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Role of symmetry in 
physics

• Symmetries play a very important role in physics

• Spacetime symmetry is key to understanding of 
elementary particles and matter

• In particle physics, Lorentz and Poincare symmetry  

• Conformal symmetry are important for quantum 
field theory, theory of phase transitions



Poincaré symmetry

• Time and spatial translations:  

• Rotations and Lorentz boosts

• Elementary particles: irreducible representations of 
the Poincaré group (Wigner)

• mass and spin when 

• when : helicity instead of spin

xμ → xμ + aμ

m ≠ 0

m = 0



Conformal symmetry

• An extension of Poincaré group: 
conformal symmetry

• All transformations that preserve angle

• include: dilatation 

• and 4 “proper conformal 
transformations”

• Field theory with this symmetry: 
conformal field theory

• applications in theoretical physics 
including phase transitions

xμ → λxμ



Scale invariance

• Consider the Schrödinger equation of a free particle 
 

                 

• From a solution  one can construct a new one 
 
                

• Persists for system of N noninteracting particles:  
 
     

i
∂ψ
∂t

= −
1

2m
∇2ψ

ψ(t, x)

ψ̃(t, x) = λ3/2ψ(λ2t, λx)

ψ̃(t, x1, …, xN) = λ3N/2ψ(λ2t, λx1, …, xN)



Interacting systems with 
scale invariance

• Consider two interacting particles. The 
Schrödinger equation for the relative coordinate 
 

      

• The requirement that  is a 
solution requires 
 
      

• A system of N particles interacting through  
potential is expected to be scale-invariant

i
∂ψ
∂t

= (−
∇2

2m
+ V(r))ψ

ψ̃(t, x) = λ3/2ψ(λ2t, λx)

V(r) =
α
r2

α/r2



• In fact, the symmetry of the free time-dependent 
Schrödinger equation is larger.

• If  is a solution, then 
 

 

 
is also a solution

• The full symmetry group of the Schrödinger equation is called 
the Schrödinger symmetry

ψ(t, x)

ψ̃(t, x) =
1

(1 + αt)3/2
exp( i

2
mαx2

1 + αt )ψ ( t
1 + αt

,
x

1 + αt )



Schrödinger symmetry
• Time and spatial translations

• Galilean boost 
 
     

• Scaling

• Proper conformal transformation

• This group of symmetries is the non-relativistic 
version of conformal symmetry, so is sometimes 
called “nonrelativistic conformal symmetry”

ψ̃(t, x) = eimv⋅x− i
2 mv2t ψ(t, x − vt)



Schrödinger algebra

• Free particles ( ), 

•        

•     Galilean boosts

•     dilatation

•     proper conformal transformation

• Angular momentum

• Mass 

xa, pa a = 1,2,…N

P = ∑
a

pa H = ∑
a

p2
a

2m

K = ∑ mxa

D = ∑
1
2 (xa ⋅ pa + pa ⋅ xa)

C = 1
2 m∑ x2

a

M = Nm

x
p



Schrödinger algebra

Unitary Fermi gas, ε expansion, and nonrelativistic conformal field theories 21

Table 1 Part of the Schrödinger algebra. The values of [X , Y ] are shown below.

X \Y Pj Kj D C H
Pi 0 −iδi jM −iPi −iKi 0
Ki iδi jM 0 iKi 0 iPi
D iPj −iKj 0 −2iC 2iH
C iKj 0 2iC 0 iD
H 0 −iPj −2iH −iD 0

mass : M ≡
∫

dxρ(x) (51)

momentum : Pi ≡
∫

dx ji(x) (52)

angular momentum : Ji j ≡
∫

dx [xi j j(x)− x j ji(x)] (53)

Galilean boost : Ki ≡
∫

dxxiρ(x) (54)

dilatation : D≡
∫

dxx · j(x) (55)

special conformal : C ≡
∫

dx
x2

2
ρ(x) (56)

and the Hamiltonian:

H = ∑
σ=↑,↓

∫

dx
∂ψ†σ (x) ·∂ψσ (x)

2mσ

+
∫

dx
∫

dyψ†↑ (x)ψ
†
↓ (y)V (|x−y|)ψ↓(y)ψ↑(x). (57)

