two main ingredients:

Critical fluctuations (ξ →∞);

Slow relaxation mode with τeqlbrtn ∼ ξ3 .

Both described by the same object: the two-point function
of the slowest hydrodynamic mode m ≡ (s/n),
i.e., 〈 δm(x1) δm(x2) 〉.
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Additional variables in Hydro+

Hydro+ extends Hydro with new non-hydrodynamic d.o.f..

At the CP the slowest (i.e., most out of equilibrium) new d.o.f. is
the 2-pt function 〈δmδm〉 of the slowest hydro variable:

φQ(x) =

∫
∆x
〈δm (x+) δm (x−)〉 eiQ·∆x

where x = (x+ + x−)/2 and ∆x = x+ − x−.

Wigner transformed b/c dependence on x (∼ L) is slow and
relevant ∆x� L. Scale separation similar to kinetic theory.
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Relaxation of fluctuations towards equilibrium

As usual, equilibration maximizes entropy S =
∑

i pi log(1/pi):

s(+)(ε, n, φQ) = s(ε, n) +
1

2

∫
Q

(
log

φQ

φ̄Q
−
φQ

φ̄Q
+ 1

)

The equation for φQ is a relaxation equation with rate

Γ(Q) ≈ 2DQ2 for Q� ξ−1, D ∼ 1/ξ.

Impact of fluctuations on hydrodynamics:

“Renormalization” of bulk viscosity ζ ∼ 1/Γξ ∼ ξ3.

(Non-analytic) frequency dependence of ζ(ω) at ω � Γξ.
“Long-time tails” (Kovtun-Yaffe 2003)

Impact on observables: “memory” effects
Berdnikov-Rajagopal, Mukherjee-Venugopalan-Yin, . . .
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Full relativistic hydrodynamics

An, Basar, Yee, MS, 1902.09517,1912.13456

To embed Hydro+ into a unified theory for critical as well as non-
critical fluctuations we develop a general deterministic (hydro-
kinetic) formalism.

Expand stochastic hydro eqs. in {δm, δp, δuµ} ∼ φA
and then average, using equal-time correlator

GAB(x, y)
?
= 〈φA(x+ y/2)φB(x− y/2) 〉.

What is “equal-time” in relativistic hydro?

〈φ(x)φ(x)〉 is singular (cutoff dependent). Renormalization?
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Equal time and confluent derivative

We need equal-time correlator G = 〈φ(t,x+)φ(t,x−)〉.

But what does “equal time” mean? Requires a frame choice.

The most natural choice is local u(x) (at x = (x+ + x−)/2).

Confluent derivative wrt x at “y-fixed” takes this into account:
using Λ(∆x)u(x+ ∆x) = u(x):

∆x · ∇̄G(x, y) ≡
G(x+ ∆x,Λ(∆x)−1y)−G(x, y) .

not G(x+ ∆x, y)−G(x, y) .

We define confluent equal time correlator ḠAB(x, y)
and its Wigner transform WAB(x, q) more

M. Stephanov Fluctuations in Hydrodynamics INT 2021 11 / 26



Equal time and confluent derivative

We need equal-time correlator G = 〈φ(t,x+)φ(t,x−)〉.

But what does “equal time” mean? Requires a frame choice.

The most natural choice is local u(x) (at x = (x+ + x−)/2).

Confluent derivative wrt x at “y-fixed” takes this into account:
using Λ(∆x)u(x+ ∆x) = u(x):

∆x · ∇̄G(x, y) ≡
G(x+ ∆x,Λ(∆x)−1y)−G(x, y) .

not G(x+ ∆x, y)−G(x, y) .

We define confluent equal time correlator ḠAB(x, y)
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Sound-sound correlation and phonon kinetic equation

After many miraculous cancellations we arrive at “hydro-kinetic”
equations for components of W .
The longitudinal components, corresponding to p and uµ fluctu-
ations at δ(s/n) = 0, obey the following eq. (NL ≡WL/(wcs|q|))[

(u+ v) · ∇̄+ f · ∂
∂q

]
NL︸ ︷︷ ︸

L[NL] – Liouville op.

