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Crust: solid
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lattice
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O -3 Nuclear pasta

(non-spherical nuclei)

Pairing: protons and
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superfluid
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105 gcmr3 quark matter phases

Newton (2013) Nat Phys



Neutron stars in low mass X-ray binaries

companion mass < M,
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long lived stable accretion
entire crust can be replaced =>
matter fully explores the
transition from surface to core
bright X-ray sources while
accreting

or during thermonuclear flashes
(X-ray bursts)

Fy~ 1071~ 107% erg cm™ s7!

Cartoon of 4U 1820-30 (NASA)

Many are transient
we can study the neutron star in quiescence
faint sources in quiescence: requires sensitive X-ray telescope
(Chandra/XMM/Swift) F,~ 1074~ 10713 erg cm=2 s~



Accreting neutron stars as nuclear physics laboratories
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The neutron star crust is heated while it accretes
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Two things we can do with this:

1. Core temperature reflects the balance between heating and
core neutrino cooling

2. Thermal relaxation of the hot crust after the outburst probes the
low density regions



An interesting time to study neutron star interiors

Closing in on the equation of state:

* |Improved understanding of the EOS and its uncertainties near nuclear density
e >2 solar mass neutron stars

* tidal deformability constraints from LIGO

NICER radius measurements

* future moment of inertia measurement in the double pulsar

A new set of observables: many different types of transient events:
e cooling from birth
* mergers
e glitches
* magnetar outbursts (including seismology)
e cooling after accretion outbursts

An opportunity to go “beyond the EOS”, break degeneracies
e the state of matter (superfluidity)
* particle content
e transport properties



Reactions in the crust P/g (gem?)
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Heating is a non-equilibrium process,
determined by nuclear structure

1. The first electron
capture happens at
threshold, doesn’t
heat the gas

Er

E(A,2)

Er

v

E(A,Z-1)

2. Because even nuclei are
lower in energy than odd
nuclei, the Z-1 nucleus can
immediately capture to form
the Z-2 nucleus in an
excited state.

E*(A,Z-2)

E(A,Z-2)

3. The Z-2 nucleus de-excites,
releasing a gamma-ray that
heats the gas

Nuclear levels matter — e.g. capture into excited states gives much more heating
(Gupta et al. 2007) (and can lead to URCA cooling - Schatz et al. 2014)



Basic idea:

Core quickly (~1-100ky) reaches an equilibrium temperature

Observable

..............

1.58

OM)y=L,+L,

T.,/10° K

=> can infer the neutrino
&l gE luminosity

1.52
40

t [10° yr]

Colpi et al. (2001) (see also Miralde-Escudé et al. 1990; Brown et al. 1998)



L, (erg s7!)
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Model ingredient 1: Neutrino emission processes

_ n—>p+e +r,
- “Fast” e.g. direct URCA

+e¢e —->n+v
L TS P e

momentum conservation requires V. — 0.11-0.15
critical proton fraction F ' '

- “Slow” e.g. modified URCA n+n—-n+p+e +vr,
L T8

suppression factor ~ (kgT/u)* ~ 1077 at 108K

=> dramatic increase in neutrino luminosity at a particular
density/neutron star mass!



T, [10° K]

Model ingredient 2: Superfluidity

* Pairing suppresses neutrino-emitting reactions for T<Tc
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* New neutrino emission process near T~T.
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8 : 7
= = = - pure helium P ST

Model ingredient 3: Envelope composition
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For a given observed effective
temperature, the envelope composition
makes a ~ factor of 2 difference in the
inferred core temperature

Fe envelope

00 1.82
T =7.0 x 1071(( Bl )

63.1 eV

Gudmundsson, Pethick & Epstein (1983)

light element envelope

00 1.65
T =31x10" K[| —1T __
63.1 eV

Potekhin, Chabrier & Yakovlev (1997)

Potekhin, Chabrier & Yakovlev (1997)



Example of modelling results:
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See also Liu et al. (2021), Han &
Steiner (2017), Beznogov & Yakovlev
(2015)

* Use neutron star mass to move
from slow neutrino cooling to fast
cooling

* Hottest sources need light element
envelopes

* Coldest sources need fast cooling
(and iron envelope?)

