
Constraining the EoS for 
neutron star from 
theory and data

Kenji Fukushima 
 

The University of Tokyo

1

—  Online Talk at S@INT Seminar   —



December 9, 2021 @ online talk at S@INT seminar

Equation of State for Neutron Stars

2

Gravitational force is sustained 
by the pressure from inside.

Compact Stars

Hydrostatic condition for r ~ r + dr

M(r) represents the integrated mass in r-sphere.

One condition is missing!
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Missing condition

General 
Relativistic

TOV Equations

A relation between  and p ε Equation of State (EoS)

free parameter

Initial Final
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r = 0
ε(r = 0) = εmax

p(r = 0) = pmax = p(εmax)

r = R
p(r = R) = 0

M = ∫ dr4πr2ε(r)



December 9, 2021 @ online talk at S@INT seminar 4

EoS from Deep Neural Network

EoS from resummed pQCD

EoS and gravitational waves
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Figure 1. Schematic of the TOV mapping  TOV and the regression analysis of the inverse TOV
mapping from the M -R data.

Throughout this paper we use the natural unit system with G = c = 1 unless otherwise
specified.

2 Supervised Learning for the EoS Inference Problem

In this section we explicitly define our target problem and summarize the basic strategy of
our approach with the supervised machine learning. We will explain the concrete setup in
each subsection where we adjust the strategy in accordance with the goal of each subsection.
In the present study we want to constrain the EoS from the stellar observables. The EoS
and the observables are non-trivially linked by the TOV equation which gives a means
to calculate the neutron star structure from the EoS input. Thus, constraining the EoS
from the observables is the inverse process of solving the TOV equation, but this inverse
problem encounters difficulties from the nature of the observations. In Sec. 2.1 we formulate
the inverse problem of the TOV equation and discuss its difficulties. We proceed to our
approach to this problem using the supervised machine learning in Sec. 2.2. We closely
describe the EoS parametrization and the data generation in Sec. 2.3. Then, we explain
the design of the deep NN in Sec. 2.4 and its training procedures in Sec. 2.5.

2.1 TOV mapping between the EoS and the M-R relation

In the present analysis we focus on the mass M and the radius R as the neutron star
observables. Given a boundary condition of the core pressure pc, the observables M and R

of such a neutron star can be determined by solving the TOV equation [84, 85]:

dp(r)

dr
= �

["(r) + p(r)][m(r) + 4⇡r3p(r)]

r[r � 2m(r)]
, (2.1)

m(r) = 4⇡

Z r

0
r02dr0 "(r0) , (2.2)

where r is the radial coordinate which represents a distance from the stellar center. The
functions, p(r) and "(r), are the pressure and the energy density (i.e., the mass density),

– 4 –

Conventional Model Approach

Model Solving TOV M-R Curve Observation

Initial condition: p(r ≃ 0) = p(ρmax), ε(r ≃ 0) = ε(ρmax)

M-R: p(r = R) = 0, M = ∫
R
d3x ε(r)
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[Very Famous Example]

common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryon density of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.74 6 0.15) 3 1015 g cm23, or ,10ns.

Evolutionary models resulting in companion masses .0.4M[ gen-
erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period .8 ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exotic matter; green, strange quark matter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.97 6 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases the maximum possible mass for each EOS. For a 3.15-ms spin period,
this is a =2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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Some models excluded 
from observations

Even more massive NSs 
have been discovered later.
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[Model Independent Analysis]

Constraining and applying a generic high-density equation of state

Mark G. Alford1, G. F. Burgio2, S. Han (È�)1, G. Taranto2,3, and D. Zappalà2
1Physics Department, Washington University, Saint Louis, Missouri 63130, USA

2 INFN Sezione di Catania, Via Santa Sofia 64, 95123 Catania, Italy and
3Dipartimento di Fisica e Astronomia, Universitá di Catania, Via Santa Sofia 64, 95123 Catania, Italy

(Dated: 1 Oct 2015)

We discuss the “constant speed of sound” (CSS) parametrization of the equation of state of high-density mat-
ter and its application to the field correlator method (FCM) model of quark matter. We show how observational
constraints on the maximum mass and typical radius of neutron stars are expressed as constraints on the CSS
parameters. We find that the observation of a 2M� star already severely constrains the CSS parameters, and is
particularly difficult to accommodate if the squared speed of sound in the high-density phase is assumed to be
around 1/3 or less.

We show that the FCM equation of state can be accurately represented by the CSS parametrization, which
assumes a sharp transition to a high-density phase with density-independent speed of sound. We display the
mapping between the FCM and CSS parameters, and see that FCM only allows equations of state in a restricted
subspace of the CSS parameters.

PACS numbers: 25.75.Nq, 26.60.-c, 97.60.Jd

I. INTRODUCTION

There are many models of matter at density significantly
above nuclear saturation density, each with their own param-
eters. In studying the equation of state (EoS) of matter in this
regime it is therefore useful to have a general parametrization
of the EoS which can be used as a generic language for relat-
ing different models to each other and for expressing experi-
mental constraints in model-independent terms. In this work
we use the previously proposed “constant speed of sound”
(CSS) parametrization [1–3] (for applications, see, e.g., [4]).
We show how mass and radius observations can be expressed
as constraints on the CSS parameters. Here we analyze a spe-
cific example, where the high-density matter is quark matter
described by a model based on the field correlator method
(Sec. IV), showing how its parameters can be mapped on to
the CSS parameter space, and how it is constrained by cur-
rently available observations of neutron stars.

The CSS parametrization is applicable to high-density
equations of state for which (a) there is a sharp interface be-
tween nuclear matter and a high-density phase which we will
call quark matter, even when (as in Sec. II) we do not make
any assumptions about its physical nature; and (b) the speed
of sound in the high-density matter is pressure-independent
for pressures ranging from the first-order transition pressure
up to the maximum central pressure of neutron stars. One can
then write the high-density EoS in terms of three parameters:
the pressure ptrans of the transition, the discontinuity in energy
density De at the transition, and the speed of sound cQM in the
high-density phase. For a given nuclear matter EoS eNM(p),
the full CSS EoS is then

e(p) =
⇢

eNM(p) p < ptrans
eNM(ptrans)+De + c�2

QM(p� ptrans) p > ptrans
(1)

The CSS form can be viewed as the lowest-order terms of
a Taylor expansion of the high-density EoS about the tran-
sition pressure. Following Ref. [1], we express the three

parameters in dimensionless form, as ptrans/etrans, De/etrans
(equal to l � 1 in the notation of Ref. [5]) and c2

QM, where
etrans ⌘ eNM(ptrans).

The assumption of a sharp interface will be valid if, for ex-
ample, there is a first-order phase transition between nuclear
and quark matter, and the surface tension of the interface is
high enough to ensure that the transition occurs at a sharp in-
terface (Maxwell construction) not via a mixed phase (Gibbs
construction). Given the uncertainties in the value of the sur-
face tension [6–8], this is a possible scenario. One can also
formulate generic equations of state that model interfaces that
are smeared out by mixing or percolation [9–11].

The assumption of a density-independent speed of sound is
valid for a large class of models of quark matter. The CSS
parametrization is an almost exact fit to some Nambu–Jona-
Lasinio models [2, 12–14]. The perturbative quark matter
EoS [15] also has roughly density-independent c2

QM, with a
value around 0.2 to 0.3 (we use units where h̄ = c = 1), above
the transition from nuclear matter (see Fig. 9 of Ref. [16]).
In the quartic polynomial parametrization [17], varying the
coefficient a2 between ±(150MeV)2, and the coefficient a4
between 0.6 and 1, and keeping ntrans/n0 above 1.5 (n0 ⌘
0.16fm�3 is the nuclear saturation density), one finds that c2

QM
is always between 0.3 and 0.36. It is noticeable that mod-
els based on relativistic quarks tend to have c2

QM ⇡ close to
1/3, which is the value for systems with conformal symmetry,
and it has been conjectured that there is a fundamental bound
c2

QM < 1/3 [18], although some models violate that bound,
e.g. [19, 20] or [14] (parametrized in [2]).

In Sec. II we show how the CSS parametrization is con-
strained by observables such as the maximum mass Mmax, the
radius of a maximum-mass star, and the radius R1.4 of a star
of mass 1.4M�. In Secs. III–IV we describe a specific model,
based on a Brueckner-Hartree-Fock (BHF) calculation of the
nuclear matter EoS and the field correlator method (FCM) for
the quark matter EoS. We show how the parameters of this
model map on to part of the CSS parameter space, and how
the observational constraints apply to the FCM model param-
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FIG. 2: (Color online). Contour plots showing the maximum hybrid star mass as a function of the CSS parameters of the high-density EoS.
Each panel shows the dependence on the CSS parameters ptrans/etrans and De/etrans. The left plots are for c2

QM = 1/3, and the right plots are
for c2

QM = 1. The top row is for a DHBF (stiff) nuclear matter EoS, and the bottom row is for a BHF (soft) nuclear matter EoS. The grey
shaded region is excluded by the measurement of a 2M� star. The hatched band at low density (where ntrans < n0) is excluded because bulk
nuclear matter would be metastable. The hatched band at high density is excluded because the transition pressure is above the central pressure
of the heaviest stable hadronic star.

lows a wider range of CSS parameters to be compatible with
the 2M� measurement.

In Fig. 2 the dot-dashed (red) contours are for hybrid stars
on a connected branch, while the dashed (blue) contours are
for disconnected branches. As discussed in Ref. [1], when
crossing the near-horizontal boundary from region C to B
the connected hybrid branch splits into a smaller connected
branch and a disconnected branch, so the maximum mass of
the connected branch smoothly becomes the maximum mass
of the disconnected branch. Therefore the red contour in the
C region smoothly becomes a blue contour in the B and D
regions. When crossing the near-vertical boundary from re-
gion C to B a new disconnected branch forms, so the con-
nected branch (red dot-dashed) contour crosses this boundary

smoothly.
In each panel of Fig. 2, the physically relevant allowed re-

gion is the white unshaded region. The grey shaded region is
excluded by the existence of a 2M� star. We see that increas-
ing the stiffness of the hadronic EoS or of the quark matter
EoS (by increasing c2

QM) shrinks the excluded region.
For both the hadronic EoSs that we study, the CSS param-

eters are significantly constrained. From the two left panels
of Fig. 2 one can see that if, as predicted by many models,
c2

QM . 1/3, then we are limited to two regions of parame-
ter space, corresponding to a lowpressure transition or a high
pressure transition. In the low-transition-pressure region the
transition occurs at a fairly low density ntrans . 2n0, and a
connected hybrid branch is possible. In the high-transition-

Alford-Burgio-Han-Taranto-Zappala (2015)

Still relies on several scenarios…
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Figure 1. Schematic of the TOV mapping  TOV and the regression analysis of the inverse TOV
mapping from the M -R data.

Throughout this paper we use the natural unit system with G = c = 1 unless otherwise
specified.

2 Supervised Learning for the EoS Inference Problem

In this section we explicitly define our target problem and summarize the basic strategy of
our approach with the supervised machine learning. We will explain the concrete setup in
each subsection where we adjust the strategy in accordance with the goal of each subsection.
In the present study we want to constrain the EoS from the stellar observables. The EoS
and the observables are non-trivially linked by the TOV equation which gives a means
to calculate the neutron star structure from the EoS input. Thus, constraining the EoS
from the observables is the inverse process of solving the TOV equation, but this inverse
problem encounters difficulties from the nature of the observations. In Sec. 2.1 we formulate
the inverse problem of the TOV equation and discuss its difficulties. We proceed to our
approach to this problem using the supervised machine learning in Sec. 2.2. We closely
describe the EoS parametrization and the data generation in Sec. 2.3. Then, we explain
the design of the deep NN in Sec. 2.4 and its training procedures in Sec. 2.5.

