Measuring the speed of sound in matter created in heavy-ion collisions

Agnieszka Sorensen

Institute for Nuclear Theory, University of Washington

In collaboration with Volker Koch, Larry McLerran, Dima Oliinychenko

02/22/2022

Measuring the speed of sound in heavy-ion collisions

Why the speed of sound in nuclear matter is interesting (besides being a fundamental property of nuclear matter)

The biggest take-away from high-energy heavy-ion collisions: quark-gluon plasma (QGP) can be studied in the laboratory

QGP can be produced by smashing hadrons \Rightarrow transition between hadrons and QGP can be studied

different collision energies: \Rightarrow varying the energy deposited in the collision region

 \Rightarrow varying net baryon number trapped in the collision region: probing different regions on the phase diagram

Models predict a 1st order phase transition at large $n_R \sim \text{large } \mu_R$

Agnieszka Sorensen (INT)

Y. Akiba et al, "The Hot QCD White Paper: Exploring the Phases of QCD at RHIC and the LHC", arXiv:1502.02730 (2015), Akiba:2015jwa

> LQCD EOS ($\mu_R = 0$) finite m_q = crossover pseudocritical temperature $T_{pc} \simeq 150 \,\mathrm{MeV}$ valid only for $\frac{\mu_B}{T} \le 2$

nuclear critical point

extrapolations of well-tested nuclear forces + experiments on nuclear fragmentation

Thermodynamics is encoded in the equation of state (EOS)

Y. Akiba et al, "The Hot QCD White Paper" arXiv:1502.02730 (2015), Akiba:2015jwa

Example: Van der Waals EOS $P = R \frac{\rho T}{1 - b\rho} - a\rho^2$

coexistence of phases: $T_1 = T_2, P_1 = P_2, \mu_1 = \mu_2$

How does it all connect to the speed of sound?

Like pressure, the behavior of the speed of sound signals a phase transition:

$$c_T^2 \equiv \left(\frac{dP}{d\mathscr{C}}\right)_T = \left(\frac{d\mathscr{C}}{dn_B}\right)_T^{-1} \left(\frac{dP}{dn_B}\right)_T \qquad \text{1st ord} \\ c_T^2 \text{ bec}$$

Agnieszka Sorensen (INT)

L. Cueto-Felgueroso et al, Phys. Rev. Fluids **3**, 084302 (2018)

- der phase transition = comes negative/zero (Maxwell construction)
- There are advantages in looking at a derivative of P instead of P

 $c_s^2(n_B > 1.5n_0)$ may exceed the conformal limit of 1/3

P. Bedaque and A. W. Steiner, Phys. Rev. Lett. 114, no.3, 031103 (2015), arXiv: 1408.5116, Bedaque:2014sqa c_s^2 in any medium conjectured to be smaller than c/3: I. Tews, J. Carlson, S. Gandolfi and S. Reddy, Astrophys. J. 860, no.2, 149 • easily shown in non-relativistic and/or weakly coupled theories (2018), arXiv:1801.01923, Tews:2018kmu • demonstrated in several classes of strongly coupled theories with gravity duals

- saturated only in conformal theories
- neutron stars with $M \gtrsim 2M_{\odot}$ + knowledge of the EOS of hadronic matter at "low" densities \Rightarrow strong tension with this bound

L. McLerran and S. Reddy, Phys. Rev. Lett. 122, no.12, 122701 (2019), arXiv:1811.12503, McLerran:2018hbz

Agnieszka Sorensen (INT)

Y. Fujimoto, K. Fukushima and K. Murase,

Phys. Rev. D 101, no.5, 054016 (2020),

 $c_s^2(n_B > 1.5n_0)$ may exceed the conformal limit of 1/3

 $c_{\rm s}^2$ in any medium c • easily shown in non-

- demonstrated in sev
- saturated only in cor neutron stars with

\Rightarrow strong tension

This is a striking behavior! Can it be studied in heavy-ion collisions?

