Transport and thermalisation at NLO from kinetic theory

Jacopo Ghiglieri, SUBATECH, Nantes

INT, Seattle, September 16 2021

Outline

- Introduction
- The effective kinetic theory and
- its relation to transport coefficients
- its NLO corrections and
- their impact on isotropic thermalisation

JG Moore Teaney (2015-2018)

Yu Fu, JG, Shahin Iqbal, Aleksi Kurkela **21xx.yyyy**

Overview

Heavy-ion collisions

• A (transient) QGP can be formed in heavy ion collision experiments. RHIC (@BNL), up to $\sqrt{s_{NN}}=200$ GeV. LHC up to $\sqrt{s_{NN}}=5.5$ TeV (5 so far).

- Two Lorentz-contracted nuclei collide
- Rapid formation of a near-thermal QGP (~1 fm/c)
- Expansion and cooling for up to 5-10 fm/c, then
- Hadronizazion
- Lots of particles ($dN_{ch}/dy O(1000)$) stream to the detectors

Azimuthal anisotropies

Expanding around infinite collisions in final state

Event-multiplicity for fixed system size

Flow: a bulk property

- Initial asymmetries in position space are converted by collective, macroscopic (many body) processes into final state momentum space asymmetries
- Quantitatively: azimuthal Fourier decomposition of the final state particle spectra

$$\frac{dN_i}{dy \, d^2 p_T} = \frac{dN_i}{2\pi p_T dP_T dy} \left(1 + \sum_{n=1}^{\infty} 2v_{i,n}(p_T, y) \cos(n\phi) \right)$$

vzero amplitude + v_n coefficients

• 2D analogue of the multipole expansion of the CMB

A famous example:elliptic flow

• Hydrodynamics describes the buildup of flow. The shear viscosity parametrizes the efficiency of the conversion

Understanding thermalisation

- Bulk observables are very successfully described by hydrodynamics
- Hydro needs a locally equilibrated medium at the initialisation time τ_0

Understanding thermalisation

 How can we describe this rapid transition from a confined hadronic initial state to a near-thermal deconfined one?

Understanding transport

 Weak coupling: long distances between
 collisions, easy
 diffusion. Large η/s

 Strong coupling: short distances between collisions, little diffusion. Small η/s

Understanding transport

• Can we understand the microscopic physics giving rise to thermalisation and transport within the same approach?

Theory approaches to transport and thermalisation

pQCD, EFTs and kinetic theories thereof: QCD action. Real world: extrapolate from $g \ll 1$ to $\alpha_s \sim 0.3$

lattice QCD: Euclidean QCD action. Real world: analytically continue to Minkowskian domain, or, if classical, to the quantum world

AdS/CFT: $\mathcal{N}=4$ action, weak and strong coupling. Real world: extrapolate to QCD

Motivation

- Holography: Kovtun Son Starinets Policastro **PRL87** (2001) **PLR94** (2004), λ -3/2 corrections: Buchel et al (2005-2008)
- pQCD: Arnold Moore Yaffe (AMY) (2000-2003)

Motivation

The weak-coupling picture

The weak-coupling picture

• Hard (quasi)-particles carry most of the stress-energy tensor. (Parametrically) largest contribution to thermodynamics

The weak-coupling picture

 The gluonic soft fields have large occupation numbers ⇒ they can be treated classically

$$n_{\rm B}(\omega) = \frac{1}{e^{\omega/T} - 1} \stackrel{\omega \sim gT}{\simeq} \frac{T}{\omega} \sim \frac{1}{g}$$

Weak-coupling thermodynamics

Review: JG Kurkela Strickland Vuorinen Phys. Rep. 880 (2020)

Successful for static (thermodynamical) quantities.
 Possibility of solving the soft sector non-perturbatively (3D theory EQCD on the lattice).