2.1 TOV mapping between the EoS and the M-R relation

In the present analysis we focus on the mass M and the radius R as the neutron star
observables. Given a boundary condition of the core pressure pc, the observables M and R

of such a neutron star can be determined by solving the TOV equation [84, 85]:

dp(r)

dr
= �

["(r) + p(r)][m(r) + 4⇡r3p(r)]

r[r � 2m(r)]
, (2.1)

m(r) = 4⇡

Z r

0
r02dr0 "(r0) , (2.2)

where r is the radial coordinate which represents a distance from the stellar center. The
functions, p(r) and "(r), are the pressure and the energy density (i.e., the mass density),

– 4 –

Model Independent Approach

EoS Solving TOV M-R Curve Observation

Once one M-R curve is identified, one EoS is concluded.
The best we can do is to find the “likely” M-R curve.
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Model Independent Approach

EoS Solving TOV M-R Curve Observation

P (A|B)P (B) = P (B|A)P (A)
(Bayes’ theorem)

A : EoS Parameters     B : M-R Observation

Want to know

Normalization

Likelihood prior
Model

Bayesian Analysis Ozel et al., Steiner et al. (2015~)
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If B (observation data) is abundant, the likelihood would become 
sharper → the prior dependence can be reduced… but…

Bayesian Analysis Ozel et al., Steiner et al. (2015~)

4

Fig. 2.— (Top) Inferred equation of state and mass-radius curve from a sample of mock data, assuming a uniform prior distribution
of pressures. The mock data are drawn from the nucleonic EoS SLy (Douchin & Haensel 2001) and are dithered with Gaussian noise
corresponding to �M = 0.1M�, �R = 0.5 km. The actual curves for SLy are shown in black. The magenta curve represents the most likely
EoS inferred via our Bayesian method. The 68% credibility region is shown in gray. (Middle) Identical to top panel, but with our Gaussian
regularizer included in the inversion. (Bottom) Identical data to the top two panels, but assuming a prior distribution that is uniform
in the logarithm of pressure and including a Gaussian regularizer. Assuming a uniform distribution leads to a preference towards high
pressures in the regions where there are few data to constrain the inversion, while assuming that the pressures are distributed uniformly
in the logarithm leads to a preference towards lower pressures. Including the Gaussian regularizer reduces the sensitivity to the choice of
prior.

Fig. 3.— Individual mass-radius curves contributing to the shape
of the 68% credibility region in the top panel Fig. 2. A few indi-
vidual curves are shown here to emphasize the fact that not all
curves that can be drawn through this region will actually have
likelihoods within the 68% interval.

of �R = 0.5 km and �M = 0.1 M�. EoS SLy is par-
ticularly challenging for a parametrization like ours that
is optimized for potentially more complex EoS because
it is practically a single polytrope in the density range
of interest. We, therefore, use this example to explore
the strengths and limits of the inference as well as of the
regularizer.
The black lines in Fig. 2 represent the EoS SLy, while

the magenta lines show the most-likely inferred EoS
found with our Bayesian method. The gray bands rep-
resent the 68% credibility regions. For five-dimensional
likelihoods, the 68% credibility region is defined as the
region where

Z Z Z Z Z
P (P1, ..., P5|data)dP1dP2dP3dP4dP5

= 0.68, (15)

exactly analogous to the lower-dimensional case. It
should be noted that these credibility regions show the
spread of possible solutions only, and should not be over-
interpreted. That is, there are many curves that may be

Raithel-Ozel-Psaltis (2017)

Mock data (SLy + Noises)

Very powerful approach 
but a complementary is 
desirable…
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Model Independent Approach

EoS Solving TOV M-R Curve Observation

Machine Learning Inference Fujimoto-Fukushima-Murase (2018,19,20)

Several M-R 
observation points 
with errors

Several parameters 
to characterize EoS

Nonlinear 
Mapping

{Mi, Ri} {Pi}{Pi} = F ({Mi, Ri})
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Model Independent Approach

EoS Solving TOV M-R Curve Observation

Machine Learning Inference Fujimoto-Fukushima-Murase (2018,19,21)

Generate EoS randomly

Solve 
TOV eq

Obtain M-R curve by 
solving TOV eq

Sample 14 points on M-R curve. 
Each points are assigned with 
random errors  .(�M, i, �R, i)
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Figure 11. Schematic flow of data generation procedure for the analysis in Sec. 4

is sketched in Fig. 11. We need to design the NN with an input of information including
�M,i and �R,i: the input variables are extended to (Mi, Ri; �M,i, �R,i).

We shall recapitulate the data generation scheme as follows. In the same way as in
Sec. 3 we prepare 5 EoS parameters c2s,i (i = 1, . . . 5) in the output side. In this section the
training data comprises 14 ⇥ 4 input parameters, i.e., (Mi, Ri; �M,i, �R,i) (i = 1, . . . , 14).
We note that i runs to not 15 but 14 corresponding to the number of observed neutron
stars as explained in Sec. 4.1. We calculate the M -R curve for each EoS, and then select
14 points of (M⇤

i , R
⇤
i ) on the M -R curve and add statistical fluctuations of �Mi and �Ri

[see Fig. 11 (3)]. Let us go into more detailed procedures now. Unlike �M and �R in Sec. 3
here we randomly generate �M,i and �R,i differently for i = 1, . . . 14. These variances, �M,i

and �R,i, are sampled from the uniform distributions, [0,M�) and [0, 5 km), respectively.
In view of the observational data, these ranges of the distributions should be sufficient to
cover the realistic situations. Then, �Mi and �Ri are sampled according to the Gaussian
distributions with these variances, �M,i and �R,i. Finally we obtain the training data,
(Mi = M⇤

i +�Mi, Ri = R⇤
i +�Ri;�M,i,�R,i) (i = 1, . . . 14) [see Fig. 11 (4)]. Hereafter we

call these 14 tetrads of (Mi, Ri;�M,i,�R,i) an observation.
Now we prepare the training data set by taking multiple observations. For each EoS

we randomly generate 100 different pairs of (�M,i,�R,i), and then we make another 100
observations for each (�M,i,�R,i). From the former 100 pairs the NN is expected to learn
that the observational uncertainties may vary, and the latter tells the NN that the genuine
M -R relation may deviate from the observational data. In total we make ns = 10000

(= 100 ⇥ 100) “observations” per one EoS. The size of the whole training data set is thus
100 times larger than before.

We modify the architecture of the NN used in this section accordingly. The number of
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Model Independent Approach

EoS Solving TOV M-R Curve Observation

Machine Learning Inference Fujimoto-Fukushima-Murase (2018,19,21)

We took 14 NS data and approximated 
the data with 4 parameters (M, R, 
sM, sR, neglecting distribution shapes).

How to infer the most likely EoS?
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Figure 2. Randomly generated EoSs (left) and the corresponding M -R curves (right).

c2s < c2 = 1, and the lower bound from the thermodynamic stability @p/@" � 0. Here, a
small margin by � = 0.01 is inserted as a regulator to avoid singular behavior of the TOV
equation. We here note that we allow for small c2s corresponding to a (nearly) first-order
phase transition. Repeating this procedure, we generate a large number of EoSs. For each
generated EoS, we solve the TOV equation to obtain the M -R curve as explained in Sec. 2.1.
In Fig. 2 we show the typical EoS data and the corresponding M -R curves used in our later
analyses. It should be noted here that we excluded artificial biases in the EoS generation
and allowed for any possible EoSs including ones disfavored by the model calculations or
the observational data (e.g., an EoS whose maximum mass exceeds 3M� in the right panel
of Fig. 2). This is important for the NN to be free from biases coming from specific model
preference. In this way our analysis gains an enough generalization ability, covers even
exotic scenario cases, and captures the correct underlying relations between the input and
the output.

Before closing this part, let us mention a possible improvement for the random EoS
generation, though we would not utilize this improvement to keep our present approach as
simple as possible. The problem arises from our assumed uniform distribution of c2s,i. The
parametrization and generation algorithm as explained above definitely allows for a first-
order phase transition for sufficiently small c2s,i’s; however, due to the uniform distribution,
it is a tiny percentage among the whole data for the generated EoSs to accommodate a first-
order phase transition, and this may be a part of our “prior” dependence. Since a strong
first-order transition scenario has already been ruled out from phenomenology, this prior
dependence should be harmless. Nevertheless, if necessary, we can naturally increase the
percentage of the EoSs with a first-order phase transition in a very simple way as follows:
In Eq. (2.8) we carry out the linear interpolation in the log-log plane. Alternatively, we can
use the spline interpolation in the log-log plane. With such a smooth interpolation, there
appear the energy density regions with negative @p/@", i.e., the EoS can be non-monotonic.
We can then replace this non-monotonic part by the first-order phase transition using the
Maxwell construction. This is one effective and natural way to enhance a finite fraction of
EoSs with a first-order phase transition while keeping the same c2s,i’s. We also note that
one more merit in this procedure is that the end points of the first-order energy regions
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Training Data and NN Architecture
Layer index Neurons Activation Function

0 56 N/A
1 60 ReLU
2 40 ReLU
3 40 ReLU
4 5 tanh

Table 2. Neural network architecture used in Sec. 4. In the input layer, 56 neurons correspond to
the input 14 points of the mass, the radius, and their variances. The design of the other layers is
kept the same as in Tab. 1.

neurons in the input layer becomes 56 (= 4 ⇥ 14) (the performance test was done with 15
points, but we have numerically confirmed that the same level of performance is achieved
with 14 points as well). Since we already know from the mock data analysis that the mass
sorting does not affect the performance, we keep the mass ordering as generated randomly,
unlike in Sec. 3.1. We normalize the input data as Mi/Mnorm, Ri/Rnorm, �M,i/�M norm, and
�R,i/�R norm with Mnorm = 3M�, Rnorm = 20 km, �M norm = 1M�, and �R norm = 5 km.
Aside from the input layer, the NN design of the other layers is chosen to be the same
as before, as summarized in Tab. 2. For the NN optimization we adopt Adam, the same
as in Sec. 3, but with different mini-batch size, 1000. Incorporating the observational
uncertainties the training data set becomes larger as compared to before, and we expect
that a larger mini-batch size would fasten the training.

4.3 Two ways for uncertainty quantification

Here we prescribe two independent methods to quantify uncertainties in the output EoS
based on different principles.

The first one utilizes the validation data, and the procedure is similar to that in Sec. 3.6.
The basic idea is that, once we have trained the NN, we can evaluate the prediction accuracy
from the validation data. We generate 100 samples of the validation data set whose input
variances are chosen to be in accord with the real observational uncertainties as explained
in Sec. 4.1. For the validation data, we know the true M -R relation so that we can evaluate
the deviation �R(M) as defined in Eq. (3.4). Using the whole validation data set, we
calculate the root-mean-square deviation, �RRMS, and regard it as the systematic error
inherent in the NN approach. Later we show this uncertainty by the label “validation” as
seen in Fig. 13.

The second one is the ensemble method in machine learning. This method is usually
used to enhance the stability and performance of the predicted output from NNs. Here we
repurpose it to quantify uncertainty of the predicted output. The idea is concisely summa-
rized in Fig. 12. In this method we set up multiple NNs independently: NN1, NN2, . . . ,NNN

with N being the number of prepared NNs. We perform random sampling from D to gener-
ate different subsets, D1,D2, · · · ,DN and train each NN using D1,D2, . . . ,DN . This random
sampling is commonly referred to as bootstrapping. After the training, by feeding the input
data, each NN predicts output values, which we symbolically denote by ô1, ô2, . . . , ôN as
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Most Likely EoS from ML

(a) (b)

Figure 13. (a) EoSs deduced from the observational M -R data of qLMXBs and thermonuclear
bursters. The shaded blue and hatched orange bands represent our 68% credibility bands from the
validation and the bagging estimations. The �EFT prediction and the Bayesian results (Steiner
et al. [34, 35] and Özel et al. [2, 36, 37]) are overlaid for reference. The former band represents
68% CL, while the latter shows the contour of e�1 of the maximum likelihood. (b) M -R relations
corresponding to the deduced EoSs from this work with references to other approaches.

(a) (b)

Figure 14. (a) Tidal deformability ⇤ calculated from our EoS (b) Correlation of tidal deforma-
bilities, ⇤1 and ⇤2; see the text for details.

are found to be near the middle of the gray band. The preceding Bayesian analyses [2, 34–
37] are also overlaid on Fig. 13. While Özel et al. [2, 36, 37] and our present analysis use
the same astrophysical data, Steiner et al. [34, 35] employs a subset of the data, i.e., 8 of
X-ray sources. One may think that our prediction gives a tighter constraint than the others,
but the narrowness of the band may be related with the implicit assumption in our EoS
parametrization; we will come back to this point in Sec. 4.5 (see Fig. 17). Figure 13 (b)
shows the M -R curves corresponding to the EoSs in (a). We see that our EoS (blue curve)
certainly supports neutron stars with M > 2M� [29–32].

Figures 14 (a) and (b) show the tidal deformability and their correlation, respectively,
in the binary neutron star merger GW170817. Once an EoS is given, the dimensionless tidal
deformability, ⇤, results from a quantity called the Love number k2, which is derived from
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X-ray sources. One may think that our prediction gives a tighter constraint than the others,
but the narrowness of the band may be related with the implicit assumption in our EoS
parametrization; we will come back to this point in Sec. 4.5 (see Fig. 17). Figure 13 (b)
shows the M -R curves corresponding to the EoSs in (a). We see that our EoS (blue curve)
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are found to be near the middle of the gray band. The preceding Bayesian analyses [2, 34–
37] are also overlaid on Fig. 13. While Özel et al. [2, 36, 37] and our present analysis use
the same astrophysical data, Steiner et al. [34, 35] employs a subset of the data, i.e., 8 of
X-ray sources. One may think that our prediction gives a tighter constraint than the others,
but the narrowness of the band may be related with the implicit assumption in our EoS
parametrization; we will come back to this point in Sec. 4.5 (see Fig. 17). Figure 13 (b)
shows the M -R curves corresponding to the EoSs in (a). We see that our EoS (blue curve)
certainly supports neutron stars with M > 2M� [29–32].