= −γLq2

(
NL −

T

cs|q|︸ ︷︷ ︸
N

(0)
L

)

Kinetic eq. for phonons with E = cs|q|, v = csq/|q| (q · u = 0)

fµ = −E(aµ + 2vνωνµ)︸ ︷︷ ︸
inertial + Coriolis

−qν∂⊥µuν︸ ︷︷ ︸
“Hubble”

−∇̄⊥µE .

N
(0)
L is equilibrium Bose-distribution.
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Diffusive mode fluctuations

Fluctuations of m ≡ s/n and transverse components of uµ obey

(entropy-entropy) L[Nmm] = −2Γλ

(
Nmm −

cp
n

)
+ . . .

(entropy-velosity) L[Nmi] = −(Γη + Γλ)Nmi + . . .

(velocity-velocity) L[Nij ] = −2Γη

(
Nij −

Tw

n

)
+ . . .

L is Liouville operator with v = f = 0, i.e., no propagation,
but relaxation: ΓX = γXq

2, where γλ = λ/cp and γη = η/w.

“. . . ” are terms ∼ background grads, mixing Nmm ↔ Nmi ↔ Nij .

Near critical point Γλ is smallest, γλ = λ/cp ∼ 1/ξ → 0.

Nmm equation decouples and matches Hydro+ (φQ = nNmm).
Very nontrivially! An, Basar, Yee, MS, 1912.13456
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Beyond Hydro+

Hydro+ breaks down when hydro frequency/rate is of order ξ−2

due to next-to-slowest modes (Nmi and Nij).

The formalism extends Hydro+ to higher frequencies, i.e.,
shorter hydrodynamic scales (all the way to ξ.)

Fluctuations (Nmi) enhance conductivity for small ω.

Hydro Hydro+ Hydro++

-3ξ -2ξ -1ξ ω

ζ
λ

scaling
regime
(model H)

0
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Renormalization

Expansion of 〈Tµν〉 in fluctuations φ contains more

〈φ(x)φ(x)〉 = G(x, 0) =

∫
d3q

(2π)3
W (x, q).

The integral is divergent (in equilibrium G(0)(x, y) ∼ δ3(y)).

Such short-distance singularities can be absorbed into redefin-
ion of EOS (i.e., pressure) and transport coefficients:

〈Tµν(x)〉 = εuµuν + p(ε, n)∆µν + Πµν +
{
G(x, 0)

}
= εRu

µ
Ru

ν + pR(εR, nR)∆µν
R + Πµν

R +
{
G̃(x, 0)

}
.

Constraints of 2nd law, conformality satisfied nontrivially. more
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Theory/experiment gap: we have been discussing linearized
fluctuations and two-point correlators, but

non-Gaussian fluctuations are sensitive signatures of the critical point
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Nonlinearity and multiplicative noise

An et al 2009.10742

Now nonlinearity and multiplicative noise matter even more:

∂tψ̆ = −∇ ·
(

Flux[ψ̆] + Noise
)
, 〈Noise Noise〉 ∼ 2Q[ψ̆] .

General multivariable Langevin equation:

dv̆i
dt

= Fi[v̆] +Hij [v̆]ξj , ambiguous

Fokker-Plank equation (Ito calculus):

∂tP =
(
−FiP + (QijP ),j

)
,i
, unambiguous

(Q ≡ HHT ).

Different (e.g., Stratonovich) calculus/scheme ≡ different Fi.
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Physical (unambiguous) formulation

Equilibrium solution obeys:

Probability flux = FiPeq − (QijPeq),j = (ΩijPeq),j ,

I.e., Fi = P−1
eq (MijPeq),j , where M ≡ Q+ Ω.

Define the problem in terms of physical properties

Onsager matrix M and entropy S ≡ logPeq,

rather than Fi = MijS,j +Mij,j (Ito).
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Perturbation theory

Small fluctuations are Gaussian

Introduce expansion parameter: ε.