D andC are the generators of the scale transformation (x→ eλx, t→ e2λ t) and the
special conformal transformation [x→ x/(1+λ t), t → t/(1+λ t)], respectively.
In a scale invariant system such as fermions in the unitarity limit, these operators
form a closed algebra.5
Commutation relations of the above operators are summarized in Table 1. The

rest of the algebra is the commutators of M, which commutes with all other op-
erators; [M, any] = 0. The commutation relations of Ji j with other operators are
determined by their transformation properties under rotations:

[Ji j, N] = [Ji j, D] = [Ji j,C] = [Ji j, H] = 0, (58a)
[Ji j, Pk] = i(δikPj− δ jkPi), [Ji j, Kk] = i(δikKj− δ jkKi), (58b)
[Ji j, Jkl ] = i(δikJ jl+ δ jlJik− δilJ jk− δ jkJil). (58c)

5 One potential that realizes the unitarity interaction isV (r) = (π/2)2 limr0→0 θ (r0− r)/(2m↑↓r20),
where m↑↓ ≡ m↑m↓/(m↑+m↓) is the reduced mass.
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Beyond free theory

• Is the Schrödinger symmetry good only for non-
interacting theory and  interaction?

• Are there scale-invariant systems with short-
ranged interaction?

• Answer: yes! the unitarity regime

1/r2



Unitarity regime: 
Zeldovich’s 1960 paper

SOVIET PHYSICS JETP VOLUME 11, NUMBER 4 OCTOBER, 1960 

THE EXISTENCE OF NEW ISOTOPES OF LIGHT NUCLEI AND THE EQUATION OF 

STATE OF NEUTRONS 

Ya. B. ZEL'DOVICH 

Submitted to JETP editor October 22, 1959 

J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 1123-1131 (April, 1960) 

The limits of. stability (relative to nucleon emission) of light nuclei are considered. The 
existence (in the sense of stability against decay with emission of a nucleon) of the follow-
ing nuclei is predicted: He8, Be12, 0 13 , B15•17 •19 , c16 - 20 , N18- 21 , Mg20 • The problem of the 
possibility of existence of heavy nuclei composed of neutrons only is considered. The prob-
lem is reduced to that of a Fermi gas with a resonance interaction between the particles. 
The energy of such a gas is proportional to w213, where w is its density. The accuracy 
of the calculations is not sufficient to determine the sign of the energy and answer the ques-
tion as to the existence of neutron nuclei. 

THE problem of the possible isotopes has been 
treated by Nemirovski11•2 for 8 =s Z =s 84, and by 
Baz' 3 for the region 17 =sA =s 40. The former 
uses the one-particle approximation, with an at-
tempt to find the dependence of the parameters of 
the well on the numbers of neutrons and protons. 
For nuclei with an excess of protons Baz' bases 
his discussion on the experimental data on the 
mirror nuclei (with excess of neutrons) and on 
the well-known expression for the Coulomb energy. 
For nuclei with an excess of neutrons he extrapol-
lates the binding energy in series of nuclei with 
constant isotopic spin. 

These papers predict the existence of many as 
yet unknown {3 -active isotopes. In the table given 
below the isotopes so predicted are enclosed in 
dashed-line squares. One of them has very re-
cently been observed experimentally. 4 

In the present paper (Sec. 1) we make addi-
tional predictions in the region of the lightest nu-
clei; the isotopes so predicted are enclosed in 
solid-line squares in the table. We point out par-
ticularly the conclusion that there is a large prob-
ability that He8 exists. For nuclei with an excess 
of neutrons the writer has tried to take the effect 
of shells and the pair interaction of neutrons into 
account as accurately as possible. 

In Sec. 2 the question is raised of the existence 
of nuclei composed solely of neutrons. In the lim-
iting case of a large number of neutrons, by using 
the data on resonance in the 1s scattering, one can 
find the general form of the dependence of the en-
ergy on the density of the nuclear matter, but the 
accuracy of the first approximation obtained in 
this paper is insufficient to give a definite answer 
to the question of the existence of such nuclei. 

1. LIGHT NUCLEI 

Following the method of Baz', 3 one easily con-
vinces oneself that there must exist a nucleus 0 13 

with a proton binding energy not smaller than 1.2 
Mev and with /3+ -decay energy 16 to 17 Mev. Using 
the data4 on the mass of 0 20, we conclude that the 
mirror nucleus Mg20 must exist with proton bind-
ing energy not less than 2. 7 Mev and /3+ -decay 
energy about 7 Mev. The existence of 0 12, Ne16, 
and Mg19 is not excluded (empty spaces in the 
table);* the corresponding mirror isotopes Be12, 
C16, and N19 are predicted in this paper (see later 
argument), but their energies cannot be predicted 
with enough accuracy to give a definite conclusion 
about 0 12, Ne16, and Mg19• The isotopes Ne17, 
Na19, Mg21 , and Mg22 are predicted by Baz'. 