Weak-coupling dynamics

Starting to scratch the surface of beyond leading-order calculations

Heavy-quark momentum diffusion
 Caron-Huot Moore PRL100 (2007)

Weak-coupling dynamics

 Starting to scratch the surface of beyond leading-order calculations

$$\frac{d\Gamma_{\gamma}}{d^3k} = \frac{2\alpha\alpha_s T^2 n_{\rm F}(k)}{9k\pi^2} C(k)$$

Thermal photon rate
 JG Hong Lu Kurkela Moore Teaney JHEP1305 (2013)

The effective kinetic theory

Baym Braaten Pisarski Arnold Moore Yaffe Baier Dokshitzer Mueller Schiff Son Peigné Wiedemann Gyulassy Wang Aurenche Gelis Zaraket Blaizot Iancu . . .

The effective kinetic theory

- Justified at weak coupling, but could be extended to factor in non-perturbative contributions
- The effective theory is obtained by integrating out (offshell) quantum fluctuations (for instance from Kadanoff-Baym equations). Appropriate for describing the dynamics of excitations on scales large compared to 1/*T*, which is the size of the typical de Broglie wavelength of an excitation.
- Boltzmann equation for the single-particle phase spacedistribution: its convective derivative equals a collision operator $(\partial_t + \mathbf{v_p} \cdot \nabla) f(\mathbf{p}, \mathbf{x}, t) = C[f]$

The effective kinetic theory

- The effective theory is obtained by integrating out (off-shell) quantum fluctuations (for instance from Kadanoff-Baym equations). Appropriate for describing the dynamics of excitations on scales large compared to *1/T*, which is the size of the typical de Broglie wavelength of an excitation.
- Boltzmann equation for the single-particle phase spacedistribution: its convective derivative equals a collision operator $(\partial_t + \mathbf{v_p} \cdot \nabla) f(\mathbf{p}, \mathbf{x}, t) = C[f]$
- In other words at weak coupling the underlying QFT has welldefined quasi-particles. These are weakly interacting with a *mean free time* (1/g⁴T) *large compared to the actual duration of an individual collision* (1/T)

The AMY kinetic theory

 Effective Kinetic Theory (EKT) for the phase space density of quarks and gluons

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f(\mathbf{p}) = C^{2 \leftrightarrow 2} + C^{1 \leftrightarrow 2}$$

 At leading order: elastic, number-preserving 2⇔2 processes and collinear, number-changing 1⇔2 processes (LPM, AMY, all that) AMY (2003)

The AMY kinetic theory

- How to deal with the soft *Q* region?
- Standard approach: dressing the intermediate propagator with Hard Thermal Loops (HTL) for IR finiteness
 Braaten Pisarski 1990 Consold Moore Yaffe
- Hard Thermal L
 Q-*T*summation of 1-loop hard offshell loops into see pagators (and vertices). Rich structure, collective effects (plasmons, Landau damping)

$$m_D^2 = g^2 T^2 (N_c/3 + n_f/6)$$

$$G_R^{00}(\omega, \mathbf{q}) = \frac{-i\eta^{00}}{q^2 + \Pi_L(\omega/q)} \qquad \Pi_L = m_D^2 \left(1 - \frac{\omega}{2q} \log\left(\frac{\omega+q}{\omega-q}\right)\right)$$

$$G_R^{ij}(\omega, \mathbf{q}) = \frac{-i(\delta^{ij} - \hat{q}^i \hat{q}^j)}{-(q^0)^2 + q^2 + \Pi_T(\omega/q)} \qquad \Pi_T = \frac{m_D^2}{2} \left(\left(\frac{\omega}{q}\right)^2 - \frac{(\omega^2 - q^2)\omega}{2q^3} \log\left(\frac{\omega+q}{\omega-q}\right)\right)$$

The AMY kinetic theory

- Apparently suppressed by powers of *g* but
 - Soft and collinear enhancements cancel the suppression
 - Mean free time between soft collisions (1/g²T) of the same order of formation time ⇒ interference of many such scatterings (Landau-Pomeranchuk-Migdal effect)
 Baier Dokshitzer Mueller Peigné Schiff Son Zakharov Arnold Moore Yaffe

• Linearized EKT equivalent to Kubo formula

$$\eta = \frac{1}{20} \lim_{\omega \to 0} \frac{1}{\omega} \int d^4 x \, e^{i\omega t} \left\langle \left[T^{ij}(t, \mathbf{x}), T^{ij}(0, \mathbf{0}) \right] \right\rangle \theta(t)$$