L. McLerran and S. Reddy, arXiv:1811.12503, McLerran:2018hbz

Agnieszka Sorensen (INT)

P. Bedaque and A. W. Steiner, Phys. Rev. Lett. 114, no.3, 031103 (2015), 1408.5116, Bedaque:2014sqa y, Astrophys. J. 860, no.2, 149 iv:1801.01923, Tews:2018kmu

> shima and K. Murase, T-ITYS TICK IS INT, TIO.5, 054016 (2020), arXiv:1903.03400, Fujimoto:2019hxv

Measuring the speed of sound in heavy-ion collisions

Studying QCD thermodynamics with heavy-ion collisions

Cumulants of the baryon number distribution

$$\kappa_{j} \equiv VT^{j-1} \left(\frac{d^{j}P}{d\mu_{B}^{j}}\right)_{T}$$

$$\kappa_{1} = \langle N \rangle$$

$$\kappa_{2} = \langle (N - \langle N \rangle)^{2} \rangle$$

$$\kappa_{3} = \langle (N - \langle N \rangle)^{3} \rangle$$

$$\kappa_{4} = \langle (N - \langle N \rangle)^{4} \rangle$$

 $\kappa_1 = V n_B$

$$\kappa_{2} = VT \left(\frac{dn_{B}}{d\mu_{B}}\right)_{T} = VT \left(\frac{d\mu_{B}}{dn_{B}}\right)_{T}^{-1} = VTn_{B} \left(\frac{dP}{dn_{B}}\right)_{T}^{-1}$$

$$\kappa_{3} = VT^{2} \left(\frac{d^{2}n_{B}}{d\mu_{B}^{2}}\right)_{T} = \frac{VT^{2}n_{B}}{\left(\frac{dP}{dn_{B}}\right)_{T}^{2}} \left[1 - \frac{n_{B}}{\left(\frac{dP}{dn_{B}}\right)_{T}} \left(\frac{d^{2}P}{dn_{B}^{2}}\right)_{T}\right]$$

$$\kappa_{4} = VT^{3} \left(\frac{d^{3}n_{B}}{d\mu_{B}^{3}}\right)_{T} = \frac{VT^{3}n_{B}}{\left(\frac{dP}{dn_{B}}\right)_{T}^{3}} \left[1 - \frac{4n_{B}}{\left(\frac{dP}{dn_{B}}\right)_{T}} \left(\frac{d^{2}P}{dn_{B}^{2}}\right)_{T} + \frac{1}{\left(\frac{dP}{dn_{B}}\right)_{T}^{3}}\right]$$

Cumulants of the baryon number distribution

$$\kappa_{j} \equiv VT^{j-1} \left(\frac{d^{j}P}{d\mu_{B}^{j}}\right)_{T}$$

$$\kappa_{1} = \langle N \rangle$$

$$\kappa_{2} = \langle (N - \langle N \rangle)^{2} \rangle$$

$$\kappa_{3} = \langle (N - \langle N \rangle)^{3} \rangle$$

$$\kappa_{4} = \langle (N - \langle N \rangle)^{4} \rangle$$

 $\kappa_1 = V n_B$

$$\kappa_{2} = VT \left(\frac{dn_{B}}{d\mu_{B}}\right)_{T} = VT \left(\frac{d\mu_{B}}{dn_{B}}\right)_{T}^{-1} = VTn_{B} \left(\frac{dP}{dn_{B}}\right)_{T}^{-1}$$

$$\kappa_{3} = VT^{2} \left(\frac{d^{2}n_{B}}{d\mu_{B}^{2}}\right)_{T} = \frac{VT^{2}n_{B}}{\left(\frac{dP}{dn_{B}}\right)_{T}^{2}} \left[1 - \frac{n_{B}}{\left(\frac{dP}{dn_{B}}\right)_{T}} \left(\frac{d^{2}P}{dn_{B}^{2}}\right)_{T}\right]$$

$$\kappa_{4} = VT^{3} \left(\frac{d^{3}n_{B}}{d\mu_{B}^{3}}\right)_{T} = \frac{VT^{3}n_{B}}{\left(\frac{dP}{dn_{B}}\right)_{T}^{3}} \left[1 - \frac{4n_{B}}{\left(\frac{dP}{dn_{B}}\right)_{T}} \left(\frac{d^{2}P}{dn_{B}^{2}}\right)_{T} + \frac{1}{\left(\frac{dP}{dn_{B}}\right)_{T}^{3}}\right]$$

$$\kappa_{2} = VT \left(\frac{dn_{B}}{d\mu_{B}}\right)_{T} = VT \left(\frac{d\mu_{B}}{dn_{B}}\right)_{T}^{-1} = VTn_{B} \left(\frac{dP}{dn_{B}}\right)_{T}^{-1}$$

$$\kappa_{3} = VT^{2} \left(\frac{d^{2}n_{B}}{d\mu_{B}^{2}}\right)_{T} = \frac{VT^{2}n_{B}}{\left(\frac{dP}{dn_{B}}\right)_{T}^{2}} \left[1 - \frac{n_{B}}{\left(\frac{dP}{dn_{B}}\right)_{T}} \left(\frac{d^{2}P}{dn_{B}^{2}}\right)_{T}\right]$$

$$\kappa_{4} = VT^{3} \left(\frac{d^{3}n_{B}}{d\mu_{B}^{3}}\right)_{T} = \frac{VT^{3}n_{B}}{\left(\frac{dP}{dn_{B}}\right)_{T}^{3}} \left[1 - \frac{4n_{B}}{\left(\frac{dP}{dn_{B}}\right)_{T}} \left(\frac{d^{2}P}{dn_{B}^{2}}\right)_{T}^{2} + \frac{1}{\left(\frac{dP}{dn_{B}}\right)_{T}^{3}}\right]$$