Regarding all the other nuclei in the upper right-
hand part of the table we can assert with assurance 
that they are unstable against emission of a proton, 
i.e., they do not exist, which is shown in the table by 
the minus signs in all the upper cells. 

Let us turn to the nuclei with an excess of neu-
trons. A nucleus with an excess of neutrons does 
not exist in the case in which all the discrete levels 
are already filled up with neutrons. An important 
point here is that the nuclear forces fall off rapidly 
with distance, and therefore the number of levels 
in the field of the nuclear forces is limited (in 

*These nuclei may be unstable with respect to the emission 
of two protons at once. On the other hand, at the limit of stabil-
ity the expression for the Coulomb energy of the last proton, 
1.2(Z -l)A-'1., gives too large a result; for example, in the 
pair Li8 - a• we have for Li8 the binding energy Q0 = 2 Mev and 
for a• the value Qp = 0.2 Mev, so that the difference is 1.8 
Mev, whereas by the formula we would get 1.2 x 4 x 7-'ls = 2.5 
Mev. 

812 



“Unitarity regime”

• Take a potential of a certain shape, e.g., 
    for ,   for 

• shrink the range, adjusting the depth so that there is 
one almost bound state at zero energy 
 

         

• In the limit : “unitarity regime”

V(r) = − V0 r < r0 0 r > r0

V0 =
π2ℏ2

8m
1
r2
0

r0 → 0

r

V(r)

r

V(r)



Scattering length

• When the scattering is large and positive, the 
potential has a shallow bound state 
 

       

• The bound state disappears when  

• ,  limit: boundary condition 
 

  ,   

E = −
ℏ2

ma2

a → ∞

a → ∞ r0 → 0

ψ(x, y) =
C

|x − y |
+ b(x, y) b(x, x) = 0



Systems with large 
scattering length

• Helium-4 atoms    Å

• Neutrons  

• Ultracold trapped atoms:  can be tuned by a 
magnetic field

• In all these cases, interaction is short-ranged but 
particles “feel” each other at much larger distance

a ∼ 100

a ∼ − 20 fm

a



Problem of unitary fermions
• Two types of particles:  and  (spin-up and spin-down 

fermions) 

            

• When 2 particles of different spins approach each other, the 
wave function has the asymptotic form 
 

   ,   

•  changes sign when exchanging two ’s or two ’s

xa yb

H = −
1

2m

N1

∑
a=1

∇2
xa

−
1

2m

N2

∑
b=1

∇2
yb

ψ(x, y) =
C

|x − y |
+ b(x, y) b(x, x) = 0

ψ x y

An interaction with no free parameter!



Properties of unitary gas

• A gas of spin-1/2 particles with short-ranged 
interaction fine-tuned to unitarity

• Scale invariance: physical quantities can be figured 
out by scaling arguments

• Example: Bertsch parameter  ( )

• ,   

ξ T = 0
E
N

= ξ
3
5

εF εF =
1

2m
(3π2n)2/3

ξ ≈ 0.37



Nonrelativistic CFT

• One can build up the formalism of nonrelativistic 
conformal field theory in analogy with the 
relativistic theory

• Many notions can be extended

• operator dimensions

• operator-state correspondence

Y. Nishida, DTS, 2007 



Fermions at unitarity as a 
NRCFT

•       

• Introducing auxiliary field 

•

• Propagator of 

L = iψ†(∂t +
∇2

2m )ψ − c0ψ†
↑ψ†

↓ψ↓ψ↑ Δ[ψ] = 3
2

ϕ

L = iψ†(∂t +
∇2

2m )ψ − ψ†
↑ψ†

↓ϕ − ϕ†ψ↓ψ↑ +
ϕ†ϕ
c0

ϕ

Gϕ(ω, p) =
1

p2

4m − ω
Δ[ϕ] = 2 ≠ 2 × 3

2



Renormalization
•

•
• Unitarity: fine-tuning so that 

• (scattering length: )

• Physically: fine-tune the attractive short-range potential 
to have a bound state at threshold

G−1
ϕ (ω, p) = c−1

0 + one-loop integral

= c−1
0 + Λ + ( p2

4m
− ω)

1/2

c0 + Λ = 0

c0 + Λ =
1
a

=

+

p2

+ +
...