• Not practical at weak coupling: loop expansion breaks down AMY (2000-2003)

• To obtain the transport coefficients linearize the theory

$$f(\mathbf{p}) = f_{\mathrm{EQ}}(\mathbf{p}) + \sum_{\ell} \delta f_{\ell}(\mathbf{p})$$

Source term equates linearized collision operator

 $S_{\ell} = \mathcal{C}\delta f_{\ell}$ $S_{\ell} \equiv \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f_{\mathrm{EQ}}(\mathbf{p}, u, \beta, \mu)$

• Since $\langle T^{i \neq j} \rangle \propto \eta$ η requires $\ell = 2$

• Transport coefficients obtained by the kinetic theory definitions of *T* once δf_{ℓ} has been obtained

• To obtain the transport coefficients linearize the theory

$$f(\mathbf{p}) = f_{\mathrm{EQ}}(\mathbf{p}) + \sum_{\ell} \delta f_{\ell}(\mathbf{p})$$

• Source term equates linearized collision operator

$$\mathcal{S}_{\ell} = \mathcal{C}\delta f_{\ell}$$

• To solve the linear equation, introduce the inner product $(f,g) \equiv \int_{\mathbf{p}} f(\mathbf{p}) g(\mathbf{p})$

and minimize

$$(\delta f_\ell, \mathcal{S}_\ell) - \frac{1}{2}(\delta f_\ell, \mathcal{C} f_\ell)$$

AMY (2000-03)

Thermalisation from the EKT: bottom-up

reviews in Schlichting Teaney **Ann.Rev.Nucl.Part.Sci. 69** (2019) Berges Heller Mazeliauskas Venugopalan **2005.12299**

Thermalisation from the EKT: bottom-up

 Competition between expansion and collision, attractor solution when they balance out

$$\left(\frac{\partial}{\partial t} - \frac{p_z}{\tau} \frac{\partial}{\partial p_z}\right) f(\mathbf{p}) = C^{2\leftrightarrow 2} + C^{1\leftrightarrow 2}$$

Baier Mueller Schiff Son (2001) Kurkela Moore (2011)

Baier Mueller Schiff Son (2001) Kurkela Moore (2011)

Thermalisation from the EKT: bottom-up

From numerical solution of LO* kinetic theory

Kurkela Zhu PRL115 (2015)

Bottom-up thermalisation

• From numerical solution of LO* kinetic theory

$$\left(\frac{\partial}{\partial t} - \frac{p_z}{\tau} \frac{\partial}{\partial p_z}\right) f(\mathbf{p}) = C^{2 \leftrightarrow 2} + C^{1 \leftrightarrow 2}$$

 If distributions are anisotropic (because of initial conditions and / or expansion) no consistent LO determination exists, because of plasma instabilities

Thermalisation from the EKT: bottom-up

• From numerical solution of classical lattice theory

$$\left(\frac{\partial}{\partial t} - \frac{p_z}{\tau} \frac{\partial}{\partial p_z}\right) f(\mathbf{p}) = C^{2\leftrightarrow 2} + C^{1\leftrightarrow 2}$$

Berges Boguslavski Schlichting Venugopalan PRD89 (2013)

Soft momenta

Soft momenta

The NLO corrections come from regions sensitive to soft gluons (no quarks in this illustration)

- Before we get there, let's see these regions at LO
- Look at 2↔2 scattering

$$\int_{\mathbf{pkp'k'}} \left| \mathcal{M}(\mathbf{p}, \mathbf{k}; \mathbf{p'}, \mathbf{k'}) \right|^2 (2\pi)^4 \,\delta^{(4)}(P + K - P' - K') \\ \times f_{\mathrm{EQ}}(p) \, f_{\mathrm{EQ}}(k) \left[1 + f_{\mathrm{EQ}}(p') \right] \left[1 + f_{\mathrm{EQ}}(k') \right] \\ \times \left[\chi_{\ell}(\mathbf{p}) + \chi_{\ell}(\mathbf{k}) - \chi_{\ell}(\mathbf{p'}) - \chi_{\ell}(\mathbf{k'}) \right]^2$$