A. Bzdak et al., Physics Reports 853 (2020) 1-87, arXiv:1906.00936, Bzdak:2019pkr

$$\frac{\kappa_2}{\kappa_1} = T \left(\frac{dP}{dn_B}\right)_T^{-1}$$

$$\frac{\kappa_3}{\kappa_2} = \frac{T}{\left(\frac{dP}{dn_B}\right)_T} \left[1 - \frac{n_B}{\left(\frac{dP}{dn_B}\right)_T} \left(\frac{d^2P}{dn_B^2}\right)_T \right]$$
$$\frac{\kappa_4}{\kappa_2} = \frac{T^2}{\left(\frac{dP}{dn_B}\right)_T^2} \left[1 - \frac{4n_B}{\left(\frac{dP}{dn_B}\right)_T} \left(\frac{d^2P}{dn_B^2}\right)_T + \frac{3n_B^2}{\left(\frac{dP}{dn_B}\right)_T^2} \left(\frac{d^2P}{dn_B^2}\right)_T \right]$$

A. Bzdak et al., Physics Reports 853 (2020) 1-87, arXiv:1906.00936, Bzdak:2019pkr

$$\frac{\kappa_2}{\kappa_1} = T \left(\frac{dP}{dn_B}\right)_T^{-1}$$

$$\frac{\kappa_3}{\kappa_2} = \frac{T}{\left(\frac{dP}{dn_B}\right)_T} \left[1 - \frac{n_B}{\left(\frac{dP}{dn_B}\right)_T} \left(\frac{d^2P}{dn_B^2}\right)_T \right]$$
$$\frac{\kappa_4}{\kappa_2} = \frac{T^2}{\left(\frac{dP}{dn_B}\right)_T^2} \left[1 - \frac{4n_B}{\left(\frac{dP}{dn_B}\right)_T} \left(\frac{d^2P}{dn_B^2}\right)_T + \frac{3n_B^2}{\left(\frac{dP}{dn_B}\right)_T^2} \left(\frac{d^2P}{dn_B^2}\right)_T \right]$$

Measuring the speed of sound in heavy-ion collisions

Connecting the speed of sound to heavy-ion collision observables

How to measure c_s^2 in heavy-ion collisions?

At finite T, one often considers the following two expressions for the speed of sound:

the isothermal speed of sound (T = const):

$$c_T^2 \equiv \left(\frac{dP}{d\mathscr{C}}\right)_T = \frac{\left(\frac{dP}{dn_B}\right)_T}{T\left(\frac{ds}{dn_B}\right)_T + \mu_B}$$

 $c_{\sigma}^2 \equiv$

$$c_T^2\Big|_{T=0} = c_\sigma^2\Big|_{T=0} = \frac{n_B}{\mu_B}\left(\frac{d\mu_B}{dn_B}\right)_T = \frac{1}{\mu_B}\left(\frac{dP}{dn_B}\right)_T$$

Easy to notice: the speed of sound ~ derivatives of pressure

What "measures" derivatives of pressure? Cumulants of baryon number!

Agnieszka Sorensen (INT)

the isentropic speed of sound $(\sigma = s/n_B = const)$:

$$\left(\frac{dP}{d\mathscr{C}}\right)_{\sigma} = \frac{\frac{s}{n_{B}}\left(\frac{dP}{dT}\right)_{n_{B}} + \left(\frac{dP}{dn_{B}}\right)_{T}\left(\frac{ds}{dT}\right)_{n_{B}} - \left(\frac{dP}{dT}\right)_{n_{B}}\left(\frac{ds}{dn_{B}}\right)_{n_{B}}\left(\frac{ds}{dT}\right)_{n_{B}}\left(\frac$$

common T = 0 limit:

Can one connect the speed of sound with the cumulants?

