Constraining the EoS for neutron star from theory and data

> Kenji Fukushima The University of Tokyo

— Online Talk at S@INT Seminar —

Equation of State for Neutron Stars

Compact Stars

Gravitational force is sustained by the pressure from inside.

Hydrostatic condition for $r \sim r + dr$

$$\frac{dp(r)}{dr} = -G\frac{M(r)}{r^2}\varepsilon(r)$$

M(r) represents the integrated mass in r-sphere.

$$\frac{dM(r)}{dr} = 4\pi r^2 \varepsilon(r) \quad \text{One condition is missing!}$$

Equation of State for Neutron Stars $\frac{dp(r)}{dr} = -G\frac{M(r)}{r^2}\varepsilon(r)$ TOV Equations

General
Relativistic
$$\frac{dp(r)}{dr} = -G\frac{M}{r^2}(\varepsilon+p)\left(1+\frac{4\pi r^3 p}{M}\right)\left(1-\frac{2GM}{r}\right)^{-1}$$

Missing condition

A relation between p and $\varepsilon \longrightarrow Equation of State (EoS)$

InitialFinal
$$r = 0$$
 $r = R$ $\varepsilon(r = 0) = \varepsilon_{\max}$ free parameter $p(r = R) = 0$ $p(r = 0) = p_{\max} = p(\varepsilon_{\max})$ $M = \int dr 4\pi r^2 \varepsilon(r)$

EoS from Deep Neural Network EoS from resummed pQCD EoS and gravitational waves

algost algo

Conventional Model Approach

Model \rightarrow Solving TOV $\rightarrow M$ -R Curve \rightarrow Observation

Initial condition:
$$p(r \simeq 0) = p(\rho_{\max}), \quad \varepsilon(r \simeq 0) = \varepsilon(\rho_{\max})$$

M-R: $p(r = R) = 0, \quad M = \int_{R}^{R} d^3x \, \varepsilon(r)$
December 9. 2021 @ online talk at S@INT seminar

Conventional Model Approach

[Very Famous Example]

Demorest et al. (2010-2016) 1.928(17) *M*_{sun} (J1614-2230)

Some models excluded from observations

Even more massive NSs have been discovered later.

Conventional Model Approach

Model \rightarrow Solving TOV $\rightarrow M$ -R Curve \rightarrow Observation

[Model Independent Analysis]

Alford-Burgio-Han-Taranto-Zappala (2015)

$$\varepsilon(p) = \begin{cases} \varepsilon_{\rm NM}(p) & p < p_{\rm trans} \\ \varepsilon_{\rm NM}(p_{\rm trans}) + \Delta \varepsilon + c_{\rm QM}^{-2}(p - p_{\rm trans}) & p > p_{\rm trans} \end{cases}$$

Still relies on several scenarios...

December 9, 2021 @ online talk at S@INT seminar

algosi algosi algosi algosi algosi algosigosi algosi algosi algosi algosi algosi algosi algo

Model Independent Approach

EoS -Solving TOV -*M-R* Curve - Observation

Once one *M-R* **curve is identified, one EoS is concluded.** The best we can do is to find the "likely" *M-R* curve.

and all and all and all all and all and all and all all and a

Model Independent Approach

EoS —Solving TOV —*M*-*R* Curve — Observation

Ozel et al., Steiner et al. (2015~)

A : EoS Parameters B : M-R Observation

Normalization (Bayes' theorem)

$$P(A|B)P(B) = P(B|A)P(A)$$

Want to know Likelihood prior

Want to know

Bayesian Analysis

December 9, 2021 @ online talk at S@INT seminar

prior

Model

allow allow

Bayesian Analysis

Ozel et al., Steiner et al. (2015~)

If *B* (observation data) is abundant, the likelihood would become sharper \rightarrow the prior dependence can be reduced... but...

Raithel-Ozel-Psaltis (2017)

Mock data (SLy + Noises)

Very powerful approach but a complementary is desirable...