Power counting: S′′ ∼ ε−1, so that δv ∼
√
ε.

Then Gc
n ≡ 〈δvi1 . . . δvin〉c ∼ εn−1.

In hydrodynamics, small parameter is (q/Λ)3: 1/q – wavelength
of fluctuations� 1/Λ – size of hydro cell (UV cutoff).
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Evolution equations for cumulants

Systematically truncate each equation to leading order:

∂tG
c
i1i2 =

[
Mi1j

(
S,jkG

c
ki2 + δji2

)]
Pi1i2

+O(ε),

∂tG
c
i1i2i3 =

[1

2
Mi1j

(
S,jkG

c
ki2i3 + S,jk`G

c
ki2G

c
`i3

)
+Mi1j,mG

c
mi2

(
S,jkG

c
ki3 + δji3

) ]
Pi1i2i3

+O(ε2).

...
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Diagrammatic representation

Tree diagrams at leading order in ε.

At higher-orders loops describe feedback of fluctuations (e.g., long-time tails).
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Diffusion (nonlinear and stochastic)

The prototype of hydrodynamics:

∂tn̆ = −∇ · J̆ ,

J̆ = −λ̆∇ᾰ+
√
λ̆ ξ,

λ̆ = λ(n̆) is conductivity and ᾰ = α(n̆) is chem. potential (T = 1).

Translate: i, j → x,y,

S,ij →
δ2S

δnxδny
= −α′(nx)δxy and Mij → −∇xλ(nx)∇xδxy .
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Generalizing Wigner transform

Wn(x, q1, . . . , qn) ≡
∫
dy3

1 . . .

∫
dy3

nGn (x + y1, . . . ,x + yn)

δ(3)
(y1 + . . .+ yn

n

)
e−i(q1·y1+...+qn·yn);

Gn (x1, . . . ,xn) =

∫
dq3

1

(2π)3
. . .

∫
dq3
n

(2π)3
Wn(x, q1, . . . , qn)(2π)3

δ(3) (q1 + . . .+ qn) ei(q1·x1+...+qn·xn) .

Properties similar to the usual (n = 2) Wigner transform.

Takes advantage of the scale separation:
long-scale x-dependence and short-scale yn-dependence.

One wavevector is redundant: q1 + . . .+ qn = 0.
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Equations

∂tW2(q1) = −
[
γq2

1W2(q2) + λq1 · q2

]
Pq1q2

,

∂tW3(q1, q2) = −
[

1

2
γq2

1W3(q2, q3)

+
1

2
γ′q2

1W2(q2)W2(q3) + λ′q1 · q2W2(q3)

]
Pq1q2q3

,

∂tW
c
4 (q1, q2, q3) = −

[
1

6
γq2

1W
c
4 (q2, q3, q4)

+
1

6
γ′′q2

1W2(q2)W2(q3)W2(q4) +
1

2
γ′q2

1W2(q2)W3(q3, q4)

+
1

2
λ′q1 · q2W3(q3, q4) +

1

2
λ′′q1 · q2W2(q3)W2(q4)

]
Pq1q2q3q4

,

(γ ≡ λα′)

Map from diagrams:
S,ij → −α′, S,ijk → −α′′, Mij → −λq1 · q2, Mij,k → −λ′q1 · q2, , etc..

M. Stephanov Fluctuations in Hydrodynamics INT 2021 24 / 26



Example: expansion through a critical region

Two main features:

Lag, or ”memory”.

Smaller Q – slower evolution.
Conservation laws.

The magnitude of the observed
critical point signatures depends
on the scale of fluctuations
probed.

equilibrium
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Work in progress and outlook

Non-gaussian fluctuations in full relativistic hydrodynamics.

Connect fluctuating hydro with freezeout kinetics and implement
in full hydrodynamic code and event generator.
Compare with experiment.

First-order transition in fluctuating hydrodynamics?

Loops, long-time tails, renormalization.

Connection to path integral (SK) formulation.