 $T\left(\frac{dn_B}{dT}\right)$

$$c_T^2 \equiv \left(\frac{dP}{d\mathscr{C}}\right)_T = \left(\frac{dP}{d\mu_B}\right)_T \left(\frac{d\mathscr{C}}{d\mu_B}\right)_T^{-1} = \frac{1}{T\left(\frac{ds}{d\mu_B}\right)_T^{-1}}$$

Problematic: difficult to estimate T derivatives of cumulants from experiment

$$c_T^2 \approx \frac{T\kappa_1}{\mu_B \kappa_2}$$
an upper limit to c_T^2

Agnieszka Sorensen (INT)

Can one connect the speed of sound with the cumulants?

Does it make sense intuitively that $c_T^2 \propto \kappa_2^{-1}$? In the nonrelativistic case: $c_T^2 \Big|_{nonrel} = \left(\frac{dP}{dn_B}\right)_T$ Given local change in density dn_B : dP is large $\Rightarrow c_T^2$ is large. But, if dP is large for a given dn_B , that produces large pressure gradients

Given local change in density $dn_B: dP$ is large $\Rightarrow c_T^2$ is large. But, if dP is large for a given dn_B , that produces large pressure gradien \Rightarrow large restoring forces F_r . Large restoring forces will work against large local changes in density \Rightarrow suppression in local density fluctuations \Rightarrow small κ_2 . So yes, it makes sense!

 $c_T^2 \approx \frac{T\kappa_1}{\mu_P\kappa_2}$ an upper limit to c_T^2

Agnieszka Sorensen (INT)

Can one connect the speed of sound with the cumulants?

$$c_T^2 \equiv \left(\frac{dP}{d\mathscr{C}}\right)_T = \left(\frac{dP}{d\mu_B}\right)_T \left(\frac{d\mathscr{C}}{d\mu_B}\right)_T^{-1} = \frac{1}{T\left(\frac{ds}{d\mu_B}\right)_T^{-1}}$$

Problematic: difficult to estimate T derivatives of cumulants from experiment

$$c_T^2 \approx \frac{T\kappa_1}{\mu_B \kappa_2}$$
an upper limit to c_T^2

Agnieszka Sorensen (INT)

Measuring the speed of sound in heavy-ion collisions

Agnieszka Sorensen (INT)

Tests in model calculations

the Walecka model

AS, V. Koch, Phys. Rev. C **104** no. 3 (2021) 034904, arXiv:2011.06635, Sorensen:2020ygf

the VDF (vector density functional) model

$$P = g \int \frac{d^3 p}{(2\pi)^3} \frac{p^2}{3\sqrt{p^2 + m^2}} f_{\mathbf{p}} + \sum_{i=1}^4 C_i \frac{b_i - 1}{b_i}$$

yellow lines = spinodal regions, black lines for coexistence regions

 $+\infty$ 100 50 25 10 2.5 1.0 0.5 0.1 -0.1 -0.5 -1.0 -2.5 -5 -10 -25 -50 -100 -00

17

the Walecka model

AS, V. Koch, Phys. Rev. C **104** no. 3 (2021) 034904, arXiv:2011.06635, Sorensen:2020ygf

the VDF (vector density functional) model

$$P = g \int \frac{d^3 p}{(2\pi)^3} \frac{p^2}{3\sqrt{p^2 + m^2}} f_{\mathbf{p}} + \sum_{i=1}^4 C_i \frac{b_i - 1}{b_i}$$

orange = positive values, blue = negative values, white lines for values = 1 (Poisson limit), yellow lines = spinodal regions, black lines for coexistence regions

 $+\infty$ 100 50 25 10 2.5 1.0 0.5 0.1 -0.1 -0.5 -1.0 -2.5 -5 -10 -25 -50 -100 $-\infty$

the Walecka model

AS, V. Koch, Phys. Rev. C **104** no. 3 (2021) 034904, arXiv:2011.06635, Sorensen:2020ygf

the VDF (vector density functional) model

$$P = g \int \frac{d^3 p}{(2\pi)^3} \frac{p^2}{3\sqrt{p^2 + m^2}} f_{\mathbf{p}} + \sum_{i=1}^4 C_i \frac{b_i - 1}{b_i}$$

orange = positive values, blue = negative values, white lines for values = 1 (Poisson limit), yellow lines = spinodal regions, black lines for coexistence regions

 $+\infty$ 100 50 25 10 5 2.5 1.0 0.5 0.1 -0.1 -0.5 -1.0 -2.5 -5 -10 -25 -50 -100 -00

A. Bzdak et al., Physics Reports 853 (2020) 1-87, arXiv:1906.00936,

yellow lines = spinodal regions, black lines for coexistence regions

 $+\infty$ 100 50 25 10 2.5 1.0 0.5 0.1 -0.1 -0.5 -1.0 -2.5 -5 -10 -25 -50 -100 $-\infty$