December 9, 2021 @ online talk at S@INT seminar

ANDER AND ANDER AND AND AND AND AND AND AND AND AND

Model Independent Approach

EoS -Solving TOV -*M*-*R* Curve - Observation

Machine Learning Inference Fujimoto-Fukushima-Murase (2018,19,20)

Several *M-R* observation points with errors $\{M_i, R_i\} \quad \{P_i\} = F(\{M_i, R_i\}) \quad \{P_i\}$ Several parameters to characterize EoS

ANDER AND ANDER AND AND AND AND AND AND AND A

Model Independent Approach

EoS -Solving TOV -*M*-*R* Curve - Observation

Fujimoto-Fukushima-Murase (2018,19,21)

EoS parametrized by speed of sound c_s^2

Convoluted with error bands (**Data Augmentation**)

Model Independent Approach

EoS -Solving TOV -*M*-*R* Curve - Observation

Machine Learning Inference

We took 14 NS data and approximated the data with 4 parameters (M, R, σ_M , σ_R , neglecting distribution shapes).

How to infer the most likely EoS?

ANDER AND ANDER AND AND AND AND AND AND AND AND AND

Machine Learning Inference

Fujimoto-Fukushima-Murase (2018,19,21)

Training Data and NN Architecture

Layer index	Neurons	Activation Function
0	56	N/A
1	60	ReLU
2	40	ReLU
3	40	ReLU
4	5	anh

[Input Layer] 14 NSs times 4 parameter $(M, R, \sigma_M, \sigma_R) = 56$ neurons [Output Layer] 5 EoS Polytropic Indices

Most Likely EoS from ML Fujimoto-Fukushima-Murase (2018,19,21)

December 9, 2021 @ online talk at S@INT seminar

Uncertainty Quantification Training data D 10^{3} γ EFT+astro Bootstrapping Pressure *p* [MeV/fm³] This work (Validation) (random sampling) This work (Bagging) Bayesian (Steiner et al.) 10^{2} Training data Training data Training data L 📜 Bayesian (Özel et al.) D \mathcal{D}_{γ} \mathcal{D}_N 10¹ Training Neural Network Neural Network Neural Network 10^{0} NN_1 NN₂ NN_N 10^{3} 10^{2} Output Energy density ε [MeV/fm³] Output Output \hat{o}_1 \hat{o}_2 \hat{o}_N Aggregating (combine all NN outputs by averaging) This is an uncertainty within **Output:** $\hat{o} = \langle \hat{o}_i \rangle$

this method, not including the uncertainty of this method. Uncertainty: $\Delta \hat{o}^2 = \langle (\hat{o}_i - \hat{o})^2 \rangle$

Most Likely EoS from ML Fujimoto-Fukushima-Murase (2018,19,21) Independently learned NNs lead to acceptable EoSs Some among 100NNs contain a 1st-order transition

1st-order transition not necessarily excluded !

Most Likely EoS from ML Fujimoto-Fukushima-Murase (2018,19,21)

Speed of sound may exceed the conformal limit (=1/3)

Is this a hint for the presence of quark matter?

Not strongly constrained in the high density region...

EoS from Deep Neural Network EoS from resummed pQCD EoS and gravitational waves

ALVA, ALVA,

At high density perturbation theory should work.

Gorda-Kurkela-Romatschke-Sappi-Vuorinen: 1807.04120

Perturbations at zero quark mass

[LO]
$$P_{(0)} = \frac{N_{\rm c}}{12\pi^2} \sum_f \mu_f^4$$

[NLO] $P_{(2)} = -\frac{\alpha_s}{4\pi} \frac{d_A}{4\pi^2} \sum_f \mu_f^4$ $(d_A = N_{\rm c}^2 - 1)$

[NNLO]

$$P_{(4)} = \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{d_A}{4\pi^2} \sum_f \mu_f^4 \left[2\beta_0 \ln \frac{\mu_i^2}{\mu_0^2} + \cdots\right]$$

