Reconstructing PDFs from Mellin moments: the pion and kaon case

Martha Constantinou

Temple University

Institute for Nuclear Theory, University of Washington S @ INT seminar

June 10, 2021

Reconstructing PDFs from Mellin moments: from Lattice QCD the pion and kaon case

Martha Constantinou

Temple University

Institute for Nuclear Theory, University of Washington S @ INT seminar

June 10, 2021

Collaborators

- C. Alexandrou (Univ. of Cyprus/Cyprus Institute)
- S. Bacchio (Cyprus Institute)
- I. Cloet (Argonne National Lab)
- **K. Hadjiyiannakou**
- **G.** Koutsou
- **C.** Lauer

- (Univ. of Cyprus/Cyprus Institute)
- (Cyprus Institute)
 - (Temple University)

Collaborators

- C. Alexandrou (Univ. of Cyprus/Cyprus Institute)
- S. Bacchio (Cyprus Institute)
- I. Cloet (Argonne National Lab)
- K. Hadjiyiannakou (Univ. of Cyprus/Cyprus Institute)
- G. Koutsou (Cyprus Institute)
- C. Lauer (Temple University)

Relevant publications

- The Mellin moments (x) and (x²) for the pion and kaon from lattice QCD,
 C. Alexandrou, S. Bacchio, I. Cloet, M. Constantinou, K. Hadjiyiannakou, G. Koutsou, C. Lauer, [arXiv:2104.02247]
- The pion and kaon (x³) from lattice QCD and PDF reconstruction from Mellin moments,
 C. Alexandrou, S. Bacchio, I. Cloet, M. Constantinou, K. Hadjiyiannakou, G. Koutsou, C. Lauer,
 PRD 103, 014508 (2021), [arXiv:2010.03495]

Lattice formulation of QCD

Ideal first principle formulation of QCD (simulations starting from original Lagrangian)

Space-time discretization on a finite-size 4-D lattice

★ Serves as a regulator: UV cut-off: inverse lattice spacing IR cut-off: inverse lattice size $\int_{-\infty}^{\infty} dp \rightarrow \int_{-\pi/a}^{\pi/a} \frac{dp}{2\pi}$

Removal of regulator $\int dp F(p) \rightarrow \sum_{n}^{N_{\text{max}}} \frac{2\pi}{L} F(p_0 + \frac{2\pi n}{L})$ $L \rightarrow \infty, a \rightarrow 0$

courtesy: USQCD

Lattice formulation of QCD

Ideal first principle formulation of QCD (simulations starting from original Lagrangian)

★ Space-time discretization on a finite-size 4-D lattice

Serves as a regulator:
 UV cut-off: inverse lattice spacing
 IR cut-off: inverse lattice size

spacing
$$\int_{-\infty}^{\infty} dp \rightarrow \int_{-\pi/a}^{\pi/a} \frac{dp}{2\pi}$$

ize
$$\int dp F(p) \rightarrow \sum_{n}^{N_{\text{max}}} \frac{2\pi}{L} F(p_0 + \frac{2\pi n}{L})$$
$$L \rightarrow \infty, \quad a \rightarrow 0$$

courtesy: USQCD

★ Removal of regulator

Technical Aspects

Parameters (define cost of simulations): quark masses (aim at physical values) lattice spacing (ideally fine lattices) lattice size (need large volumes)

Discretization not unique: Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall, Mixed actions

[M. Constantinou, Plenary Lattice 2014]

[C. Alexandrou et al., PRD 102 (2020) 5, 054517]

A. Motivation

B. Mellin moments in lattice QCD

C. Reconstruction of PDFs

D. SU(3) flavor symmetry breaking

E. Summary

Pions and Kaons

- Pions and Kaons belong to the octet of Nambu-Goldstone bosons (dynamical chiral symmetry breaking (DCSB))
- ★ Mass difference between pion and kaon can help understand the interplay between QCD dynamics and quark mass effects
- **★** Experimental data only for the pion (pion induced Drell-Yan reaction) and for the limited region $x \in [0.21 0.99]$ [J. S. Conway et al., PRD 39, 92 (1989)]