=

=

+ +
...

Figure 6: Leading and subleading contributions arising from local operators. The unmarked vertex
is the C0 interaction, which is summed to all orders; the one marked “p2” is the C2 interaction,
etc.

contributions to the amplitude scaling as higher powers of p come from perturbative inser-
tions of derivative interactions, dressed to all orders by C0. The first three terms in the
expansion are

A−1 =
−C0[

1 + C0M
4π (µ + ip)

] ,

A0 =
−C2p2

[
1 + C0M

4π (µ + ip)
]2 ,

A1 =

(
(C2p2)2M(µ + ip)/4π
[
1 + C0M

4π (µ + ip)
]3 −

C4p4

[
1 + C0M

4π (µ + ip)
]2

)

, (146)

where the first two correspond to the Feynman diagrams in Fig. 6. The third term, A1,
comes from graphs with either one insertion of C4∇4 or two insertions of C2∇2, dressed to
all orders by the C0 interaction.

Comparing eq. (146) with the expansion of the amplitude eq. (138), the couplings C2n

are related to the low energy scattering data a, rn:

C0(µ) =
4π

M

(
1

−µ + 1/a

)
,

C2(µ) =
4π

M

(
1

−µ + 1/a

)2 r0

2
,

C4(µ) =
4π

M

(
1

−µ + 1/a

)3 [1

4
r2
0 +

1

2

r1

Λ2
(−µ + 1/a)

]
. (147)

54

ϕ

Gϕ(ω, p) =
1

p2

4m − ω



Operator-state correspondence

• Dimension of a primary operator = energy of a state in 
a harmonic potential

• Example:  

   1 particle in h.p.            

 
    2 particles at unitarity in h.p. 
                                       

E =
3
2

ℏω [ψ] =
3
2

E = 2ℏω [ψ] = 2

Y. Nishida, DTS, 2007 



Operator-state correspondence

• Dimension of a primary operator = energy of a state in 
a harmonic potential

<latexit sha1_base64="cz1KS7h9DDHGkPRXVA4aTkC9cjc="></latexit>

N S L O �
2 0 0  " # 2
3 1/2 1  # "r " 4.273
3 1/2 0  #r " ·r " 4.666
4 0 0  # "r # ·r " 5.0–5.1



“UnNuclear physics”

A nonrelativistic version of unparticle physics

field in NRCFT: “unnucleus”

H.-W. Hammer and DTS, 2103.12610



Few-neutron systems as 
unnuclei

• Neutrons have anomalously large scattering length: 
  

• In a wide range of energy is neutrons are fermions 
at unitarity

ann ≈ − 19 fm ≫ r0 ≈ 2.8 fm



Nuclear reactions

• Many nuclear reactions with emissions of neutrons:

• 3H + 3H → 4He + 2n

• 7Li + 7Li → 11C + 3n

• 4He + 8He → 8Be + 4n

• Final-state neutrons can be considered as forming an 
“unnucleus” - a field in NRCFT

• Regime of validity: kinetic energy of neutrons in their 
c.o.m. frame between  ℏ2/ma2 ∼ 0.1 MeV
ℏ2/mr2

0 ∼ 5 MeV



Few-neutron systems as unnuclei

5

In the regime E0 � E ⌧ E0, ignoring the energy dependence of all other factors, we can

write
d�

dE
⇠ (E0 � E)�� 5

2 . (16)

Thus, a characteristic feature of processes involving an unnucleus is the power-law depen-

dence of the di↵erential cross section on the recoil energy near the end point.

IV. MULTI-NEUTRON FINAL STATES AS UNNUCLEI

So far the search for relativistic unparticles has been unsuccessful [2–4]. In nuclear

physics, however, there are natural approximate unnuclei due to the fortuitous occurrence of

fine tuning in several nuclear systems. In particular, neutrons have a large s-wave scattering

length: a ⇡ �19 fm, compared to the e↵ective range r0 ⇡ 2.8 fm. A system of neutrons

can be considered as an unnucleus if the relative momentum between any two neutrons in

the system is between ~/a and ~/r0. If this is the case, they are described by a well known

nonrelativistic conformal field theory—the theory of fermions at unitarity.