 $\delta f_{\ell}(\mathbf{p}) \equiv f_{\mathrm{EQ}}(\mathbf{p})(1+f_{\mathrm{EQ}}(\mathbf{p}))\boldsymbol{\chi}_{\ell}(\mathbf{p})$

LO soft gluon scattering

• When Q=P'-P becomes soft there are two possibilities for $\left[\chi_{\ell}(\mathbf{p}) + \chi_{\ell}(\mathbf{k}) - \chi_{\ell}(\mathbf{p}') - \chi_{\ell}(\mathbf{k}')\right]^2$ $\left(\chi_{\ell}(\mathbf{p}) = f_{\ell}(\hat{\mathbf{p}})\chi(p)\right)$

LO soft gluon scattering

• When Q=P'-P becomes soft there are two possibilities for $\left[\chi_{\ell}(\mathbf{p}) + \chi_{\ell}(\mathbf{k}) - \chi_{\ell}(\mathbf{p}') - \chi_{\ell}(\mathbf{k}')\right]^2$ $\left(\chi_{\ell}(\mathbf{p}) = f_{\ell}(\hat{\mathbf{p}})\chi(p)\right)$

• Left: diffusion terms, **p** and **p'** strongly correlated $\left(\chi_{\ell}(\mathbf{p}) - \chi_{\ell}(\mathbf{p}')\right)^2 = (\hat{\mathbf{p}} \cdot \mathbf{q})^2 [\chi'(p)]^2 + \frac{\ell(\ell+1)}{2} \frac{q^2 - (\hat{\mathbf{p}} \cdot \mathbf{q})^2}{p^2} [\chi(p)]^2$

identify a longitudinal and a transverse momentum broadening contribution, \hat{q}_L and \hat{q}

Light-cone techniques

- Key advancement over the past decade: analytical properties of soft thermal amplitudes at light-like separations. Heuristically, the hard, light-like parton sees undisturbed soft modes, which *"can't keep up"* with it Caron-Huot PRD82 (2008) *Review*: JG Teaney QGP5 (2015)
- In a nutshell, retarded functions are analytical in the upper half plane in **any** time-like variable. In the soft sector to NLO also for **light-like variables** $(q^+=(q^0+q^z)/2)$.

$$\hat{q}(\mu_{\perp}) = g^2 C_A \int^{\mu_{\perp}} \frac{d^2 q_{\perp}}{(2\pi)^2} \int \frac{dq^+}{2\pi} \langle F^{-\perp}(Q) F^-_{\perp} \rangle_{q^-=0}$$

$$\hat{q}_L(\mu_{\perp}) = g^2 C_A \int^{\mu_{\perp}} \frac{d^2 q_{\perp}}{(2\pi)^2} \int \frac{dq^+}{2\pi} \langle F^{-+}(Q) F^{-+} \rangle_{q^-=0} \qquad F$$

LO soft gluon scattering

• When Q=P'-P becomes soft there are two possibilities for $\left[\chi_{\ell}(\mathbf{p}) + \chi_{\ell}(\mathbf{k}) - \chi_{\ell}(\mathbf{p}') - \chi_{\ell}(\mathbf{k}')\right]^2$ $\left(\chi_{\ell}(\mathbf{p}) = f_{\ell}(\hat{\mathbf{p}})\chi(p)\right)$

• Diffusion terms: summing up, light-cone techniques $\hat{q}_{L}^{a}\Big|_{\text{soft}} = \frac{g^{2}C_{R_{a}}Tm_{D}^{2}}{4\pi}\ln\frac{\sqrt{2}\mu_{\perp}}{m_{D}} \quad \hat{q}^{a}\Big|_{\text{soft}} = \frac{g^{2}C_{R_{a}}Tm_{D}^{2}}{2\pi}\ln\frac{\mu_{\perp}}{m_{D}}$

give rise to the leading log contribution Caron-Huot PRD82 (2008) JG Moore Teaney JHEP1603 (2015)

LO soft gluon scattering

• When Q=P'-P becomes soft there are two possibilities for $\left[\chi_{\ell}(\mathbf{p}) + \chi_{\ell}(\mathbf{k}) - \chi_{\ell}(\mathbf{p}') - \chi_{\ell}(\mathbf{k}')\right]^2$ $\left(\chi_{\ell}(\mathbf{p}) = f_{\ell}(\hat{\mathbf{p}})\chi(p)\right)$

 Right: gain terms, p,p' and k,k' not correlated. Two-point function of two uncorrelated deviations from equilibrium Light-cone techniques not applicable, have to use numerical integration.