Breakdown of the perturbation

Improved perturbations at zero quark mass

[NNLO]
$$P_{(4)} = \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{d_A}{4\pi^2} \sum_f \mu_f^4 \left[2\beta_0 \ln \frac{\mu_i^2}{\mu_0^2} + \cdots\right]$$

Running (Screened) Coupling

$$\alpha_s \rightarrow \alpha_s(\bar{\Lambda}/\mu_0)$$

 $\ln \frac{\mu_i^2}{\mu_0^2} \rightarrow \ln \frac{\mu_i^2}{\bar{\Lambda}^2}$

Singular log terms can be reduced by a choice of $\bar{\Lambda}^2 \sim \mu_i^2$

But...
$$\mu$$
? 2μ ? 4μ ?

Alexandre and the same all provides all provides all provides all provides all provides all provides all provid

Scale uncertainty appears from NNLO

[LO]
$$P_{(0)} = \frac{N_c}{12\pi^2} \sum_f \mu_f^4$$

[NLO] $P_{(2)} = -\frac{\alpha_s}{4\pi} \frac{d_A}{4\pi^2} \sum_f \mu_f^4$

As long as the chemical potential dependence is such simple, the EoS has no uncertainty even though α_s changes. Uncertainty appears from the NNLO only.

alera aler

pQCD not quite predictable???

December 9, 2021 @ online talk at S@INT seminar

pQCD not quite predictable???

December 9, 2021 @ online talk at S@INT seminar

Approach with resummation (one-loop of HTL/HDL prop.) Baier-Redlich: hep-ph/9908372

Zero temperature limit of HTL resummation (HDL)

Andersen-Strickland: hep-ph/0206196

HDL EoS to solve dense quark stars

If the coupling constant runs, the results depends on the scale. Besides, nontrivial scale dependence appears from the Debye mass $\alpha_s \mu_f^2$. (Log terms also appear!)

Approach with resummation (one-loop of HTL/HDL prop.)

In terms of the 2PI language:

$$\Gamma = \frac{1}{2} \operatorname{tr} \ln G^{-1} - \frac{1}{2} \operatorname{tr} \ln(1 - G_0^{-1}G) + \Gamma_2[G]$$

using the propagator with the self-energy insertion

- * Regarded as a "quasi-particle" approximation
- * Usually the thermodynamics is dominated by this alone
- * Not really a systematic expansion in the coupling

Conceptually straightforward but technically complicated especially with finite strange quark mass...

 $P_{q,f}(T,\mu_f) = \operatorname{tr} \ln G_f^{-1}$ $= \sum_{i=1}^{n} \ln \det \left[k - M_f - \Sigma(i\tilde{\omega}_n + \mu_f, k) \right]$

$$=2 \sum_{\{K\}} \int_{\{K\}} \ln\left[A_S^2(i\tilde{\omega}_n + \mu_f, k) + M_f^2 - A_0^2(i\tilde{\omega}_n + \mu_f, k)\right]$$

December 9, 2021 @ online talk at S@INT seminar

QCD Approach

ĸĊŊŗĸĿĸĊŎŊŗĸĿĸĊŎŊŗĸĿĸĊŎŊŗĸĿĸĊŎŊŗĊĔŊŗĸĿĸĊŎŊŗĸĿĸĊŎŊŗĸĿĸĊŎŊŗĸĿĸĊŎŊŗĸĿĸĊŎŊŗ

For massless pressure:

$$\frac{P_{\text{HDLpt}}}{P_{\text{ideal}}} \approx 1 - 6\frac{m_{\text{q}f}^2}{\mu_f^2} + \mathcal{O}\left(\frac{m_{\text{q}f}^4}{\mu_f^4}\right) = 1 - 4\frac{\alpha_s}{\pi} + \mathcal{O}(\alpha_s^2)$$
$$\frac{P_{\text{pQCD}}}{P_{\text{ideal}}} = 1 - 2\frac{\alpha_s}{\pi} + \mathcal{O}(\alpha_s^2)$$

This discrepancy was known since Baier-Redlich, and a correction term is necessary for order-by-order matching:

$$P_{\rm corr} = 2 \frac{\alpha_s}{\pi} P_{\rm ideal}$$

We have checked that this is negligible at high density.