Figures 14 (a) and (b) show the tidal deformability and their correlation, respectively,
in the binary neutron star merger GW170817. Once an EoS is given, the dimensionless tidal
deformability, ⇤, results from a quantity called the Love number k2, which is derived from
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(a) (b)

Figure 15. (a) EoSs deduced from the observational M -R data of qLMXBs, thermonuclear
bursters [2, 36, 37], and NICER data of PSR J0030+0451 [42]. The shaded blue and the hatched or-
ange regions represent the 68% uncertainty band (evaluated in the bagging method) for the analyses
with and without the NICER data, respectively. (b) M -R relations corresponding to the deduced
EoSs shown in (a).

the Einstein equation under static linearized perturbations to the Schwarzschild metric due
to external tidal fields. Practically, we solve a second-order ordinary differential equation
in combination with the TOV equation; see Refs. [94, 95] for the explicit form of the
equations. The blue band in Fig. 14 (a) represents ⇤ from the EoS we inferred in the
present work, which is consistent with the merger event GW170817 indicated by the red
bar. In Fig. 14 (b) we show the correlation of the tidal deformabilities, ⇤1 of the star 1 and
⇤2 of the star 2, using the relation between ⇤ and M as given in Fig. 14 (a). The orange
lines in Fig. 14 (b) refer to the constraints (solid:90% and dashed:50%) for which ⇤1 and
⇤2 are sampled independently [40], while the green lines refer to the constraints for which
⇤1 and ⇤2 are related through ⇤a(⇤s, q) with ⇤a = (⇤2 � ⇤1)/2, ⇤s = (⇤2 + ⇤1)/2, and
q = M2/M1. In Fig. 14 (b) we clearly see that our predicted band is located within the
90% contours of the LIGO-Virgo data [40, 96].

So far we have only used the observational data from the PRE busters and qLMXBs,
which may contain large systematic errors related with the uncertain atmospheric model
of neutron stars. The results in Figs. 15 (a) and (b) include the M -R constraint from the
NICER mission as well. There are two independent analyses, as spotted on Fig. 15 (b), on
the same observation of PSR J0030+0451 [42, 43], and we adopt the one [green bar in (b)]
in Ref. [42]. We see that the uncertainty becomes slightly larger by the inclusion of the
NICER data, which is attributed to the relatively large deviation of the NICER data from
others.

4.5 Possible EoSs with a weak first-order phase transition

In the analyses we have presented so far, we used the piecewise polytrope with 5 segments
of density. Here, we change the number of segments from 5 to 7 and repeat the inference
with finer bin. There are mainly two issues argued in this subsection: a possibility of
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Figure 13. (a) EoSs deduced from the observational M -R data of qLMXBs and thermonuclear
bursters. The shaded blue and hatched orange bands represent our 68% credibility bands from the
validation and the bagging estimations. The �EFT prediction and the Bayesian results (Steiner
et al. [34, 35] and Özel et al. [2, 36, 37]) are overlaid for reference. The former band represents
68% CL, while the latter shows the contour of e�1 of the maximum likelihood. (b) M -R relations
corresponding to the deduced EoSs from this work with references to other approaches.
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Figure 14. (a) Tidal deformability ⇤ calculated from our EoS (b) Correlation of tidal deforma-
bilities, ⇤1 and ⇤2; see the text for details.

are found to be near the middle of the gray band. The preceding Bayesian analyses [2, 34–
37] are also overlaid on Fig. 13. While Özel et al. [2, 36, 37] and our present analysis use
the same astrophysical data, Steiner et al. [34, 35] employs a subset of the data, i.e., 8 of
X-ray sources. One may think that our prediction gives a tighter constraint than the others,
but the narrowness of the band may be related with the implicit assumption in our EoS
parametrization; we will come back to this point in Sec. 4.5 (see Fig. 17). Figure 13 (b)
shows the M -R curves corresponding to the EoSs in (a). We see that our EoS (blue curve)
certainly supports neutron stars with M > 2M� [29–32].

Figures 14 (a) and (b) show the tidal deformability and their correlation, respectively,
in the binary neutron star merger GW170817. Once an EoS is given, the dimensionless tidal
deformability, ⇤, results from a quantity called the Love number k2, which is derived from
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Figure 12. Illustration of the ensemble method procedure for uncertainty quantification.

in Fig. 12. Finally, aggregating the outputs from these multiple NNs, i.e., averaging all
the outputs, we get the overall output ô = hôii ⌘ N�1P

i ôi. Here we can also calculate
the variance by �ô2 = h(ôi � ô)2i, and regard it as “uncertainty”. This whole procedure,
comprising bootstrapping and aggregating, is named bagging3 [92]. In this work, we choose
N = 10. If some regions of the EoS are insensitive to the M -R observation, independently
trained 10 NN models would lead to different EoSs in such unconstrained regions. From
�ô that quantifies how much 10 output EoSs vary, we can estimate the uncertainty around
the output ô. We use this bagging for most of the analyses as shown by the band labeled
by “Bagging” in Figs. 13.

We have introduced two natural ways to quantify uncertainties, but our working pre-
scriptions are still to be developed. In fact there is no established method yet. A more
systematic way for the uncertainty quantification might be possible, and this is an interest-
ing problem left for future research in the general context of machine learning.

4.4 The most likely neutron star EoS

In Fig. 13 the orange line is the most likely neutron star EoS deduced from our NN approach.
We estimated uncertainty from the bagging (shown by the band with a hatch pattern labeled
by “bagging”) and the validation (shown by the blue band labeled by “validation”). We plot
bands from other works in the figure for comparison. The gray band represents an estimate
from the �EFT calculation combined with polytropic extrapolation and the two-solar-mass
pulsar constraint [93] (labeled by “�EFT+astro”). Because �EFT is a first-principles based
approach, any reasonable predictions should lie within the gray band, and indeed our results

3
In the strict sense, the term “bagging” is used for the random sampling procedure with replacement of

data. Here we use “bagging” even without replacement in a loose sense.
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Figure 16. (Left) 100 output EoSs predicted from each bagging predictor with a first-order tran-
sition highlighted by the orange thick lines. (Right) Histogram of the first-order phase transitions
in each energy density region of piecewise polytropes.

a weak first-order phase transition with finer bin and its implication on the uncertainty
quantification.

To this end we prepared N = 100 NNs in the bagging outlined in Sec. 4.3. We note
that each NN is trained so as to predict an EoS in response to the real observational data.
Here we use the M -R data of qLMXBs and thermonuclear bursters without the NICER
data. In the left panel of Fig. 16 we show 100 EoSs predicted from 100 independent NNs.
There are 44 EoSs out of 100 that have a first-order phase transition. We highlight the
region of first-order phase transition with orange thick lines in Fig. 16. We remind that the
activation function in the output layer is chosen to be tanh which takes a value over [�1, 1],
and for c2s < � = 0.01 we adjust it to c2s = � and identify a first-order phase transition then.
From this plot we can understand why we increased the number of segments. If we use the
EoS parametrization with 5 segments, weak first-order phase transitions are too strongly
prohibited by coarse discretization.

We also make a histogram in the right panel of Fig. 16 to show a breakdown of the EoS
regions with a first-order phase transition. This histogram counts the number of first-order
transition EoSs in each energy density region. It is interesting to see that the most of the
first-order phase transition is centered around the energy region [202, 272]MeV. On the one
hand, in the lower energy region [150, 202]MeV the first-order phase transition is less likely,
and this tendency is consistent with the fact that a stronger first-order phase transition
in a lower energy region is more disfavored by the two-solar-mass pulsar constraint [97].
In the higher energy region, on the other hand, there are also less EoSs with a first-order
phase transition. One may think that a first-order phase transition would be more allowed
in the higher energy region, but it is not the case in the NN analysis. In Sec. 3.4 we already
discussed that the NN model tends to predict the most conservative value around c2s ⇠ 0.5

in the high energy density regions where the constraints are inadequate. Therefore, the
correct interpretation of the absence of the first-order transition in the high density regions
as shown in Fig. 16 should be, not that our results exclude a first-order transition there,
but merely that the observational data analyzed in our NN method does not favor a first-
order transition there. Another artificial factor in the high energy density region is that
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Figure 16. (Left) 100 output EoSs predicted from each bagging predictor with a first-order tran-
sition highlighted by the orange thick lines. (Right) Histogram of the first-order phase transitions
in each energy density region of piecewise polytropes.

a weak first-order phase transition with finer bin and its implication on the uncertainty
quantification.

To this end we prepared N = 100 NNs in the bagging outlined in Sec. 4.3. We note
that each NN is trained so as to predict an EoS in response to the real observational data.
Here we use the M -R data of qLMXBs and thermonuclear bursters without the NICER
data. In the left panel of Fig. 16 we show 100 EoSs predicted from 100 independent NNs.
There are 44 EoSs out of 100 that have a first-order phase transition. We highlight the
region of first-order phase transition with orange thick lines in Fig. 16. We remind that the
activation function in the output layer is chosen to be tanh which takes a value over [�1, 1],
and for c2s < � = 0.01 we adjust it to c2s = � and identify a first-order phase transition then.
From this plot we can understand why we increased the number of segments. If we use the
EoS parametrization with 5 segments, weak first-order phase transitions are too strongly
prohibited by coarse discretization.

We also make a histogram in the right panel of Fig. 16 to show a breakdown of the EoS
regions with a first-order phase transition. This histogram counts the number of first-order
transition EoSs in each energy density region. It is interesting to see that the most of the
first-order phase transition is centered around the energy region [202, 272]MeV. On the one
hand, in the lower energy region [150, 202]MeV the first-order phase transition is less likely,
and this tendency is consistent with the fact that a stronger first-order phase transition
in a lower energy region is more disfavored by the two-solar-mass pulsar constraint [97].
In the higher energy region, on the other hand, there are also less EoSs with a first-order
phase transition. One may think that a first-order phase transition would be more allowed
in the higher energy region, but it is not the case in the NN analysis. In Sec. 3.4 we already
discussed that the NN model tends to predict the most conservative value around c2s ⇠ 0.5

in the high energy density regions where the constraints are inadequate. Therefore, the
correct interpretation of the absence of the first-order transition in the high density regions
as shown in Fig. 16 should be, not that our results exclude a first-order transition there,
but merely that the observational data analyzed in our NN method does not favor a first-
order transition there. Another artificial factor in the high energy density region is that
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Is this a hint for the presence of quark matter ?
Figure 18. (Left) The speed of sound from our EoSs with and without the NICER data by the
shaded blue and the hatched orange regions. (Right) The speed of sound from fine binning (shaded
blue) and coarse binning (hatched orange) estimates.

Figure 19. A concrete shape of f(x) of our choice (blue curve) and typical training data (orange
dots) for nbase = 20 and ns = 5.

5 More on the Performance Test: Taming the Overfitting

In Sec. 3.2, we observed a quantitative difference between the learning curves for the training
data sets with and without data augmentation by ns = 100 as demonstrated in Fig. 5.
Then, it would be a natural anticipation to consider that this ns data augmentation may
be helpful to overcome the problems of local minimum trapping and overfitting that we
often meet during the NN training. This section is aimed to discuss numerical experiments
to understand the behavior of the learning curve and the role of ns thereof. In particular,
we will focus on the overfitting problem here4.
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Speed of sound may exceed the conformal limit (=1/3)

Not strongly constrained in the high density region…
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At high density perturbation theory should work.
4

dimensionless integrals that can yield the double loga-
rithm. [31]

Furthermore, to obtain the double logarithm, we need
the two integration momenta to be well separated to pro-
duce scale-free integrals. Since m4

1 already has the cor-
rect mass dimension for the pressure, we may rewrite the
expanded HTL expression in the form
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where the function f is dimensionless, and inside the f
function P and Q represent the magnitudes of the Eu-
clidean four-momenta and ⌦i represents the remaining
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⇤
P
1

Z
⇤

Q
2

⇤
Q
1

d4P

P 4

d4Q

Q4
⇠ ln2 ↵1/2

s +O(ln↵s, 1), (11)

where the new semisoft cuto↵s ⇤P
1,2,⇤

Q
1,2 inside the f

function are defined as before. Analogously to the NNLO
case, the double logarithm in the full expression arises
when the semisoft cuto↵s become replaced by quantities

of O(↵1/2
s µB) and O(µB).