* |nefficient neutron pairing at high
densities so that dURCA is allowed

* Intermediate luminosity sources =>
Transition between slow and fast
needs to be “smoothed”
(Beznogov) (by superfluidity)



Observed neutron star temperature (eV)

Crust cooling

* Along accretion outburst heats the crust significantly; afterwards it cools back

down to the core temperature

* Rutledge et al. (2002) made predictions for the cooling curves
e This has now been observed in several sources
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(+ HETE J1900.1-2455 with Te#=35 eV, Degenaar et al. 2021, more on that later)
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Time evolution of the 200 d;}’tiﬁfs‘ir Page & Reddy (2012)-
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Microphysics changes from the

outer to inner crust
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(and Turlione et al. 2015 for fits to multiple sources)



Constraint on impurity parameter

° H/He burning at the neutron I IIIIIII L IIIIIII LI I IIIIIII LI IIIIIII LIS
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Nuclear processing of the mixture leads to reduced Qimp in the inner crust
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Shchechilin, Gusakov, Chugunov 2021

* Some heavy initial compositions get stuck in a large Qimp state

(see also Jones 2005, Gupta et al. 2008, Horowitz et al. 2009, Steiner 2012)



Shallow heating

* The temperature profiles needed to match the observed cooling curves peak
at much lower densities than the location of the deep crustal heating reactions

* je. the outer crust is hot and has an inwards-directed heat flux => need a
source of “shallow heating”

e previously had been suggested to explain properties of Type | X-ray bursts

e physical origin is unknown!

What do we know about it?

* strength of the heating is typically ~ 1MeV per accreted nucleon at a depth
~10°-1010g/cm3 (but ~10 times larger in one case)

* it has to turn on and off “quickly” (~weeks?)
» strength is consistent between outbursts from the same source in some

cases, but not in others. Sources with similar looking outbursts seem to
have very different shallow heating
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Energy sources in an accreting neutron star
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Energy sources in an accreting neutron star
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GM
— =~ 200
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H/He burning
~(1-5) MeV/nuc

C burning
~0.1-0.3 MeV/nuc

shallow heating
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deep heating
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Low density nuclear reactions

e Electron captures in the outer crust
0 <03-0.5 MeV

captures into excited states
=> less energy loss to neutrinos
Gupta et al. (2007)
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> 03
S 02

o 0.1
<
0.0

. (MeV)

* Low density fusion reaction . .its et al

240 + 240 Q = 0.52 MeV
p~ 10 g cm™

oxygen ions in interstitial sites

 URCA cooling reactions associated with

odd-A nuclei => neutrino cooling

]
o=

See Meisel et al. (2018) for a review
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Schatz et al. (2014), Deibel et al. (2015, 2016)

* neutron transfer reactions involving odd-A

nuclei in outer crust

Chugunov (2019) Schatz et al. (2022)
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Horowitz et al. (2008)

* sudden release of energy rather than continuous heating? —

hyperburst Page et al. (2022)



Chemical separation changes heat transport in the ocean

composition heat
flux flux

FXI Fl

Fo_ () Ex
cpl xr) X

ocean floor

pocean ~ 108 g Cm_3T§)

(%) (%)

for steady accretion, the effective heating is
F Er AX

— ~001£=— = 0502 MeV

m m, X

EF — 5.1 MeV p91/3Y1/3 Medin & Cumming (2011)
. e

Horowitz et al. (2009), Medin & Cumming (2011, 2014, 2015), Mckinven et al. (2016), Caplan et al. (2018)



Signature of chemical separation

at early times during cooling

e After an outburst, the ocean
refreezes as the star cools down

Fconv ~ — 1025 crg cm y14

2 —1.5/4 (8t/81nX)_1

10 days

Medin & Cumming (2014)

* Inwards heat flux acts as “latent
heat”; ocean cools rapidly; large
portions of the ocean can freeze
and unfreeze; eventually returns to
the “standard” cooling curve

* Rapid redistribution of light
elements during ocean freezing:
could affect the Te#-Tp relation

* Potentially complicates
interpretation of early time data
(e.g. to measure shallow heating)
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Unexpected late time temperature increases
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Shear heating

How does matter accreting through a disk
join the star and spread over the stellar

surface?