B

A

A

n

n

n

1

2

FIG. 2. A nuclear reaction with three neutrons in the final state.

Thus, the real-world realizations of the reaction pictured in Fig. 1 are reactions with a few

neutrons in the final state. A typical reaction with three final-state neutrons is schematically

depicted in Fig. 2. The di↵erential cross section d�/dE considered above is now an inclusive

cross section, where the momenta of the neutrons are left unmeasured. Reactions of this

type are abundant in nuclear physics. Some examples are

3H+ 3H ! 4He + 2n , (17)
7Li + 7Li ! 11C + 3n , (18)

4He + 8He ! 8Be + 4n . (19)

The final-state neutrons can be considered as forming an unnucleus when the kinetic energy

of the system of neutrons in its center-of-mass frame (neutron kinetic energy) is between

"0 = ~2/ma2 ⇠ 0.1 MeV and ~2/mr20 ⇠ 5 MeV. Only in this kinematic regime, our predic-

tion (16) for d�/dE applies. Physically, in this regime the neutrons travel together and keep

interacting with each other until the distance between them becomes larger than a. If the

total kinetic energy of the final scattering products Ekin is much larger than ~2/mr20, then

𝒰

Factorization: dσ
dE

∼ |ℳ |2 EB × Im G𝒰(E𝒰, p)

primary reaction has larger energy than final-state interaction



Rates of processes involving 
an unnucleus

•  

• Near end point: 

dσ
dE

∼ |ℳ |2 E × Im G𝒰(Ekin − E, p)

dσ
dE

∼ (E0 − E)Δ− 5
2

4

B

UA

A
2

1 U
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FIG. 1. A nuclear reaction with an unnucleus U (represented by the shaded region) in the final

state.

where A1 and A2 are some initial particles, B is a particle and U is the unnucleus. For

simplicity, we assume all particles involved in the reaction are nonrelativistic, though our

main conclusion requires that only U is. We work in the center-of-mass frame. The total

kinetic energy available to final products is

Ekin = (MA1 +MA2 � MB � MU)c
2 +

p2A1

MA1

+
p2A2

MA2

. (11)

Unless U is a particle, the energy spectrum of B is continuous. Let E and p be the energy

of the particle B, E = p2/2mB. We are interested in the di↵erential cross section d�/dE.

We can think about a term in the e↵ective Lagrangian

Lint = g U †B†A1A2 + h.c. (12)

where g is some coupling constant. The di↵erential cross section can be computed to be

d�

dE
⇠ |M|2

p
E ImGU(Ekin�E,p). (13)

For the Lagrangian (12) M = g, but in principle M can contain dependence on the momenta

of the incoming and outgoing particles. The statement of Eq. (13) is that the cross section

can be factorized into two parts, one (encoded by M) corresponding to the primary process

A1+A2 ! B+U , the other (encoded by ImGU) corresponding to the final-state interaction

between the constituents of U . Such a factorization requires that the energy scale of the

primary scattering process is much larger than that of the interaction between the neutrons

and is the essence of the Watson-Migdal approach to final-state interaction [6, 7].

According to Eq. (9),

ImGU(Ekin�E,p) ⇠
✓
Ekin � E � p2

2MU

◆�� 5
2

=


Ekin �

✓
1 +

MB

MU

◆
E

��� 5
2

. (14)

Denote the maximal value of the recoil energy received by the particle B as

E0 =

✓
1 +

MB

MU

◆�1

Ekin. (15)

Ekin = E + E𝒰
(E, p)

(Ekin − E −
p2

2M𝒰
)

Δ− 5
2

(Ekin−E, −p)



Nuclear reactions

• 3H + 3H → 4He + 2n

• 7Li + 7Li → 11C + 3n

• 4He + 8He → 8Be + 4n

• Prediction:

•
• Regime of validity: kinetic energy of neutrons in their 

c.o.m. frame between  

dσ
dE

∼ (E0 − E)α

ℏ2/ma2 ∼ 0.1 MeV
ℏ2/mr2

0 ∼ 5 MeV

α = − 0.5

α = 1.77

α = 2.5 − 2.6
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FIG. 4. Center-of-mass energy spectrum of three neutrons in the reaction
3
H(⇡�, �)3n (left panel)

and
3
H(µ�, ⌫µ)3n (right panel). The circles/squares give the full/plane wave calculations by Golak

et al. [23, 24]. Di↵erent fits are explained in the legend and in the main text.