It is now clear that if we consider an expansion of f
about P/Q = 0

f

✓
P

Q
,⌦i

◆
= · · ·+ a�1(⌦i)

Q

P
+ a0(⌦i) + a1(⌦i)

P

Q
+ · · · ,

(12)
the only term that will give a double logarithm will be
the constant term a0. This corresponds precisely to
the P ⌧ Q limit. Similarly, there is a contribution
from P � Q, corresponding to an expansion of f about
Q/P = 0. Correctly accounting for the two integration
regions reveals that the full double logarithm comes from
the average of these contributions.

After extracting the average of the two series coe�-
cients defined above, we are left with a double logarithm
multiplying a (convergent) dimensionless angular integral
given in eq. (3) of the supplementary material, which can
be computed analytically. The result is the coe�cient
c3,2 of the ↵3

s ln
2 ↵s term in eq. (1),

c3,2 ↵
3

s ln
2 ↵s = �

11

48

NcdA
(2⇡)3

↵sm
4

1 ln2 ↵s

=
3(µB/3)4

4⇡2

⇥
�0.266075↵3

s ln
2 ↵s

⇤
, (13)

where the second equality holds for Nc = Nf = 3. We
have additionally verified that by repeating the calcula-
tion with ⇧T = m2

1 and ⇧L = 0 from the outset, the
result for c3,2 remains unchanged, as was the case for the
↵2

s ln↵s term. Eq. (13) is our main result.
In order to elevate our result to the subleading-

logarithm order O(↵3

s ln↵s), more care must be taken.
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FIG. 2. The pressure of cold and dense massless QCD, nor-
malized to the free pressure, as a function of baryon chemical
potential for the renormalization scale choice ⇤̄ = 2µB/3 and
⇤MS = 0.378 GeV.

Single logarithms may appear when only one of the loop
momenta is semisoft while the other one is either soft or
hard: If the other loop momentum is soft, a full HTL re-
summation of that line must be performed and the result
cannot be expanded in powers of ⇧T/L as above. Mean-
while, if the other loop momentum is hard, no kinematic
simplifications can be performed and no restrictions on
topology and the number of fermion lines can be applied
in that part of the diagram. In addition, the expansion
of the soft one-loop diagram of eq. (3) to higher orders
in the soft loop momentum will lead to contributions of
O(↵3

s ln↵s) that go beyond the HTL e↵ective theory.

Conclusions.—In the letter at hand, we have extracted
the leading N3LO correction to the pressure of cold quark
matter using an existing two-loop computation within
the Hard-Thermal-Loop e↵ective theory. We note that
the HTL result was derived in the di↵erent context of
a hot quark-gluon plasma, but it is equally applica-
ble to cold quark matter, as the soft contributions to
the EoS are insensitive to the details of the physics at
the hard scale (T for a hot quark-gluon plasma and
µB for cold quark matter). The hard scale appears
in the calculation only through the asymptotic mass
m2

1 ⇠ ↵s

R
d3pf(p)/|p|, where f is the relevant distri-

bution function.

We note that at higher orders, the semisoft contribu-
tions should continue to give rise to the leading loga-
rithms ↵n+1

s lnn ↵s. Quite strikingly, we find that the
leading-logarithm contributions at NNLO and N3LO are
described by a theory with only two transverse gluons
with a mass m1. This leads us to conjecture that the
leading-logarithm terms even at higher orders can be
computed in this vastly simplified framework.

In Fig. 2, we display the pressure, evaluated with
⇤̄ = 2µB/3 and a two-loop running coupling, which in-
dicates that the partial N3LO term only constitutes a

Gorda-Kurkela-Romatschke-Sappi-Vuorinen: 1807.04120

Convergence is much better 
than high-T perturbation.

cf. high-T perturbation

Hatsuda: hep-ph/9708257
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Perturbations at zero quark mass

[LO]
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Improved perturbations at zero quark mass
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↵s ! ↵s(⇤̄/µ0) Singular log terms can be 
reduced by a choice of   

But… 

Λ̄2 ∼ μ2
i
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Scale uncertainty appears from NNLO

[LO]
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As long as the chemical potential dependence is such simple, 
the EoS has no uncertainty even though  changes.  
Uncertainty appears from the NNLO only.

αs
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For continuation 
to the low density 
(empirical) EoS, 
the upper bound 
is likely to be the 
true EoS…?
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Baier-Redlich: hep-ph/9908372
Zero temperature limit of HTL resummation (HDL) 

Andersen-Strickland: hep-ph/0206196
HDL EoS to solve dense quark stars

FIG. 2. Leading-order HDLpt result for the pressure of a
degenerate quark-gluon plasma as a function of chemical po-
tential µ. The NLO weak-coupling expansion result is shown
as a grey band. Band corresponds to variation of the renor-
malization scale µ ≤ Λ ≤ 4µ.

Note that the requirement that Λ <
∼ 1.6µ may have

some physical basis since the scale of the coupling con-
stant should be related to the average momentum ex-
change of two quarks on the Fermi surface. At zero tem-
perature the largest momentum exchange possible is 2µ
and the smallest momentum exchange is of the order of
the superconducting gap φ. Therefore, the scale for the
coupling constant should be in the range φ <

∼ Λ < 2µ so
that the choice of Λ ∼ 1.6µ is not unreasonable.

V. MASS-RADIUS RELATIONSHIP

The mass-radius relationship for a non-rotating spher-
ically symmetric star is obtained by solving the Tolman-
Oppenheimer-Volkov (TOV) equations [24] for the mass
M and the pressure (P = −F) as a function of the radial
distance from the center:

dM

dr
= 4πr2Ẽ(r) (27)

dP

dr
= −

G

r2c2

[

Ẽ(r) + P̃(r)
] [

M(r) + 4πr3P̃(r)
]

×

[

1−
2GM(r)

c2r

]−1

, (28)

where G is Newton’s constant, c is the speed of light,
Ẽ = E/c2, and P̃ = P/c2.
In this work we will ignore the presence of the nuclear

phase of matter which is expected to undergo a first-order
phase transition to the quark-matter phase. A more de-
tailed study would include the effects of the nuclear phase

on the mass-radius relationship; however, our goal here
is only to show that both standard perturbation theory
and HDLpt have large theoretical uncertainties related to
the renormalization scale dependence. The most plausi-
ble scenario is that there will not be “naked” quark stars,
but instead there will be neutron stars with a very com-
pact quark-matter core and a thick outer layer of normal
nuclear matter.

FIG. 3. Mass-radius relation for a quark star with
Λ/µ = 1.6 and Λ/µ = 1. The weak-coupling results for the
same choice of renormalization scales are shown as dashed
lines. M! = 1.989 × 1030 kg is the mass of our sun.

In Fig. 3, we show the mass-radius relationship ob-
tained by solving the TOV equations numerically for
Λ/µ = 1.6 and Λ/µ = 1. For comparison, we also
show the QCD weak-coupling expansion results for the
same choice of renormalization scale as dashed lines. As
can be seen from this figure there is a large variation
in the mass-radius relationship as the renormalization
scale is varied over even this rather limited range of
µ ≤ Λ ≤ 1.6µ. Using this range, we find that using
the HDLpt equation of state (26) that Rmax ∼ 3.4− 10.9
km and Mmax ∼ 0.6 − 2.12M". With this same range
we find that using the perturbative equation of state (1)
that Rmax ∼ 2.4− 5.6 km and Mmax ∼ 0.42− 0.95M".

VI. DISCUSSION

In this paper, we have calculated the free energy of cold
dense quark matter to leading order in HDL perturbation
theory (HDLpt). The predictions of HDLpt depend on
a renormalization scale Λ that arises both from running
of the coupling constant and from the renormalization of
the additional ultraviolet divergences that are introduced
by the HDLpt reorganization of perturbation theory. It is

5

If the coupling constant runs, the 
results depends on the scale. 
Besides, nontrivial scale dependence 
appears from the Debye mass . 
(Log terms also appear!)

αsμ2
f

Approach with resummation (one-loop of HTL/HDL prop.)
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Approach with resummation (one-loop of HTL/HDL prop.)

In terms of the 2PI language:

using the propagator with the self-energy insertion
* Regarded as a “quasi-particle” approximation 
* Usually the thermodynamics is dominated by this alone 
* Not really a systematic expansion in the coupling

Conceptually straightforward but technically complicated 
especially with finite strange quark mass…

Γ =
1
2

tr ln G−1 −
1
2

tr ln(1 − G−1
0 G) + Γ2[G]
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Supplemental Material: Equation of state of cold and dense QCD matter in
resummed perturbation theory

Yuki Fujimoto and Kenji Fukushima
Department of Physics, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

I. DETAILS OF INTEGRATION: THE QUARK CONTRIBUTION TO THE PRESSURE

Here, we will supplement the details of integration that appears in the derivation of Eq. (5) in the main text. The
quark part of the pressure appears from the flavor-f quark loop:

Pq,f (T, µf ) = tr lnG�1

f (1)

=
XZ

{K}
ln det [/k �Mf � ⌃(i!̃n + µf , k)]
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⇤
, (2)

where we write the sum-integral as
PR

{K} = T
P

!̃n

R
k in d = 3�2✏ spatial dimensions for the momentum integration.

The functions A0 and AS are defined in the main text. We note that Pq,f in Eq. (1) can be regarded as a leading
contribution in the 2PI or the Cornwall-Jackiw-Tomboulis (CJT) formalism [1, 2]. This explains why Eq. (1) misses
an additional term, tr⌃Gf , that may be responsible for the deviation of O(↵s), which will be studied below.

We recast the Matsubara sum into the contour integral along C as depicted in the left panel of Fig. 1. We can
deform the contour C into Cqp [ CLd, see the right panel of Fig. 1. We identify the terms from Cqp and CLd with the
quasiparticle contribution and the Landau damping contribution, respectively, according to Refs. [3, 4]:

Pqp/Ld,f (T, µf ) =

Z

k

I
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FIG. 1. (Left) Original contour C corresponding to the Matsubara sum. (Right) Deformed contours, Cqp and CLd.
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For massless pressure:

4

FIG. 3. (Left) The same as Fig. 1 in the main text with an extended region of the energy density. (Right) The EoS expressed
in the form of P (µ).

simplicity we will show the calculation in the massless case only. It is known that the expansion of PHDLpt in powers
of mqf/µf ⌧ 1 gives, for Nc = 3 [5]:

PHDLpt

Pideal

⇡ 1� 6
m2

qf

µ2

f

+O

 
m4

qf

µ4

f

!
= 1� 4

↵s
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s) , (13)

where the ideal pressure is Pideal = NcNfµ4

f/(12⇡
2). The conventional pQCD result is [6, 7]

PpQCD

Pideal

= 1� 2
↵s

⇡
+O(↵2

s) . (14)

Therefore we can match the O(↵s) terms by adding the following correction to PHDLpt:

Pcorr = 2
↵s

⇡
Pideal . (15)

In Fig. 2 we plot the speed of sound evaluated by PHDLpt and PHDLpt+Pcorr both in the massless case. The figure 2
clearly shows that even with the Pcorr correction, the speed of sound still approaches c2s = 1/3 from the above as the
density increases. This implies that c2s > 1/3 could be attributed to the higher order e↵ects from the resummation.

III. UNCERTAINTY IN THE PRESSURE AT LOW ENERGY DENSITY

In the left panel of Fig. 3, we show the EoS in the form of P ("). This is the same plot as Fig. 1 in the main text
with an extended region of the energy density. Because of the uncertainty out of control at lower energy density it is
reasonable to truncate the plot around " ' 500 MeV/fm3.

In the right panel of Fig. 3, we show the EoS in the form of P (µ). It is evident that the scale variation uncertainty
in HDLpt is not small as compared with the pQCD results. Therefore, it is a quite nontrivial discovery that the scale
variation uncertainty in P (nB) is significantly smaller than that in P (µ).
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a correction term is necessary for order-by-order matching:
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of mqf/µf ⌧ 1 gives, for Nc = 3 [5]:

PHDLpt

Pideal

⇡ 1� 6
m2

qf

µ2

f

+O

 
m4

qf

µ4

f

!
= 1� 4

↵s

⇡
+O(↵2

s) , (13)

where the ideal pressure is Pideal = NcNfµ4

f/(12⇡
2). The conventional pQCD result is [6, 7]

PpQCD

Pideal

= 1� 2
↵s

⇡
+O(↵2

s) . (14)

Therefore we can match the O(↵s) terms by adding the following correction to PHDLpt:

Pcorr = 2
↵s

⇡
Pideal . (15)

In Fig. 2 we plot the speed of sound evaluated by PHDLpt and PHDLpt+Pcorr both in the massless case. The figure 2
clearly shows that even with the Pcorr correction, the speed of sound still approaches c2s = 1/3 from the above as the
density increases. This implies that c2s > 1/3 could be attributed to the higher order e↵ects from the resummation.