Kinetic energy of incoming matter

1, GM MeV

—vp =—— = 100
2 2R nuc

1-10% of this would be enough to
explain the shallow heating we see

e Studies of how matter spreads suggest it
happens at low density
* Wave transport could perhaps deposit

energy deep

Inogamov & Sunyaev (2010) — gravity wave

transport in the envelope
Phillipov & Rafikov (2016) — acoustic waves from

the boundary layer

Inogamov & Sunyaev (1999)

Boundary
layer

Keplerian
Nearly solid- disk
body rotation

in interior

R R+Hp r

Piro & Bildsten (2007)



Other physics issues relevant for crust heating/cooling

* |attice distortions by impurities change the thermal conductivity,
interpretation of Qimp (Roggero & Reddy 2016)

* URCA cooling reactions (Deibel et al. 2015, Meisel et al. 2021)

* Thermal signature of the pasta layer: need a low thermal conductivity and
non-superfluid neutrons (gap closes inside crust), then you can get a late
time drop in temperature (1000’s of days) (Horowitz et al. 2015)

* The lightcurve shape at ~100 days-1 year is sensitive to physics near
neutron drip (gap model and entrainment) (Page & Reddy 2012)

* Neutron diffusion redistributes neutrons vertically in the crust (Chugunov &
Shchechilin 2020; Shchechilin, Gusakov, Chugunov 2021)



Go back to the core...

Previously we set Q(M) = Ly + Ly to constrain the core neutrino luminosity

We can also use the fact that each outburst we are depositing an energy into the
core Fdep = M At C e PV 107 erg

(determined by modelling the cooling curve)



Go back to the core...

Previously we set Q(M) = Ly + Ly to constrain the core neutrino luminosity

We can also use the fact that each outburst we are depositing an energy into the
core Fdep = M At C e PV 107 erg

(determined by modelling the cooling curve)

* Look at the response of the core to the deposited energy (calorimeter) =>
constrains the core heat capacity

AT, = Edep/C Cumming et al. (2017), Degenaar et al. (2021)

e Put a limit on the neutrino emissivity in the core: it has to be smaller than
the inwards luminosity during the accretion outburst

e.g. KS1731 ¢, ,<10% erg cm™ s7!' T¢ Cumming et al. (2017)
l.e. < ~10-4 of the dURCA rate

* |f we have multiple outbursts, can determine the neutrino luminosity:

E 2% 10% er
[, =—%°  eg. MXB 1659-29 TR £

tI‘GCllI’

~ 3x 10°* erg s7!

Brown et al. (2018)



Core heat capacity constraints

* Even with just one outburst, 108
we can put a lower limit on ; ey
th t tar heat - NS
e neutron star hea f@@@\ﬁ
capacity _ >

C >

Cc

Cumming et al. (2017)

* New measurement of HETE
J1900 has Tesf ~ 35 eV

Most constraining yet, this

source may cool further

Core Temperature 77 [K]
S

Degenaar et al. (2021)

T
Deposited Heat E [erg]



The cooling curve shape is sensitive to the envelope composition
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Joint constraints on the heat capacity and neutrino luminosity in MXB 1659-29
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Summary

* observations of accreting neutron stars address (and have stimulated a lot
of work on..) a wide range of physics issues in neutron star interiors

For core cooling

* remarkable overall agreement between the observed luminosities and
predictions from models that use deep crustal heating and slow and fast
neutrino cooling

* coldest sources consistent with direct URCA neutrino cooling; hottest
sources have slow neutrino cooling and accreted envelopes

e crust cooling curves can help to determine the envelope composition, and
open up new constraints (calorimeter)

* not clear observationally whether the colder sources are more massive

* the intermediate sources (between cold and hot) are perhaps the most puzzling
— how to “smooth” the transition between slow and fast cooling?

For crust cooling

* cooling models prefer a low impurity parameter, consistent with nuclear
processing of the mixture through neutron drip (at least for some compositions?)

* some indications for heavy envelopes (KS 1731)- does this make sense?

* shallow heating is required and not understood! How to make progress? Is it
nuclear or something else?