★ Contradictory conclusions on the large-x behavior of pion PDF:

- initial E615 data show a $(1 x)^1$ behavior
- reanalysis of E615 data shows a $(1 x)^2$ fall [R. Holt et al., RMP 82, 2991 (2010)], [M. Aicher et al., PRL 105, 252003 (2010)]
- **DSE predict** $(1 x)^2$ fall [K. Bednar et al. PRL 124, 042002 (2020)]
- ★ Lattice QCD calculations using non-local operators do not reach to a consensus [M. Constantinou, EPJA 57, 77 (2021), arXiv:2010.02445]

EIC will address pion and kaon structure [EIC Yellow Report, arXiv:2103.05419], [Aguilar et al., EPJA 55, 190 (2019)]

Hadron Structure

Structure of hadrons explored in high-energy scattering processes

Collisions @ EIC

Due to asymptotic freedom, e.g.

$$\sigma_{\text{DIS}}(x,Q^2) = \sum_i \left[H^i_{\text{DIS}} \otimes f_i \right](x,Q^2)$$

$$\left[a \otimes b\right](x) \equiv \int_{x}^{1} \frac{d\xi}{\xi} a\left(\frac{x}{\xi}\right) b(\xi)$$

Hadron Structure

Structure of hadrons explored in high-energy scattering processes

Collisions @ EIC

Due to asymptotic freedom, e.g.

$$\sigma_{\text{DIS}}(x, Q^2) = \sum_{i} \left[H^i_{\text{DIS}} \otimes f_i \right](x, Q^2) \qquad [a \otimes b](x) \equiv \int_x^1 \frac{d\xi}{\xi} a\left(\frac{x}{\xi}\right) b(\xi)$$
Perturb. part
(process dependent) Non-Perturb. part
(process "independent")

Hadron Structure

Collisions @ EIC

low Q² cont. (N³LO) DIS jets (NLO) eavy Quarkonia (NLO) ts/shapes (NNLO+res)

 $\equiv \alpha_{e}(M_{z}^{2}) = 0.1179 \pm 0.0010$

O [GeV]

0.25

ζ²(Q²)

Non perturb. part provides information on partonic structure of hadrons

★ DFs parameterized in terms of off-forward matrix elements of non-local light-cone operators (Not accessible on Euclidean lattice)

[R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]

$$F_{\Gamma}(x,\xi,q^2) = \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix\lambda} \langle p' | \bar{\psi}(-\lambda n/2) \mathcal{O} \underbrace{\mathcal{P}e^{ig \int_{-\lambda/2}^{\lambda/2} d\alpha n \cdot A(n\alpha)}}_{\text{gauge invariance}} \psi(\lambda n/2) | p \rangle$$

q=p'-p, $ar{P}=(p'+p)/2$, n: light-cone vector ($ar{P}.n=1$), $\xi=-n\cdot\Delta/2$

★ DFs parameterized in terms of off-forward matrix elements of non-local light-cone operators (Not accessible on Euclidean lattice)

[R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]

$$F_{\Gamma}(x,\xi,q^2) = \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix\lambda} \langle p' | \bar{\psi}(-\lambda n/2) \mathcal{O} \underbrace{\mathcal{P}e^{ig \int \int d\alpha n \cdot A(n\alpha)}}_{\text{gauge invariance}} \psi(\lambda n/2) | p \rangle$$

q=p'-p, $ar{P}=(p'+p)/2$, n: light-cone vector ($ar{P}.n=1$), $\xi=-n\cdot\Delta/2$