III. UNCERTAINTY IN THE PRESSURE AT LOW ENERGY DENSITY

In the left panel of Fig. 3, we show the EoS in the form of P ("). This is the same plot as Fig. 1 in the main text
with an extended region of the energy density. Because of the uncertainty out of control at lower energy density it is
reasonable to truncate the plot around " ' 500 MeV/fm3.

In the right panel of Fig. 3, we show the EoS in the form of P (µ). It is evident that the scale variation uncertainty
in HDLpt is not small as compared with the pQCD results. Therefore, it is a quite nontrivial discovery that the scale
variation uncertainty in P (nB) is significantly smaller than that in P (µ).
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We have checked that this is negligible at high density.
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FIG. 1. Comparison of the EoS in this work (HDLpt) and
other EoSs. The blue and the orange bands represent our
results and the preceding results from Refs. [12, 23], re-
spectively, with ⇤̄ = µ � 4µ. The green band is from the
�EFT [24]. The red band shows the EoS inferred from the
Neural Networks in the machine learning analysis of the neu-
tron star observation [22]. The dashed black line is the APR
EoS extrapolated from the nuclear side [25].

extrapolated EoSs from the nuclear side, the Bayesian
analysis has been recognized as a powerful instrument
for the inference analysis to identify the most likely EoS
based on the observational data [17–19] (see Ref. [20] for
a review). Recently, the Machine Learning technique has
been also advocated as a complementary method to infer
the EoS [21, 22]. It would be of utmost importance to
make a direct comparison of the inferred EoS candidates
and the QCD-based estimates. To this end, we are urged
to reduce uncertainty and widen the validity region of
the pQCD or HDLpt calculations.

In this Letter we will report the first successful at-
tempt to construct a better convergent EoS from the
HDLpt framework incorporating the strange quark mass
e↵ect. From the technical point of view, we adopt the
resummation schemes in the gluon sector as prescribed
in Ref. [4] and in the quark sector as in Ref. [15] with our
own extension to cope with the strange quark mass. Our
expressions are given in the form of exact integrations
without any expansion in terms of the screening mass as
in Ref. [7].

Central results: Since technical details are cumber-
some, we shall first present our central results in Fig. 1
and then proceed to technical details later. Not to
make the comparison on the figure too busy, we chose
only a few representative EoSs from the nuclear side;
namely, the EoS extrapolated from the chiral E↵ective
Field Theory (�EFT) calculation [24] by the green band,
the Neural Network output in the machine learning anal-
ysis [22] by the red band, and the Akmal-Pandharipande-
Ravenhall (APR) EoS [25] shown by the dashed line.

The orange band in the region, " > 103 MeV/fm3, rep-

FIG. 2. Baryon number density as a function of the quark
chemical potential. In the figure pQCD refers to the results
from Refs. [12, 23] and HDLpt to our results.

resents the results from pQCD [12] for which we utilize
the concise formula as given in Ref. [23]. Higher-order
corrections could be added, but the uncertainty band
is not much changed from Ref. [12]. The uncertainty
band width abruptly diverges, from which it has been
said that pQCD is reliable only at extreme high den-
sities far from reality. At a glance, indeed, we should
understand how di�cult it is to make a robust interpo-
lation between the nuclear and the pQCD EoSs. Now, a
surprise comes from a blue narrow band that represents
results from our HDLpt calculations. The uncertainty
band is drastically reduced and the HDLpt EoS appears
to be merged into the nuclear EoSs smoothly in the inter-
mediate density region. It should be noted that the APR
EoS overshoots ours, but this is due to a well-known flaw
in the APR EoS, i.e., superluminal speed of sound which
violates causality.
One may wonder what causes such a drastic di↵er-

ence on Fig. 1. We can qualitatively understand this
from Fig. 2 in which the baryon number density nB as
a function of the quark chemical potential µ is plotted.
Because the HDLpt sums the quark loops up, nB is the
most sensitive quantity a↵ected by the resummation in
the quark sector. It is an interesting and reasonable ob-
servation that nB is suppressed at fixed µ after the re-
summation: thermodynamic quantities are dominated by
quark quasi-particles, and in HDLpt, quark excitations
are more screened by self-energy insertions, as compared
to pQCD treatments. Therefore, on Fig. 1, the corre-
sponding µ for a given " becomes larger, and the corre-
sponding running coupling ↵s(⇤̄ = ⇠µ), where ⇠ = 1, 2, 4,
is smaller. This qualitative argument partially accounts
for the reduction of the uncertainty band, but not fully
yet. If we plot the pressure P and the energy density "
as functions of µ, respectively, the uncertainty bands are
not such narrow as in Fig. 1. Nevertheless, P (") with
⇤̄ = µ and that with ⇤̄ = 4µ happen to stay close, which

Smooth continuation from the nuclear side to the quark 
side could be possible now!  Slope change?

As expected from 
the continuation! 

Slope changes to 
imply crossover?
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FIG. 1. Comparison of the EoS in this work (HDLpt) and
other EoSs. The blue and the orange bands represent our
results and the preceding results from Refs. [12, 23], re-
spectively, with ⇤̄ = µ � 4µ. The green band is from the
�EFT [24]. The red band shows the EoS inferred from the
Neural Networks in the machine learning analysis of the neu-
tron star observation [22]. The dashed black line is the APR
EoS extrapolated from the nuclear side [25].

extrapolated EoSs from the nuclear side, the Bayesian
analysis has been recognized as a powerful instrument
for the inference analysis to identify the most likely EoS
based on the observational data [17–19] (see Ref. [20] for
a review). Recently, the Machine Learning technique has
been also advocated as a complementary method to infer
the EoS [21, 22]. It would be of utmost importance to
make a direct comparison of the inferred EoS candidates
and the QCD-based estimates. To this end, we are urged
to reduce uncertainty and widen the validity region of
the pQCD or HDLpt calculations.

In this Letter we will report the first successful at-
tempt to construct a better convergent EoS from the
HDLpt framework incorporating the strange quark mass
e↵ect. From the technical point of view, we adopt the
resummation schemes in the gluon sector as prescribed
in Ref. [4] and in the quark sector as in Ref. [15] with our
own extension to cope with the strange quark mass. Our
expressions are given in the form of exact integrations
without any expansion in terms of the screening mass as
in Ref. [7].

Central results: Since technical details are cumber-
some, we shall first present our central results in Fig. 1
and then proceed to technical details later. Not to
make the comparison on the figure too busy, we chose
only a few representative EoSs from the nuclear side;
namely, the EoS extrapolated from the chiral E↵ective
Field Theory (�EFT) calculation [24] by the green band,
the Neural Network output in the machine learning anal-
ysis [22] by the red band, and the Akmal-Pandharipande-
Ravenhall (APR) EoS [25] shown by the dashed line.

The orange band in the region, " > 103 MeV/fm3, rep-

FIG. 2. Baryon number density as a function of the quark
chemical potential. In the figure pQCD refers to the results
from Refs. [12, 23] and HDLpt to our results.

resents the results from pQCD [12] for which we utilize
the concise formula as given in Ref. [23]. Higher-order
corrections could be added, but the uncertainty band
is not much changed from Ref. [12]. The uncertainty
band width abruptly diverges, from which it has been
said that pQCD is reliable only at extreme high den-
sities far from reality. At a glance, indeed, we should
understand how di�cult it is to make a robust interpo-
lation between the nuclear and the pQCD EoSs. Now, a
surprise comes from a blue narrow band that represents
results from our HDLpt calculations. The uncertainty
band is drastically reduced and the HDLpt EoS appears
to be merged into the nuclear EoSs smoothly in the inter-
mediate density region. It should be noted that the APR
EoS overshoots ours, but this is due to a well-known flaw
in the APR EoS, i.e., superluminal speed of sound which
violates causality.
One may wonder what causes such a drastic di↵er-

ence on Fig. 1. We can qualitatively understand this
from Fig. 2 in which the baryon number density nB as
a function of the quark chemical potential µ is plotted.
Because the HDLpt sums the quark loops up, nB is the
most sensitive quantity a↵ected by the resummation in
the quark sector. It is an interesting and reasonable ob-
servation that nB is suppressed at fixed µ after the re-
summation: thermodynamic quantities are dominated by
quark quasi-particles, and in HDLpt, quark excitations
are more screened by self-energy insertions, as compared
to pQCD treatments. Therefore, on Fig. 1, the corre-
sponding µ for a given " becomes larger, and the corre-
sponding running coupling ↵s(⇤̄ = ⇠µ), where ⇠ = 1, 2, 4,
is smaller. This qualitative argument partially accounts
for the reduction of the uncertainty band, but not fully
yet. If we plot the pressure P and the energy density "
as functions of µ, respectively, the uncertainty bands are
not such narrow as in Fig. 1. Nevertheless, P (") with
⇤̄ = µ and that with ⇤̄ = 4µ happen to stay close, which

For a given density the corresponding 
µ is pushed up by the resummation

Not so trivial because of the Debye and s-quark masses
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FIG. 2. Baryon number density (left) and pressure (right) as functions of the quark chemical potential. In the figure pQCD
refers to the results from Refs. [12, 27] and HDLpt to our results.

P (nB) rather than P (µ). The condition that P ("; ⇤̄) is
insensitive to the scale ⇤̄ is dP ("; ⇤̄)/d⇤̄ = 0, i.e.,

@P (µB; ⇤̄)

@⇤̄
� c2s

@"(µB; ⇤̄)

@⇤̄
= 0 , (1)

where µB = 3µ is the baryochemical potential. Substi-
tuting the thermodynamic relation " = �P + µBnB this
relation reduces to

(1 + c2s)
@P (µB; ⇤̄)

@⇤̄
� c2sµB

@nB(µB; ⇤̄)

@⇤̄
= 0 . (2)

In the conventional argument, the reduction of the first
terms in Eqs. (1) and (2) has been the central issue, but
we point out that @P/@⇤̄ = 0 is only a su�cient condition
for Eqs. (1) and (2). Albeit @P/@⇤̄ 6= 0, the inclusion of
the latter term can cancel the scale-dependence; Fig. 2 is
the concrete realization of such cancellation.

III. FORMULATION

Let us explain the formulae and procedures to obtain
our results in Fig. 1. Dense matter in the neutron star
reaches the � equilibrium; d ⌧ u + e� + ⌫̄e and s ⌧
u+ e�+ ⌫̄e indicating the relations between quark chem-
ical potentials as µu = µ+ 2

3
µQ and µd = µs = µ�

1

3
µQ

where µQ is the electric chemical potential. Since elec-
trons are negatively charged, µe = �µQ, and we can fix
µQ from the charge neutrality, i.e., nQ � ne = 0 with
nQ = @P/@µQ and ne = µ3

e/(3⇡
2) neglecting the elec-

tron mass.
Since the most crucial extension in this work is the

inclusion of the bare quark mass, we will write down the
explicit expressions in the quark sector. In our notation
for flavor-f quarks the bare mass is Mf and the screening
mass is mqf . The bare mass should be scale dependent

as

Mf (⇤̄) = Mf (2GeV)


↵s(⇤̄)

↵s(2GeV)

��0/�0 1 +A(⇤̄)

1 +A(2GeV)
.

(3)
Here, �0 was already introduced when ↵s(⇤̄) ap-
peared before, and �0 ⌘ 3(N2

c
� 1)/(2Nc). The two-

loop corrections appear in A(⇤̄) ⌘ A1(↵s(⇤̄)/⇡) +
A2

1+A2

2
(↵s(⇤̄)/⇡)2 with A1 ⌘ ��1�0/(2�2) + �1/(4�0)

and A2 ⌘ �0/(4�2

0
)(�2

1
/�0��2)��1�1/(8�2

0
)+�2/(16�0).

For �2, �1, and �2, the general expressions are compli-
cated, and we refer to numerical values, �2 = 3863/24,
�1 = 182/3, and �2 = 8885/9 � 160⇣(3) ⇡ 794.9 for
Nc = Nf = 3. Readers can consult Eq. (8) of Ref. [12]
for the complete expressions.

In the T ! 0 limit the HDLpt pressure, PHDLpt, is
given by the gluon loop and the quark loop with the self-
energy insertions; namely,

PHDLpt = (N2

c
� 1)Pg +Nc

X

f=u,d,s

Pq,f +�Pg,q , (4)

where �Pg and �Pq subtract the ultraviolet diver-
gences. The gluon part with an appropriate subtrac-
tion by �Pg / 1/✏ (where the spatial dimensions are
d = 3� 2✏ in the dimensional regularization) is

Pg =
m4

D

64⇡2

✓
ln

⇤̄

mD

+ Cg

◆
. (5)

A constant, Cg, is an integral over a function involv-
ing the gluon self-energy and numerically estimated as
Cg ⇡ 1.17201 in the dimensional regularization. Here,
mD is the gluon screening mass induced by µ, i.e., m2

D
⌘

(2↵s/⇡)
P

f µ
2

f . We note that the bare quark masses in
the hard loops are neglected commonly in the HTL ap-
proximation (see Ref. [30] for a standard textbook). The
gluon sector is intact, so we just refer to Refs. [4, 6, 7]
for further details.