Agnieszka Sorensen (INT)

Agnieszka Sorensen (INT)

Agnieszka Sorensen (INT)

$$\left(\frac{d \ln c_T^2}{d \ln n_B}\right)_T + c_T^2 \approx 1 - \frac{\kappa_3 \kappa_1}{\kappa_2^2}$$

$$\int_T^{-1} - \kappa_3 \kappa_1 / \kappa_2^2 \qquad c_T^2 + d \ln c_T^2 / d \ln n_B$$

$$\int_T^{-1} = 50 \qquad T = 50$$

$$\int_T^{-1} = 150 \qquad T = 150$$

$$\int_T^{-1} = 150$$

arXiv:2103.07365, Sorensen:2021zme

Agnieszka Sorensen (INT)

arXiv:2103.07365, Sorensen:2021zme

Tests in the Walecka model

Measuring the speed of sound in heavy-ion collisions

What we see in experimental data

Experimental data

Agnieszka Sorensen (INT)

The freeze-out parameters (T_{fo}, μ_{fo}) are obtained from particle yields:

\sqrt{s} [GeV]	$T_{ m fo}$ [MeV]	$\mu_{ m fo} [{ m MeV}]$
200	164.3	28
62.4	160.3	70
54.4	160.0	83
39	156.4	103
27	155.0	144
19.6	153.9	188
14.5	151.6	264
11.5	149.4	287
7.7	144.3	398
2.4	65	784

Cumulants κ_2 , κ_3 , ... are fluctuations around the means

M. Abdallah *et al.* (STAR), Phys. Rev. C **104** (2021) no. 2 024902, arXiv:2101.12413, STAR:2021iop M. L. for the HADES collaboration (2019), 3rd EMMI Workshop

AS, D. Oliinychenko, V. Koch, L. McLerran, Phys. Rev. Lett. 127 (2021) 042303 arXiv:2103.07365, Sorensen:2021zme

Experimental data: can we understand what is happening?

50

Experimental data: can we understand what is happening?

250

200 [MeV] 150 temperature T 100

50

Agnieszka Sorensen (INT)

Agnieszka Sorensen (INT)

The results prompt more questions

STAR + HADES data

- is behavior of the cumulants at low energies dominated by hadronic effects and the nuclear liquid-gas phase transition?
- can we study c_T^2 in ordinary nuclear matter using very low-energy collisions?
- *something* significant is happening: κ_3 changes sign!

Agnieszka Sorensen (INT)

Need more experimental data and comparisons with simulations!

Measuring the speed of sound in heavy-ion collisions

A couple of elephants in the room, and what to do with them

Proton vs. baryon cumulants

Proton cumulants said to be a good proxy for baryon cumulants. Are they?

Definitely NOT in the VDF model:

Agnieszka Sorensen (INT)

Y. Hatta, Y. and M. A. Stephanov, Phys. Rev. Lett. 91 (2003) 102003, arXiv:0302002, Hatta:2003wn

proton cumulants

Rapidity window dependence vs. theory calculations

Changing the rapidity width:

 \Rightarrow changes the probed scale (what bin width will "capture" the correlations?)

 \Rightarrow can increase/reduce baryon number conservation effects V. Vovchenko, O. Savchuk, R. Poberezhnyuk, M. Gorenstein, V. Koch, Phys. Lett. B 811 (2020) 135868, arXiv:2003.13905, Vovchenko:2020tsr

Results at which bin width should be compared with the theory?

Agnieszka Sorensen (INT)

30

Dynamically evolving systems vs. calculations in equilibrium

Heavy-ion collisions are dynamical, messy phenomena occurring in a finite volume and within a finite time span.

How to distinguish measuring thermodynamic properties from fooling ourselves?

The way forward: simulations!

- At low energies hadronic transport is the appropriate tool to study this
- Simulations with flexible interactions to study a variety of possible EOSs

Agnieszka Sorensen (INT)

is the appropriate tool to study this ns to study a variety of possible EOSs

VDF model in SMASH

• Hadronic transport code SMASH with implemented VDF potentials is sensitive to thermodynamics of phase transitions described by an infinite family of possible EOSs

Agnieszka Sorensen (INT)

Work in progress

• The connection between cumulants calculated in theory and measured in experiment can be directly studied

Summary

- Cumulants reimagined: they can be used to study the speed of sound
- Independently of the model interpretation, the data points towards interesting behavior
- The path forward is to understand finite number, binning, conservation, ... effects in fluctuation observables

Thank you for your attention

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-05CH11231.