Their Mellin moments with respect to x can be accessed in LQCD, e.g.,

$$\langle x^n \rangle = \int_{-1}^{+1} x^n f(x) \, dx$$

 Reconstruction of the light-cone counterpart via OPE, but not realistic: operator mixing gauge noise

★ DFs parameterized in terms of off-forward matrix elements of non-local light-cone operators (Not accessible on Euclidean lattice)

[R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]

$$F_{\Gamma}(x,\xi,q^2) = \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix\lambda} \langle p' | \bar{\psi}(-\lambda n/2) \mathcal{O} \underbrace{\mathcal{P}e^{ig \int \int d\alpha n \cdot A(n\alpha)}}_{\text{gauge invariance}} \psi(\lambda n/2) | p \rangle$$

gauge invariance

q=p'-p, $ar{P}=(p'+p)/2$, n: light-cone vector ($ar{P}.n=1$), $\xi=-n\cdot\Delta/2$

Their Mellin moments with respect to x can be accessed in LQCD, e.g.,

$$\langle x^n \rangle = \int_{-1}^{+1} x^n f(x) \, dx$$

 Reconstruction of the light-cone counterpart via OPE, but not realistic: operator mixing gauge noise

★ DFs parameterized in terms of off-forward matrix elements of non-local light-cone operators (Not accessible on Euclidean lattice)

[R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]

$$F_{\Gamma}(x,\xi,q^2) = \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix\lambda} \langle p' | \bar{\psi}(-\lambda n/2) \mathcal{O} \underbrace{\mathcal{P}e^{ig \int_{-\lambda/2}^{\lambda/2} d\alpha n \cdot A(n\alpha)}}_{\text{gauge invariance}} \psi(\lambda n/2) | p \rangle$$

gauge invariance

q=p'-p, $ar{P}=(p'+p)/2$, n: light-cone vector ($ar{P}.n=1$), $\xi=-n\cdot\Delta/2$

Their Mellin moments with respect to x can be accessed in LQCD, e.g.,

$$\langle x^n \rangle = \int_{-1}^{+1} x^n f(x) \, dx$$

 Reconstruction of the light-cone counterpart via OPE, but not realistic: operator mixing gauge noise

★ Mellin moments have physical interpretation: spin, mass, ...

More on the PDF reconstruction

- **★** Reconstruction of the light-cone PDFs not realistic?
 - increased statistical noise for high moments
 - operator mixing
 - need for boosted frame for $\langle x^2 \rangle$ and higher to avoid mixing

More on the PDF reconstruction

- **★** Reconstruction of the light-cone PDFs *not realistic?*
 - increased statistical noise for high moments
 - operator mixing
 - need for boosted frame for $\langle x^2 \rangle$ and higher to avoid mixing
- Indeed studies on "old" data have uncontrolled uncertainties (quenched, contain mixing, pert. renormalization ...)
- **Early attempts for reconstruction inconclusive** [W. Detmold et al., EPJ direct 3 (2001) 1], [R. Holt et al., RMP 82, 2991 (2010)]

More on the PDF reconstruction

- **Reconstruction of the light-cone PDFs** *not realistic?*
 - increased statistical noise for high moments
 - operator mixing
 - need for boosted frame for $\langle x^2 \rangle$ and higher to avoid mixing
- Indeed studies on "old" data have uncontrolled uncertainties (quenched, contain mixing, pert. renormalization ...)
- **Early attempts for reconstruction inconclusive** [W. Detmold et al., EPJ direct 3 (2001) 1], [B. Holt et al., BMP 82, 2991 (2010)]