In principle we should require:
<latexit sha1_base64="EMBxfjy+8N+Cuct477oEuaVHRjk="></latexit>

P (µ,↵s(⇤̄),m(⇤̄); ⇤̄) is independent of the scale.

It seems to be very hard in the resummed theory… but…

The scale insensitivity of the EoS is good enough!

Surprisingly, this approximately holds in the resummation.
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Strange quark mass runs (like ) and the threshold 
strongly depends on the scale choice…
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(see also Sec. III.A). This illustrates that they are not
subject to a significant bias arising from the choice of
basis functions, and a posteriori strengthens the conclu-
sions made in previous works [16–18, 43, 44, 46]. As the
three interpolations agree, in the following, we choose to
use the speed-of-sound interpolation. We note that the
added benefit of this method is that it allows one to keep
track of the sti↵ness of the EoS in a natural way.

III. CONSTRAINING THE NS-MATTER EOS

The next two sections are devoted to a detailed analy-
sis of our ensemble of NS-matter EoSs, constructed with
the speed-of-sound method. As detailed in Appendix A,
the approximately 570.000 EoSs are built from randomly
generated functions c2s(µB), containing up to 5 linear in-
tervals, whereafter we vary the outlier EoSs to make sure
that the boundaries of the EoS band are stable. Note
that while we do not add discontinuous first-order tran-
sitions to our EoSs by hand, our interpolation functions
allow crossover transitions that may be arbitrarily strong,
thus closely mimicking discontinuous phase transitions
and mixed phase constructions [50].

A. Properties of the EoS band

In Fig. 2, we display our ensemble of NS-matter EoSs
obtained with the speed-of-sound interpolation method.
In deriving the result, we have required that the EoSs
support a 1.97M� NS [6, 7] and that the tidal deformabil-
ity ⇤ for a 1.4M� star satisfy 70 < ⇤(1.4M�) < 580, con-
sistent with the LIGO/Virgo bound from the GW170817
observation [18]. As noted earlier (see, e.g., [16, 44]), the
two-solar-mass constraint forces the EoS to be relatively
sti↵ at low densities, which is reflected in the rapid rise of
the interpolation functions for the pressure as a function
of energy density. At the same time, the constraint on
⇤(1.4M�) sets an upper limit for the sti↵ness, constrain-
ing the EoS band in a complementary direction.

While the astrophysical observations significantly con-
strain the behavior of the EoS in the intermediate-density
region, and the new band is more restrictive than, e.g.,
that of [16], the range of allowed EoSs still remains rel-
atively wide. A partial reason for this is the high versa-
tility of our interpolation method, which allows for very
complex structures and extreme states of matter, some
of which are unlikely to appear in Nature. Instead of im-
posing a theoretical bias and restricting the set of EoSs
by hand, we have chosen to classify the functions based
on their extremeness as quantified by the maximum value
that the speed of sound reaches and the level of fine struc-
ture that each EoS contains.

In Fig. 2, the speed-of-sound classification is performed
following a coloring scheme where EoSs corresponding to
a lower maximal value of c2s are drawn on top of the
higher ones. While we are not aware of a proven theo-

102 103 104

100

101

102

103

104

FIG. 2: The family of all possible NS-matter EoSs, obtained
with the speed-of-sound interpolation method introduced in
this paper. The color coding refers to the maximal value that
c2s reaches at any density, while the black lines denote the
extrapolations of the low- and high-density theoretical bands
to higher/lower densities [33, 56]. The rough location of the
deconfinement transition in hot QGP is indicated as ✏QGP.

rem that would exclude speeds of sound exceeding the
conformal value c2s = 1/3 (see, however, [51] for an at-
tempt in this direction), we note that the bound appears
to be a very nontrivial one to break. In hot QGP, nonper-
turbative lattice simulations have shown that the speed
of sound remains subconformal [52], and in QCD mat-
ter at asymptotically high energy density the quantity is
known to approach the conformal limit from below [31].
In holographic calculations the bound has been violated,
but only in finely tuned constructions that do not di-
rectly correspond to quantum field theories realized in
Nature [53, 54]. As discussed in [55], having c2s > 1/3
furthermore corresponds to matter in which the number
of degrees of freedom decreases as a function of energy
density, which strongly goes against the partonic picture
of hadrons arising from QCD. Based on these consid-
erations, we conclude that there is a strong theoretical
reason to expect that the speed of sound never exceeds
the conformal value by a sizable amount in QCD matter.
As seen from Fig. 2, excluding those EoSs for which the
conformal limit is strongly violated, say c2s > 0.6, would
lead to significantly tighter limits for the allowed EoSs.
Another way in which some of the EoSs generated

by the speed-of-sound interpolation method are extreme
is that the interpolation functions allow for very quick
changes in the material properties of the medium in ar-
bitrarily small density windows. While such versatility is
in principle a desirable feature of the interpolator, these
structures are clearly not very likely to appear in Na-
ture. To quantify the level of local structure in our EoSs,
we classify them according to the smallest (logarithmic)
energy density interval where structures appear. In prac-
tice, this is implemented by demanding that the energy
densities at two successive inflection points ✏i and ✏i+1

where the speed of sound changes its behavior, satisfy

5

FIG. 4: The central densities reached in maximally massive
(blue, in the background), 2M� (red squares, on top of the
blue dots), and 1.44M� (orange diamonds, on top) NSs.

In order to inspect the EoSs case by case, we next in-
vestigate the ranges of polytropic indices � found at the
centers of NSs with di↵erent masses, recalling their dis-
tinct values in the HM and QM phases. For this analysis,
we need to exclude from our full ensemble a small number
of EoSs that contain very sharp local structures, leading
to rapidly varying � values at the centers of NSs that
do not reflect the overall trend of the EoS in question.
A su�cient cut having the desired e↵ect is �ln ✏ > 0.5,
which according to Fig. 3 has a minor e↵ect on the global
characteristics of the EoS family [75].

The result of the polytropic index analysis is displayed
in Fig. 5, where we reproduce the ranges of polytropic
indices � found at the centers of Mmax and 1.44M� NSs
for di↵erent maximal values of c2s. For NSs with M =
1.44M�, we always find the central polytropic index to
satisfy � & 2, which clearly corresponds to the HM phase.
On the other hand, for the maximally massive stars we
typically find � values slightly above unity, indicating
that the matter is in the QM phase. Fig. 1 displays the
size of the quark core, which we define as the continuous
region at the center of the NS where � remains below
1.75 (denoted by the dashed vertical line in Fig. 5). The
core has a significant extent, Mcore > 0.25M�, for all
those EoSs that satisfy c2s < 0.5. However, for EoSs
that strongly violate the conformal limit, the core may
be significantly smaller or even absent.

If the maximal value of c2s exceeds 0.7 (or 0.5 for
�ln ✏ = 0), we find a small class of EoSs which do not lead
to QM cores even for maximally massive stars. These
EoSs correspond to that part of the Mmax cloud in Fig. 5
that extends to the right of the dashed vertical line. In-
specting this set of EoSs further, we find that they all
exhibit a first order phase transition, which we define as
an interval in ✏ where � < 0.5, where the pressure is
approximately flat as function of energy density. Fur-
ther analysis confirms that in these cases it is indeed
the phase transition itself that destabilizes the star. To
study how large latent heats are required for the destabi-
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FIG. 5: The allowed ranges of the polytropic index � at the
centers of 1.44M� and maximally massive NSs. If c2s < 0.7,
the centers of maximally massive NSs contain QM cores, de-
fined as � < 1.75. The red dotted line corresponds to the two
most massive NSs known, J1614�2230 and J0348+0432, with
M ⇡ 2M�. Note the suppressed zero on the y-axis.

lization, we inspect this set of EoSs with di↵erent values
of �ln ✏ > 0.05, thereby making sure that the size of
the latent heat is not limited by the smoothing proce-
dure. This analysis shows that a phase transition with
(�✏)lat > 130 MeV/fm3, or (�✏)lat/✏ > 0.2 at the be-
ginning of the transition, can prevent the formation of a
quark core for EoSs for which max(c2s) > 0.5.
Finally, we find that two-solar-mass stars contain a

quark core for all EoSs that satisfy c2s < 0.4 (as well as
many with c2s > 0.4). The respective sizes of these cores
are displayed in Fig. 6 together with the maximal masses
obtained with the same EoSs. We observe that for sub-
conformal EoSs, where the maximal masses are close to
2M�, the two-solar-mass stars contain large quark cores
of R ⇡ 6.5 km. We note that for these EoSs, the MR
measurements of the core are nearly identical to those
within the maximal mass NSs in Fig. 1. On the contrary,
for those EoSs that lead to substantially higher maximal
masses, Mmax > 2.25M�, the quark cores are absent in
2M� stars, indicating that the formation of a soft core
quickly leads to a destabilization of the star even in the
absence of a strong phase transition.

V. CONCLUSIONS

Although increasingly precise constraints have been
placed on the EoS of neutron-star matter [16, 17, 43, 44],
the microscopic composition of QCD matter deep inside
NS cores has so far been addressed only within the con-
text of specific phenomenological models. In the present
paper, we have shown that current astrophysical and the-
oretical constraints are starting to be restrictive enough
so that this question can be addressed in a more ro-
bust, model-independent way. In particular, we have
demonstrated that the NS-matter EoS has a clear two-

Annala-Gorda-Kurkela-Nattila-Vuorinen: 1903.09121

γ =
d ln p
d ln ϵ

Phenomenological characterization 
of crossover to quark matter
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FIG. 1. Comparison of the EoS in this work (HDLpt) and
other EoSs. The blue and the orange bands represent our
results and the preceding results from Refs. [12, 23], re-
spectively, with ⇤̄ = µ � 4µ. The green band is from the
�EFT [24]. The red band shows the EoS inferred from the
Neural Networks in the machine learning analysis of the neu-
tron star observation [22]. The dashed black line is the APR
EoS extrapolated from the nuclear side [25].

extrapolated EoSs from the nuclear side, the Bayesian
analysis has been recognized as a powerful instrument
for the inference analysis to identify the most likely EoS
based on the observational data [17–19] (see Ref. [20] for
a review). Recently, the Machine Learning technique has
been also advocated as a complementary method to infer
the EoS [21, 22]. It would be of utmost importance to
make a direct comparison of the inferred EoS candidates
and the QCD-based estimates. To this end, we are urged
to reduce uncertainty and widen the validity region of
the pQCD or HDLpt calculations.

In this Letter we will report the first successful at-
tempt to construct a better convergent EoS from the
HDLpt framework incorporating the strange quark mass
e↵ect. From the technical point of view, we adopt the
resummation schemes in the gluon sector as prescribed
in Ref. [4] and in the quark sector as in Ref. [15] with our
own extension to cope with the strange quark mass. Our
expressions are given in the form of exact integrations
without any expansion in terms of the screening mass as
in Ref. [7].

Central results: Since technical details are cumber-
some, we shall first present our central results in Fig. 1
and then proceed to technical details later. Not to
make the comparison on the figure too busy, we chose
only a few representative EoSs from the nuclear side;
namely, the EoS extrapolated from the chiral E↵ective
Field Theory (�EFT) calculation [24] by the green band,
the Neural Network output in the machine learning anal-
ysis [22] by the red band, and the Akmal-Pandharipande-
Ravenhall (APR) EoS [25] shown by the dashed line.