M. Stephanov Fluctuations in Hydrodynamics INT 2021 26 / 26



More
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Separation of scales

G(x, y) = 〈φ(x+ y/2)φ(x− y/2) 〉

depends on x slowly (L), but on y – fast (`eq ∼
√
L� L).

Similar to separation of scales in QFT in kinetic regime. (q � k)
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Scales

Hydro cell size b: coarse-grain quantum operators over scale
b � `mic to leave only slow modes for which quantum fluctuatu-
ations are negligible compared to thermal, i.e., ~ω � kT .
`mic ∼ `mfp, cs/T .

ψ̆ = ( T̆ i0, J̆0 ) are classical stochastic variables.

Hydrodynamic gradients scale L: must be L� b. back

Size of local equlibrium cell `eq ≡ `∗: diffusion length in evolution
time scale, typically τev ∼ L/cs

`∗ ∼
√
γτev ∼

√
γL/cs.

b� L implies the hierarchy:

`mic � b < `∗ � L or T/cs � Λ > q∗ � k (γq2
∗ = csk)
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Hydro+ vs Hydro: real-time bulk response

Hydrodynamics breaks down for processes faster than Γξ ∼ ξ−3 → Hydro+

Stiffness of eos (sound speed) is
underestimated in hydro (- - -):

cs → 0 at CP, but
only modes with ω � Γξ are
critically soft.

Dissipation during expansion is
overestimated in hydro (- - -):

ζ →∞ at CP, but
only modes with ω � Γξ
experience large ζ.
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Confluent derivative, connection and correlator

Take out dependence of components of φ due to change of u(x):

∆x · ∇̄φ = Λ(∆x)φ(x+ ∆x)− φ(x)

Confluent two-point correlator:

Ḡ(x, y) = Λ(y/2) 〈φ(x+ y/2)φ(x− y/2)〉Λ(−y/2)T

(boost to u(x) – rest frame at midpoint)

∇̄µḠAB = ∂µḠAB − ω̄CµAḠCB − ω̄CµBḠAC − ω̊bµa ya
∂

∂yb
ḠAB .

Connection ω̄ corresponds to the boost Λ. back

Connection ω̊ makes sure derivative is independent of the choice of
local space triad ea needed to express y ≡ x+ − x−.

We then define the Wigner transform WAB(x, q) of ḠAB(x, y).
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Renormalization

Expansion of 〈Tµν〉 contains 〈φ(x)φ(x)〉 = G(x, 0) =
∫ d3q

(2π)3
W (x, q).

This integral is divergent (equilibrium G(0)(x, y) ∼ δ3(y)). back

W (x, q) ∼ W (0)︸ ︷︷ ︸
Tw

+ W (1)︸ ︷︷ ︸
∂u/q2

+ W̃

(∼“OPE” or gradient expansion)

〈Tµν(x)〉 = εuµuν + p(ε, n)∆µν + Πµν +
{
G(x, 0)

}
= εRu

µ
Ru

ν + pR(εR, nR)∆µν
R + Πµν

R +
{
G̃(x, 0)

}
.
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Renormalized e.o.s. and transport coefficients

Fluctuation corrections to kinetic coefficients are positive. back

Corrections to pressure and bulk viscosity vanish for conformal e.o.s.

pR(εR, nR) = p(εR, nR) +
TΛ3

6π2

(
(1− c2s − 2Ṫ + ċs) +

1

2
(1− ċp)

)
,

ηR = η +
TΛ

30π2

(
1

γL
+

7

2γη

)
,

ζR = ζ +
TΛ

18π2

(
1

γL
(1− 3Ṫ + 3ċs)

2 +
2

γη

(
1− 3

2
(Ṫ + c2s)

)2

+
9

4γλ
(1− ċp)2

)
,

λR = λ+
T 2n2Λ

3π2w2

(
cpT

(γη + γλ)w
+

c2s
2γL

)
.

γη ≡
η

w
, γζ ≡

ζ

w
, γλ ≡

κ

cp
= D , Ẋ ≡

(
∂ logX

∂ log s

)
m

.
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