Reorganization

• $1 \leftrightarrow 2$ processes: well separated at LO from $2 \leftrightarrow 2$

- Reorganization of the LO collision operator $\int_{\mathbf{p}} \delta f_{\ell}(\mathbf{p}) \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} \right) f_{\mathrm{EQ}}(\mathbf{p}, u, \beta, \mu) = \int_{\mathbf{p}} \delta f_{\ell}(\mathbf{p}) \left[\frac{C^{\mathrm{large}}[\mu_{\perp}] + C^{\mathrm{diff}}[\mu_{\perp}] + C^{\mathrm{cross}} + C^{\mathrm{coll}} \right]$
 - Final ingredient: 2↔2 large angle scatterings, IR-regulated to avoid the soft region

- The diffusion, gain and collinear terms receive *O*(*g*) corrections
- There is a new semi-collinear region

Collinear corrections

• The differential eq. for LPM resummation gets correction from NLO $C(q_{\perp})$ and from the thermal asymptotic mass at NLO (Caron-Huot 2009)

 $C_{\text{NLO}}(q_{\perp})$ complicated but analytical (Euclidean tech) Caron-Huot **PRD79** (2009), Lattice: Panero *et al.* (2013), Moore Schlusser (2019-2020) Moore Schlichting Schlusser Soudi (2021) mass JG Moore Schicho Schlusser, in progress

Diffusion and semi-collinear corrections

• NLO diagrams for momentum diffusion

- Transverse and longitudinal analytical with light-cone techniques
 Caron-Huot PRD79 (2009) JG Moore Teaney JHEP1603 (2015)
- Semi-collinear processes (wider angle radiation) need to be included JG Moore Teaney JHEP1603 (2015)

Results for transport (and their fine print)

- Inversion of the collision operator using variational Ansatz
- At NLO just add *O*(*g*) corrections to the LO collision operator, do not treat them as perturbations in the inversion

$$\mathcal{S}_{\ell} = [\mathcal{C} + \delta \mathcal{C}] \delta f_{\ell} \implies \delta f_{\ell} = \frac{1}{\mathcal{C} + \delta \mathcal{C}} \mathcal{S}_{\ell}$$

- First perturbative corrections to *s* are of order *g*². Including them would be inconsistent with the treatment of the collision operator
- New implementation for semi-collinear processes. Better behaved as *g* grows due to resummations of NⁿLO terms (*n*≥2)
 JG Moore Teaney JHEP1803 (2018)

Results for transport (and their fine print)

• A plot of $\eta(T)$ needs g(T). But kinetic theory with massless quarks is conformal to NLO: no UV divergences and no 1 guidance from the calculation on how to set the scale

 Q_{s}

- Fix g(T) as
 - Two-loop EQCD as in Laine Schröder JHEP0503 (2005) 0.1
 - Simple two-loop \overline{MS} with various μ/T

JG Moore Teaney JHEP1803 (2018)

$\eta/s(T)$ of QCD

NLO gain terms

- For gain: no diffusion picture = no "easy" light-cone sum rules, only way would be bruteforce HTL (and understanding how to deal with soft legs in kinetic theory).
- Missing, but silver lining: they're finite, so just estimate the number and vary it
- NLO test ansatz: LO gain x $m_D/T(\sim g)$ x arbitrary constant that we vary

$$C_{
m NLO}^{
m gain} = C_{
m LO}^{
m gain} imes rac{m_D}{T} imes c_{
m gain}$$

$\eta/s(T)$ of QCD

n/s convergence

0.03 0.10.20.3 α_s : LO 10 NLO w. gain 8 $LO + NLO \hat{q}$ $g^4\eta/s$ 6 4 $\mathbf{2}$ 0 0.51 2 2.51.50 m_D/T