The orange band in the region, " > 103 MeV/fm3, rep-

FIG. 2. Baryon number density as a function of the quark
chemical potential. In the figure pQCD refers to the results
from Refs. [12, 23] and HDLpt to our results.

resents the results from pQCD [12] for which we utilize
the concise formula as given in Ref. [23]. Higher-order
corrections could be added, but the uncertainty band
is not much changed from Ref. [12]. The uncertainty
band width abruptly diverges, from which it has been
said that pQCD is reliable only at extreme high den-
sities far from reality. At a glance, indeed, we should
understand how di�cult it is to make a robust interpo-
lation between the nuclear and the pQCD EoSs. Now, a
surprise comes from a blue narrow band that represents
results from our HDLpt calculations. The uncertainty
band is drastically reduced and the HDLpt EoS appears
to be merged into the nuclear EoSs smoothly in the inter-
mediate density region. It should be noted that the APR
EoS overshoots ours, but this is due to a well-known flaw
in the APR EoS, i.e., superluminal speed of sound which
violates causality.
One may wonder what causes such a drastic di↵er-

ence on Fig. 1. We can qualitatively understand this
from Fig. 2 in which the baryon number density nB as
a function of the quark chemical potential µ is plotted.
Because the HDLpt sums the quark loops up, nB is the
most sensitive quantity a↵ected by the resummation in
the quark sector. It is an interesting and reasonable ob-
servation that nB is suppressed at fixed µ after the re-
summation: thermodynamic quantities are dominated by
quark quasi-particles, and in HDLpt, quark excitations
are more screened by self-energy insertions, as compared
to pQCD treatments. Therefore, on Fig. 1, the corre-
sponding µ for a given " becomes larger, and the corre-
sponding running coupling ↵s(⇤̄ = ⇠µ), where ⇠ = 1, 2, 4,
is smaller. This qualitative argument partially accounts
for the reduction of the uncertainty band, but not fully
yet. If we plot the pressure P and the energy density "
as functions of µ, respectively, the uncertainty bands are
not such narrow as in Fig. 1. Nevertheless, P (") with
⇤̄ = µ and that with ⇤̄ = 4µ happen to stay close, which

pQCD
Maybe a duality 
region where the 
hadrons and quarks 
coexist (quarkyonic).
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How to find such crossover, if any??? 
1-st order phase transition might be straightforward???
Most-Papenfort-Dexheimer-Hanauske-Schramm-Stocker-Rezzolla (2018)

CMFQ : EOS with a strong-1st PT to Quark Matter (3~4 times ) 
CMFH : EOS without quarks
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FIG. 4. Properties of the GW emission for the low- (left panels) and high-mass binaries (right panels). The top panels report the strain h22

+ for
the two EOSs, together with the instantaneous GW frequency fGW (semitransparent lines); the bottom panels show the phase difference ��
between the two signals. The inset in the top-right panel highlights the differences in the ringdown.

As can be seen from the last marker of the density evolu-
tion in Fig. 3, the HMNS core undergoes a complete PT to
quarks and the whole HMNS collapses immediately after the
PT. Note that the region of highest temperature is initially at
densities smaller than ⇠ nsat, but the temperature is suffi-
ciently high for quarks to appear in small amounts. After the
HMNS core crosses the PT boundary, the maximum temper-
ature rises steeply and thus the fluid elements with maximum
density and temperature coincide.

We complete our discussion of the PT by considering its
signatures on the GW emission by means of the strain, fre-
quency and phase difference, which are reported in Fig. 4 for
the low- and high-mass binary. Note that because the den-
sities and temperatures during the inspiral are too small to
cause the formation of quarks, the GW signal is identical for
the two EOSs and for both masses. This is radically differ-
ent from what happens when comparing merger simulations
using EOSs with and without hyperons, as these show differ-
ences in the GW signal already during the inspiral [9, 10], due
to the softening caused by the presence of hyperons. For such
EOSs, a dephasing is thus always present, both during the in-
spiral and after the merger, since there are always portions of
the stars with intrinsically different EOSs. In our case, in-
stead, it is only after the merger that differences arise due to
the presence of quarks.

For the low-mass binary, and after ⇠ 5 ms from the merger,
the GWs from the remnants start to show a linear dephasing
that reaches about three radians by the time the binary with the
CMFQ EOS collapses to a black hole (bottom-left panel). The
start of the phase difference, which is essentially zero even af-
ter the merger, coincides with the formation of the two hot
spots and, thus, with the appearance of quarks. In fact, al-
though Yquark is very small at those times, it is sufficient to
produce changes in the pressure of ⇠ 5%, that are responsi-
ble for the changes in the GW emission, both in amplitude
and in frequency (top-left panel), thus producing a mismatch

between two post-merger spectra [42–47]. These changes in
pressure also lead to a small damping of the GW amplitude
prior to collapse, which is triggered by the first-order PT for
the CMFQ EOS. Hence, the lifetime of the HMNS is shorter
than in the purely hadronic case.

In many respects, the left panels of Fig. 4 are a representa-
tive example of the signatures of a PT in a binary merger. In
an idealized scenario where the GW signal from the inspiral
is measured with great precision and can be associated with
confidence to a purely hadronic EOS (the inspiral can only
probe comparatively low-density regions of the EOS), the
unexpected dephasing of the template-matched post-merger
signal [48, 49], together with the anticipated collapse of the
HMNS, would provide evidence that a PT at several times
nsat, possibly of the type described here, has taken place in
its core. Of course, a single detection could still be accomo-
dated via a tweaking of the EOS in the high-density part of
a hadronic EOS. However, the “tweaking” would be increas-
ingly hard with multiple detections as it cannot describe the
complex nonlinear occurrence of the PT.

The right panels of Fig. 4 report the properties of the GW
signal for the high-mass binaries, both of which collapse very
rapidly for EOSs with and without quarks. The differences in
this case are harder to detect since the dephasing starts only
after ⇠ 5 ms, but is very quickly suppressed by the collaps-
ing signal. The latter, however, is different, as shown in the
small inset in the top-right panel of Fig. 4, where the two
ringdown signals are suitably aligned. These differences are
caused by distinct free-fall times of the cores of the HMNSs,
which are shorter in the case of the ultra-softened EOS with
quarks. Although these differences are not large (the relative
difference in the ringdown-frequency is . 25%, yielding an
overlap of only O = 0.92 [50, 51]) they are large enough
to be distinguishable if detected by third-generation GW de-
tectors [52, 53]. As a final remark, we point out that all of
the dynamics reported above is found also when simulating

Quark matter shortens the 
lifetime of post-merger 
hypermassive neutron star. 
(Easier to collapse into BH.)
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How to find such crossover, if any??? 
1-st order phase transition might be straightforward???
Weih-Hanauske-Rezzola (2019)

Several different scenarios (but still a 1st-order assumed) 2

t

f G
W

no PT (NPT)

prompt PT
(PPT)

PT-triggered collapse
(PTTC)

delayed PT (DPT)

tmerg

FIG. 1. Schematic overview of the instantaneous characteristic
gravitational-wave frequency and how its evolution can be used to
classify the different scenarios associated with a hadron-quark PT.

and the pressure support has been reduced [37]; a more de-
tailed discussion and comparison with the DPT scenario is
presented in the Supplemental Material [38].

Given the poor knowledge of the EOS of neutron stars, it is
very difficult – and not our intention here – to ascertain how
likely any of these scenarios is. However, some insight can
be gained from the analysis carried out in Ref. [33], where
it was found that when choosing a uniform prior for a piece-
wise polytropic parametrization of the EOS, the occurrence of
a strong PT is not very common. More precisely, it was found
that only ⇠ 5% of the EOSs constructed (which were more
than 107), would actually yield a PT. Furthermore, even when
considering a stellar model that yields a PT in the right density
range, it is not trivial to assess whether it will lead to a DPT,
a PTTC or a PPT scenario. The outcome, in fact, depends on
the exact value where the PT sets in and at which density the
pure-quark phase is reached. In what follows we will discuss
in detail the new DPT scenario.
Methods and setup. For our simulations we make use of
a piecewise polytropic representation of the hadronic EOS
FSU2H introduced in Refs. [39, 40]. More specifically, we
modify this EOS by introducing a PT from hadronic to quark
matter via a Gibbs-like construction (FSU2H-PT). The simu-
lations are performed using McLachlan [41] for the space-
time evolution, WhiskyTHC [42, 43] for solving the equa-
tions of general-relativistic hydrodynamics, and LORENE [44]
for setting up the initial irrotational binary configurations. De-
tails on this setup and the EOS can be found in the Supplemen-
tal Material [38].

With the exception of the EOS, the one described above is a
standard setup for simulating a BNS merger and sufficient to
draw the proof-of-concept scenario proposed here. For a more
complete and detailed picture, a fully temperature-dependent
EOS [11], magnetic fields [45], and neutrino radiative trans-

FIG. 2. Evolution of the central rest-mass density for the four BNS
configurations we have simulated. Blue-shaded regions mark the dif-
ferent phases of the EOS and apply to the DPT and PTTC scenarios
only since the NPT binaries are always purely hadronic.

port should be accounted for. However, we expect our results,
which focus only on the gravitational-wave signal produced
over a few tens of milliseconds after the merger, to remain un-
altered when a more accurate description of the microphysics
is made.

Since a fully temperature-dependent EOS leading to a DPT
scenario is currently not available, we account for the addi-
tional shock heating during the merger and postmerger phases
by including thermal effects via a “hybrid EOS”, that is by
adding an ideal-fluid thermal component to the cold EOS
[46]. The total pressure p and the specific internal energy ✏
are therefore composed of the cold part (pc, ✏c) and a “ther-
mal” ideal-fluid component (pth, ✏th) where p = pc + pth =
K⇢� + ⇢✏th (�th � 1), ✏ = ✏c + ✏th, where ⇢ is the rest-
mass density, K the polytropic constant, and �th = 1.75. The
effective temperature obtained within this ideal-gas approach
can be roughly approximated as T = (mnpth)/(kB⇢), where
mn is the nucleonic mass and kB the Boltzmann constant.
Results. Hereafter, we concentrate on two different and rep-
resentative equal-mass irrotational BNSs with M = 2.64M�
(low-mass) and 2.68M� (high-mass) for each of the two
EOSs, i.e., with (FSU2H-PT) and without (FSU2H) a PT,
for a total of four simulations (the radii of the initial stars are
13.11 and 13.13 km, respectively). Figure 2 shows the evolu-
tion of the maximum rest-mass density, ⇢max, which is repre-
sentative of the density within the core of the merged object.
As the evolution of BNSs without PT is relatively well stud-
ied (see [35, 36] for recent reviews) and the matter in the NPT
case is always purely hadronic we here focus on describing the
two simulations with PT and show the two simulations with-
out PT only for comparison as light-red and light-blue lines in
Fig. 2.

During the inspiral all models have densities below the on-

Finite-T treatment:
<latexit sha1_base64="BMq1KHOtpKnl50QEHqzfCMfIaOo="></latexit>

P = Pcold + Pthermal
<latexit sha1_base64="gXqtwJvFg4/d8/YqwzKHwsy5hhc="></latexit>

" = "cold + "thermal
<latexit sha1_base64="BmGBvSAg6Z9uDBLU+1ZF4GPawBA="></latexit>

Pthermal ⇡ ⇢"thermal(�th � 1)

 is fixed by handΓth = 1.75



December 9, 2021 @ online talk at S@INT seminar

Quarkyonic Crossover

39

-6e-05

-4e-05

-2e-05

0

2e-05

4e-05

6e-05

0 5 10 15 20 25

� 4
,2

2 [
sim

ul
at

io
n 

un
it]

t (ms)

w/o crossover
w/ crossover

Prel
im

inar
y

Similar trend can be confirmed. 
We also checked the thermal index 
dependence: 

  For small  thermal pressure is 
  not enough and the lifetime is 
  shortened to go to BH. 

  For  the thermal pressure 
  can sustain the hypermassive NS.

Γth

Γth ∼ 2
Neutrino processes are 
not included (like Hanauske’s)

Fujimoto-Fukushima-Kyutoku-Hotokezaka (2022)
Crossover also detectable? ← YES! 
Thermal effect??
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Figure 1: EoS calculated from the CS-HRG model at T = 0. The
IHRG results and the phenomenological nuclear EoS (SLy4 [54]),
together with the N3LO �EFT EoS [55, 56] (to which our parameters
are fitted) are shown.

Figure 2: EoS calculated from the CS-HRG model at finite T . The
T = 0 results are the same as shown in Fig. 1 but the scale is mag-
nified.

the exchange of heavy mesons and multi-pions, as seen also
in the first-principles lattice-QCD calculation [53]. The
VDW model can deal with such characteristics of the nu-
clear force; the EV e↵ect captures the repulsive core nature
at short range, while the intermediate and long-range parts
are reasonably captured by resonances and the attractive
interaction term in the VDW model.

One might wonder how that the attractive term / a
a↵ects physical observables. Only to avoid singular behav-
ior of thermodynamic quantities, the minimal model with
either VDW- or CS-type EV would be enough. We would,
however, stress that the attractive term is indispensable
for quantitative analysis. We will come back to this point
when we discuss the M -R relation using the EoS from the
CS-HRG model later.

Figure 3: Lepton chemical potential µ` = �µQ obtained by solving
the electric charge neutrality and the �-equilibrium conditions.

3. EoS construction

We are ready to construct the EoS for neutron stars at
T = 0 as well as for compact-binary mergers and super-
novae at T > 0. Under these circumstances, the system is
�-equilibrated via the weak processes such as

n ! p+ `+ ⌫̄` , p+ ` ! n+ ⌫` , (13)

⌃� ! n+ `+ ⌫̄` , n+ ` ! ⌃� + ⌫` , (14)

and neutral in the electric charge. These conditions of �-
equilibrium and electric charge neutrality amount to set-
ting the values of the chemical potentials, µQ and µS .