Fujimoto-Fukushima: 2011.10891

Smooth continuation from the nuclear side to the quark side could be possible now! Slope change?

allow allow

Fujimoto-Fukushima: 2011.10891

For a given density the corresponding μ is pushed up by the resummation

Not so trivial because of the Debye and *s*-quark masses

Fujimoto-Fukushima: 2011.10891

In principle we should require:

 $P(\mu,\alpha_s(\bar{\Lambda}),m(\bar{\Lambda});\bar{\Lambda})~~{\rm is~independent~of~the~scale.}$

It seems to be very hard in the resummed theory... but... The scale insensitivity of the EoS is good enough!

$$\frac{\partial P(\mu_{\rm B};\bar{\Lambda})}{\partial\bar{\Lambda}} - c_s^2 \frac{\partial \varepsilon(\mu_{\rm B};\bar{\Lambda})}{\partial\bar{\Lambda}} = 0$$

Surprisingly, this approximately holds in the resummation.

allow allow

Strangeness could be quantified:

Fujimoto-Fukushima: 2011.10891

Strange quark mass runs (like α_s) and the threshold strongly depends on the scale choice...

EoS from Deep Neural Network EoS from resummed pQCD EoS and gravitational waves

Phase transition (qualitative change) to Quark Matter?

Annala-Gorda-Kurkela-Nattila-Vuorinen: 1903.09121

ALIAN ALIAN

High-T has been understood by HRG + pQCD

How to find such crossover, if any??? 1-st order phase transition might be straightforward???

Most-Papenfort-Dexheimer-Hanauske-Schramm-Stocker-Rezzolla (2018)

CMF_Q : EOS with a strong-1st PT to Quark Matter (3~4 times n_0) CMF_H : EOS without quarks

Quark matter shortens the lifetime of post-merger hypermassive neutron star. (Easier to collapse into BH.)

December 9, 2021 @ online talk at S@INT seminar

How to find such crossover, if any??? 1-st order phase transition might be straightforward???

Weih-Hanauske-Rezzola (2019)

Several different scenarios (but still a 1st-order assumed)

Finite-*T* treatment:

$$P = P_{\rm cold} + P_{\rm thermal}$$

$$\varepsilon = \varepsilon_{\rm cold} + \varepsilon_{\rm thermal}$$

$$P_{\rm thermal} \approx \rho \varepsilon_{\rm thermal} (\Gamma_{\rm th} - 1)$$

 $\Gamma_{\text{th}} = 1.75$ is fixed by hand

ARDA, ARDA, ARDA, ARDA, ARDA, ARDARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDA

Crossover also detectable? ← YES! Thermal effect?? Fujimoto-Fukushima-Kyutoku-Hotokezaka (2022)

Similar trend can be confirmed. We also checked the thermal index dependence:

For small Γ_{th} thermal pressure is not enough and the lifetime is shortened to go to BH.

For $\Gamma_{\text{th}} \sim 2$ the thermal pressure can sustain the hypermassive NS.

ALAR, ALAR

Estimation of the (*T***-dependent) thermal index Thermal effect??** Fujimoto-Fukushima-Hidaka-Hiraguchi-Iida (2021)

Van der Waals type EoS with interacting hadrons. Thermal index looks consistent with other approaches...?

Crossover also detectable? Thermal effect?? Fujimo

Fujimoto-Fukushima-Hidaka-Hiraguchi-Iida (2021)

Most probably the thermal pressure is not large (that is good!)

Summary

Deep Neural Network (DENSE Collaboration)

- □ Predicts the most likely EoS that stays close to the empirical nuclear EoS (SLy4).
- \square Codes publicized very soon...

PQCD Resummation

□ Many underestimate the predictability of pQCD at high density — resummation cures the problem better.

Gravitational wave signals?

Crossover causes detectable effects (EoS softening is important), but the thermal pressure should be carefully considered (maybe not large, fortunately).