• Convergence realized at *m*_D~0.5*T*

n/s convergence

0.030.10.20.3 α_s : LO 10 NLO w. gain 8 $LO + NLO \hat{q}$ $g^4\eta/s$ 6 4 20 1 2 0.51.52.50 m_D/T

• The ~entirety of the downward shift comes from NLO \hat{q}

Isotropic thermalisation

- In this talk we then concentrate on the idealised case where the distribution is isotropic, f(p)=f(p), and there is no expansion
- This is a good description of the latest thermalisation stage, and can also be a toy model for the early stage
- Full leading-order results presented in Aabrao York Kurkela Lu Moore PRD89 (2014) Kurkela Lu PRL113 (2014)

NLO kinetics and transport

 $n_B(p) \sim T/p \sim 1/g$

 The NLO O(g) corrections come from soft gluons. Out-of-equilibrium isotropic KMS enforced by Bethe-Heitler

$$\frac{T}{p} \rightarrow \frac{T_*}{p} \qquad \qquad T_* \equiv \frac{\int_{\mathbf{p}} f_p(1+f_p)}{2\int_{\mathbf{p}} f_p/p}$$

$$\mathcal{C}_{1\leftrightarrow2}[f](p) = \frac{(2\pi)^3}{2p^2} \int_0^\infty dp' dk' \gamma_{p',k'}^p(m,T_*) \\
\times \{f_p[1+f_{p'}][1+f_{k'}] - f_{p'}f_{k'}[1+f_p]\}\delta(p-p'-k') \\
+ \frac{(2\pi)^3}{p^2} \int_0^\infty dp' dk \gamma_{p,k}^{p'}(m,T_*) \,\delta(p+k-p') \\
\times \{f_pf_k[1+f_{p'}] - f_{p'}[1+f_p][1+f_k]\}.$$
(A2)
$$(\omega, q_\perp) \\
(\omega, q_\perp) \\
(\omega$$

NLO kinetics and transport

- The NLO corrections are then those we just saw, with two simplifications
 - no qhat in the 2↔2 processes, because of isotropy

$$\mathcal{C}_{2\leftrightarrow 2}[f](p) = \int_{\mathbf{k},\mathbf{p}',\mathbf{k}'} \frac{|\mathcal{M}(m)|^2 (2\pi)^4 \delta^{(4)}(p+k-p'-k')}{2 \ 2k \ 2k' \ 2p \ 2p'} \times \{f_p f_k[1+f_{p'}][1+f_{k'}] - f_{p'} f_{k'}[1+f_p][1+f_k]\}, p' \approx p + \hat{p} \cdot \mathbf{q}$$

- no gain terms, because of **isotropy**
- We thus have all corrections of order g^2T_*/m

• We consider underoccupied and overoccupied initial conditions

- We consider underoccupied and overoccupied initial conditions for a system of gluons only and we solve the EKT numerically
- In the underoccupied case a large-momentum gaussian (*Q*≫*T*_{final}=*T*) with a thermal bath carrying 10% of the initial energy

$$f(p) = Ae^{-\frac{(p-Q)^2}{(Q/10)^2}} + n_B(p, T_{\text{init}})$$

 In the overoccupied case the scaling solution arising from the classical lattice theory Fu JG Iqbal Kurkela 21xx.yyyyy

$$\lambda = g^2 N_c$$

• At the thermalisation time the ratio between two moments of *f* (both equal to *T* in equilibrium) is 0.9

• Two different NLO schemes which resum in different ways higher-order effects

• NLO corrections under reasonable control, at most 40% at λ =10

 NLO qhat does not contribute directly in this case, as the kinetic theory is not directly sensitive to transverse momentum broadening Fu JG Iqbal Kurkela 21xx.yyyyy

Summary

- The effective kinetic theory as a tool for transport, thermalisation and jets
- In the transport case, NLO corrections are large
- In isotropic thermalisation case, they are reasonably well-behaved. "no qhat" pattern?
- Care needed when using LO kinetic theories with $g^2T_*/m \ge 1$