Owing to large asymmetry of baryons and anti-baryons
at high µB , we can safely neglect the anti-baryonic contri-
bution to the EoS, and we can also drop the mesonic con-
tribution at T = 0. The meson condensation would cause
subtlety; in particular, negatively charged pions would
form a condensate when µ` > m⇡� , where µ` is the lep-
tochemical potential and m⇡ = 140MeV is the pion mass.
We assume no condensate and this will be justified self-
consistently as shown in Fig. 3. The values of µ` at various
temperatures in Fig. 3 do not exceed m⇡.

We impose the following conditions on µQ and µS :

nQ(T,µ)� n`(T, µ`) = 0 , (15)

µS = 0 , (16)

where nQ is the electric charge density in the interacting
HRG model, whose expression is given by

nQ(T,µ) =f(⌘B)
X

i2B

Qin
id
i (T, µB +�µB +QiµQ)

+
X

i2M

Qin
id
i (T,QiµQ) .

(17)

For the expression of the lepton density, n`, we substitute
the electron mass, me = 0.511MeV, and the muon mass,

4

observation as seen in Fig. 4. Usually, the lower density
part of the EoS is responsible for the radius of stars, and
a larger radius is favored for a sti↵er EoS at low density.
This tendency can be confirmed in Fig. 1; the IHRG EoS
is constructed without the attractive interaction, and the
lower density part (nB/n0 . 1) from the IHRG model
exceeds that from the CS-HRG model. This behavior is
consistent with such an interpretation that the EoS with-
out attractive interaction gives too sti↵ EoS at low density
and leads to a too large radius.

As mentioned earlier, for RB = 0.511 fm, the maximum
packing density, above which the model breaks down, is
nB = 11.2n0 for the CS-HRG model. On the M -R re-
lation, the maximum mass of M = 2.56M� is attained
at nB = 9.32n0, which certainly lies within the validity
range of the CS-HRG model. Regarding the maximum
mass, some controversies are unavoidable. Combining the
GW170817 event with the accompanying electromagnetic
observation, the maximum mass could be constrained to
be at most . 2.3M� [62–65]. Meanwhile, a compact ob-
ject with ⇠ 2.6M� has been observed in the GW190814,
which may be identified as a massive neutron star. Near
the maximum mass region, another subtlety arises from a
possible transition to quark matter [66, 67]. It is a nontriv-
ial question where the validity bound of our model should
be. If we locate the validity bound at nB ' 3.7n0 (see
explanations in Sec. 2.3), our model should be very apt up
to M ' 1.5M�.

The HRG model provides us with a convenient picture
to probe the particle abundances. In Fig. 5 we show the
fraction Yi = ni/nB of the particle species i. At small
density, the neutron, n, is dominant with a small fraction
of the proton, p, which slowly increases with increasing
density. The onset of the hyperons is observed slightly
below 2n0. As is consistent with the conventional scenario
(see, e.g., Sec. 5 of Ref. [68]), ⌃� is activated first as we
increase the density, and then ⇤ is produced afterwards.

4.2. Thermal index

In the applications for astrophysical phenomena such
as supernovae and binary neutron star mergers, the ther-
mal corrections to the EoS are often modeled by an ideal
gas approximation [32, 33, 70]. In order to define the ther-
mal part of the EoS, which is parametrized by the thermal
index, �th, we introduce the rest-mass density of baryons
as ⇢B = mBnB with the nucleon mass, mB = 939MeV.
We can decompose the energy density " as " = (1 + e)⇢B ,
where e is the specific internal energy. We can add the
thermal corrections to the pressure and the energy on top
of the T = 0 parts as

p = pT=0 + pth , e = eT=0 + eth . (20)

In the simulations of neutron star mergers, the cold (T =
0) component is used before shock heating associated with
the stellar collision sets in. The relation between the ther-
mal pressure and the energy should be supplemented with

Figure 6: Thermal index �th corresponding to the EoS shown in
Fig. 2. For reference, the ab initio calculations for pure neutron
matter [69] are overlaid in the grey color with the same line style
as our results. The canonical value of the adiabatic index for non-
relativistic ideal gas, � = 5/3, is shown by a horizontal line.

the additional constraint, that is commonly parametrized
by

pth = (�th � 1)⇢Beth . (21)

In the phenomenological studies, �th is a free parame-
ter. It is customary to choose �th around ⇠ 1.7. For exam-
ple, �th = 1.8 was adopted in Ref. [71]. If �th is too small
(like ⇠ 1.3), the thermal pressure is not large enough to
sustain matter, resulting in a rapid proto-neutron star con-
traction for supernovae, and in a faster collapse of merger
remnants to black holes for binary merger. In this way,
smaller values of �th may have impact on core-collapse su-
pernova and binary neutron star merger simulations [72].
In contrast, a larger �th (like ⇠ 2.0) would elongate the
life-time of the post-merger dynamics. Thus, for reliable
theoretical predictions, it is of utmost importance to con-
strain �th. Moreover, although it is often assumed to be
constant, �th may depend on the density and tempera-
ture [69].

We can make use of our EoS to infer �th, which can be
represented in terms of the thermodynamic quantities as

�th = 1 +
pth

eth⇢B
= 1 +

pth
"th

. (22)

Here, "th = ⇢Beth is the thermal part of the energy density.
In Fig. 6, we show our estimate for the thermal index, �th,
as a function of the density. We find that �th becomes less
sensitive to the density as T gets larger; e.g., �th is almost
constant around ⇠ 1.4 at T = 50MeV. The preceding
ab initio calculation based on �EFT [69] is also overlaid
on Fig. 6. Our �th and the ab initio �th [69] di↵er qual-
itatively; it may be partially because the slope of the ab

initio EoS at T = 0 is gentle compared with the state-
of-the-art �EFT EoS [55, 56] to which our model is fitted
to. We note that �th in Fig. 6 is computed under the as-
sumption of neutrinoless �-equilibrium. The values of �th

6

Van der Waals type EoS with interacting hadrons. 
Thermal index looks consistent with other approaches…?

Fujimoto-Fukushima-Hidaka-Hiraguchi-Iida (2021)
Estimation of the (T-dependent) thermal index 
Thermal effect??
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Crossover also detectable? 
Thermal effect??

observation as seen in Fig. 4. Usually, the lower density
part of the EoS is responsible for the radius of stars, and
a larger radius is favored for a sti↵er EoS at low density.
This tendency can be confirmed in Fig. 1; the IHRG EoS
is constructed without the attractive interaction, and the
lower density part (nB/n0 . 1) from the IHRG model
exceeds that from the CS-HRG model. This behavior is
consistent with such an interpretation that the EoS with-
out attractive interaction gives too sti↵ EoS at low density
and leads to a too large radius.

As mentioned earlier, for RB = 0.511 fm, the maximum
packing density, above which the model breaks down, is
nB = 11.2n0 for the CS-HRG model. On the M -R re-
lation, the maximum mass of M = 2.56M� is attained
at nB = 9.32n0, which certainly lies within the validity
range of the CS-HRG model. Regarding the maximum
mass, some controversies are unavoidable. Combining the
GW170817 event with the accompanying electromagnetic
observation, the maximum mass could be constrained to
be at most . 2.3M� [62–65]. Meanwhile, a compact ob-
ject with ⇠ 2.6M� has been observed in the GW190814,
which may be identified as a massive neutron star. Near
the maximum mass region, another subtlety arises from a
possible transition to quark matter [66, 67]. It is a nontriv-
ial question where the validity bound of our model should
be. If we locate the validity bound at nB ' 3.7n0 (see
explanations in Sec. 2.3), our model should be very apt up
to M ' 1.5M�.

The HRG model provides us with a convenient picture
to probe the particle abundances. In Fig. 5 we show the
fraction Yi = ni/nB of the particle species i. At small
density, the neutron, n, is dominant with a small fraction
of the proton, p, which slowly increases with increasing
density. The onset of the hyperons is observed slightly
below 2n0. As is consistent with the conventional scenario
(see, e.g., Sec. 5 of Ref. [68]), ⌃� is activated first as we
increase the density, and then ⇤ is produced afterwards.

4.2. Thermal index

In the applications for astrophysical phenomena such
as supernovae and binary neutron star mergers, the ther-
mal corrections to the EoS are often modeled by an ideal
gas approximation [32, 33, 70]. In order to define the ther-
mal part of the EoS, which is parametrized by the thermal
index, �th, we introduce the rest-mass density of baryons
as ⇢B = mBnB with the nucleon mass, mB = 939MeV.
We can decompose the energy density " as " = (1 + e)⇢B ,
where e is the specific internal energy. We can add the
thermal corrections to the pressure and the energy on top
of the T = 0 parts as

p = pT=0 + pth , e = eT=0 + eth . (20)

In the simulations of neutron star mergers, the cold (T =
0) component is used before shock heating associated with
the stellar collision sets in. The relation between the ther-
mal pressure and the energy should be supplemented with

Figure 6: Thermal index �th corresponding to the EoS shown in
Fig. 2. For reference, the ab initio calculations for pure neutron
matter [69] are overlaid in the grey color with the same line style
as our results. The canonical value of the adiabatic index for non-
relativistic ideal gas, � = 5/3, is shown by a horizontal line.

the additional constraint, that is commonly parametrized
by

pth = (�th � 1)⇢Beth . (21)

In the phenomenological studies, �th is a free parame-
ter. It is customary to choose �th around ⇠ 1.7. For exam-
ple, �th = 1.8 was adopted in Ref. [71]. If �th is too small
(like ⇠ 1.3), the thermal pressure is not large enough to
sustain matter, resulting in a rapid proto-neutron star con-
traction for supernovae, and in a faster collapse of merger
remnants to black holes for binary merger. In this way,
smaller values of �th may have impact on core-collapse su-
pernova and binary neutron star merger simulations [72].
In contrast, a larger �th (like ⇠ 2.0) would elongate the
life-time of the post-merger dynamics. Thus, for reliable
theoretical predictions, it is of utmost importance to con-
strain �th. Moreover, although it is often assumed to be
constant, �th may depend on the density and tempera-
ture [69].

We can make use of our EoS to infer �th, which can be
represented in terms of the thermodynamic quantities as

�th = 1 +
pth

eth⇢B
= 1 +

pth
"th

. (22)

Here, "th = ⇢Beth is the thermal part of the energy density.
In Fig. 6, we show our estimate for the thermal index, �th,
as a function of the density. We find that �th becomes less
sensitive to the density as T gets larger; e.g., �th is almost
constant around ⇠ 1.4 at T = 50MeV. The preceding
ab initio calculation based on �EFT [69] is also overlaid
on Fig. 6. Our �th and the ab initio �th [69] di↵er qual-
itatively; it may be partially because the slope of the ab

initio EoS at T = 0 is gentle compared with the state-
of-the-art �EFT EoS [55, 56] to which our model is fitted
to. We note that �th in Fig. 6 is computed under the as-
sumption of neutrinoless �-equilibrium. The values of �th

6

Most probably the thermal pressure is not large (that is good!)
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FIG. 4. Thermal energy (first row), thermal pressure (second row), and thermal index (third row) for T = 30 MeV as function
of density for SNM (left panels) and PNM (right panels), using six di↵erent chiral two- and three-nucleon interactions (see text
for details). Note that the 2N N3LO (EM) results are for two-nucleon interactions only.

appears around saturation density, while it is smaller for
PNM, emerging in this case around half saturation den-
sity. However, as the temperature increases, this maxi-
mum smoothens due to a balance between the thermal
pressure and the thermal energy. For higher densities,
the behavior is dictated by the thermal pressure, as dis-
cussed above. In fact, while for SNM in Fig. 3 the thermal
index shows a constant decrease, for PNM the decrease

in �th is levelled as the temperature increases, as it was
observed for the respective thermal pressures. Note that
for very high temperatures the system should behave as
a relativistic gas, and relativistic e↵ects should be taken
into account. According to the limits imposed by Taub’s
inequality and to be consistent with relativistic kinetic
theory, the adiabatic index should never exceed the value
of 5/3, and should approach the value of 4/3 in the lim-

Carbone-Schwenk (2019)

Fujimoto-Fukushima-Hidaka-Hiraguchi-Iida (2021)



December 9, 2021 @ online talk at S@INT seminar

Summary

Deep Neural Network (DENSE Collaboration) 
□ Predicts the most likely EoS that stays close to the 

empirical nuclear EoS (SLy4). 
□ Codes publicized very soon…  
pQCD Resummation 
□Many underestimate the predictability of pQCD at high 

density — resummation cures the problem better. 
Gravitational wave signals? 
□ Crossover causes detectable effects (EoS softening is 

important), but the thermal pressure should be carefully 
considered (maybe not large, fortunately).
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