the calculated photon spectra to three-neutron spectra for convenience. As expected, the

free neutron behavior, E3 (dashed line), can describe the full calculation (circles) only at the

lowest energies. However, the plane wave impulse approximation (squares) can be described

up to about 2.5 MeV. The full calculation including final state interaction displays clear

unnucleus behavior, E1.77 (solid line) for energies also up to about 2.5 MeV, where it starts

to deviate from the prediction. This is somewhat smaller than the value 5 MeV expected from

the scattering length. We suspect that this is due to the wave function of the triton, which

has finite extent, making the reaction a less than ideal “point source” of the neutrons and

causing the factorization formula (13) to break down earlier than expected. The description

cannot be significantly improved by including the next state which behaves as E2.17 (dash-

dotted line). Analogous behavior is exhibited by the theoretical spectra for the reaction
3H(µ�, ⌫µ)3n calculated by Golak et al. [24] using the same interaction model (see right

panel of Fig. 4). In this reaction, the energy scale of the primary scattering process is

slightly smaller such that the corrections to factorization are larger.

A four-neutron spectrum was recently measured by Kisamori et al. in the reaction
4He(8He,8Be)4n [25], but the number of events is too low to extract evidence of unnu-

cleus behavior. It may, however, be possible to extract such behavior from the spectra of a

new experiment using the reaction 8He(p, p↵)4n, which are currently being analyzed [18].

Comparison with microscopic models

π− + 3H → γ + 3n



9

calculation (circles) and the plane wave impulse approximation (squares). We have converted

0 0.5 1 1.5 2 2.5
E

3n
 [MeV]

0

0.2

0.4

0.6

d
Γ

/d
E

γ [
1

0
1
5
/(

fm
s)

] c E
3n

3

c E
3n

1.77

c E
3n

1.77
 + d  E

3n

2.17

3
H(π

-
,γ)3n

0 0.5 1 1.5 2 2.5
E

3n
 [MeV]

0

0.5

1

1.5

d
Γ

/d
E

ν
 [

(M
e

V
s)

-1
] c E

3n

3

c E
3n

1.77

c E
3n

1.77
 + d  E

3n

2.17

3
H(µ

-
,ν

µ
)3n

FIG. 4. Center-of-mass energy spectrum of three neutrons in the reaction
3
H(⇡�, �)3n (left panel)

and
3
H(µ�, ⌫µ)3n (right panel). The circles/squares give the full/plane wave calculations by Golak

et al. [23, 24]. Di↵erent fits are explained in the legend and in the main text.

the calculated photon spectra to three-neutron spectra for convenience. As expected, the

free neutron behavior, E3 (dashed line), can describe the full calculation (circles) only at the

lowest energies. However, the plane wave impulse approximation (squares) can be described

up to about 2.5 MeV. The full calculation including final state interaction displays clear

unnucleus behavior, E1.77 (solid line) for energies also up to about 2.5 MeV, where it starts

to deviate from the prediction. This is somewhat smaller than the value 5 MeV expected from

the scattering length. We suspect that this is due to the wave function of the triton, which

has finite extent, making the reaction a less than ideal “point source” of the neutrons and

causing the factorization formula (13) to break down earlier than expected. The description

cannot be significantly improved by including the next state which behaves as E2.17 (dash-

dotted line). Analogous behavior is exhibited by the theoretical spectra for the reaction
3H(µ�, ⌫µ)3n calculated by Golak et al. [24] using the same interaction model (see right

panel of Fig. 4). In this reaction, the energy scale of the primary scattering process is

slightly smaller such that the corrections to factorization are larger.

A four-neutron spectrum was recently measured by Kisamori et al. in the reaction
4He(8He,8Be)4n [25], but the number of events is too low to extract evidence of unnu-

cleus behavior. It may, however, be possible to extract such behavior from the spectra of a

new experiment using the reaction 8He(p, p↵)4n, which are currently being analyzed [18].

μ− + 3H → νμ + 3n



Conclusion

• There is a nonrelativistic version of conformal field theory 

• Example: fermions at unitarity

• Approximately realized by neutrons; leads to “unnuclear 
behavior” of differential cross sections near threshold

• (also in decay of multi-particle resonances Son, Stephanov, Yee 
2212.03318)

• Possible extension to other systems  
X(3872) Braaten and Hammer
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