***** No recent lattice QCD results for high moments using local operators

Reference	Method Renor		orm.	n n	nixing	m	$n_{\pi} (MeV)$		N_f	$\langle x^3 \rangle^u_\pi$ (2GeV)	initial scale
This work Ref. [5] Ref. [41] Ref. [7]	local opera local opera local opera local opera	tor non-p tor pertu ator pertu ator non-p	non-perturb. perturb. perturb. non-perturb.		not present present present present		260 chiral extrap. chiral extrap. chiral extrap.		$2+1+1 \\ 0 \\ 0 \\ 2$	$\begin{array}{c} 0.024(18) \\ 0.051(21) \\ 0.046(16) \\ 0.074(10) \end{array}$	2 GeV 2.4 GeV 2.4 GeV 2 GeV
Reference This work	Method local operator	Renorm.	mixing n		m_{π} (Me)	V)	N_f 2+1+1	$\langle x^3 \rangle$	$_{K}^{4}$ (2GeV) 33(6)	$\begin{vmatrix} \langle x^3 \rangle_K^s & (2 \text{GeV}) \\ 0.073(5) \end{vmatrix}$	initial scale 2 GeV

[5]. C. Best et al., PRD 56, 2743 (1997)

[41]. W. Detmold et al., PRD 68, 034025 (2003)

[7]. D. Brommel, Ph.D. thesis (2007)

★ Calculation of matrix elements with appropriate operators for the quantities under study (e.g., vector)

 $C^{2pt} = \langle M | M \rangle \qquad C^{3pt}_{\Gamma} = \langle M | \overline{q} \Gamma q | M \rangle$

★ Calculation of matrix elements with appropriate operators for the quantities under study (e.g., vector)

 $C^{2pt} = \langle M | M \rangle \qquad C_{\Gamma}^{3pt} = \langle M | \overline{q} \Gamma q | M \rangle$

Construction of ratios and identification of ground state

forward limit:

★ Calculation of matrix elements with appropriate operators for the quantities under study (e.g., vector)

 $C^{2pt} = \langle M | M \rangle \qquad C^{3pt}_{\Gamma} = \langle M | \overline{q} \Gamma q | M \rangle$

forward limit:

★ Calculation of matrix elements with appropriate operators for the quantities under study (e.g., vector)

 $C^{2pt} = \langle M | M \rangle \qquad C_{\Gamma}^{3pt} = \langle M | \overline{q} \Gamma q | M \rangle$

 $\Pi^R_{\Gamma} = Z \Pi_{\Gamma}$

★ Calculation of matrix elements with appropriate operators for the quantities under study (e.g., vector)

 $C^{2pt} = \langle M | M \rangle \qquad C_{\Gamma}^{3pt} = \langle M | \overline{q} \Gamma q | M \rangle$

Renormalization if multiplicative:

 $\Pi^R_{\Gamma} = Z \Pi_{\Gamma}$

Kinematic factors based on symmetry properties

Euclidean space:

 $\langle M(p') | \overline{q} \gamma^{\{\mu} D^{\nu\}} q | M(p) \rangle = C \left[2P^{\{\mu} P^{\nu\}} A_{20} + 2\Delta^{\{\mu} \Delta^{\nu\}} B_{20} \right]$

 $\langle M(p') | \overline{q} \gamma^{\{\mu} D^{\nu} D^{\rho\}} q | M(p) \rangle = C \left[2i P^{\{\mu} P^{\nu} P^{\rho\}} A_{30} + 2i \Delta^{\{\mu} \Delta^{\nu} P^{\rho\}} B_{30} \right]$

 $\left\langle M(p') \left| \overline{q} \gamma^{\{\mu} D^{\nu} D^{\rho} D^{\sigma\}} q \left| M(p) \right\rangle = C \left[-2P^{\{\mu} P^{\nu} P^{\rho} P^{\sigma\}} A_{40} - 2\Delta^{\{\mu} \Delta^{\nu} P^{\rho} P^{\sigma\}} B_{40} - 2\Delta^{\{\mu} \Delta^{\nu} \Delta^{\rho} \Delta^{\sigma\}} C_{40} \right] \right\}$

Euclidean space:

 $\langle M(p') \,|\, \overline{q} \gamma^{\{\mu} D^{\nu\}} q \,|\, M(p) \rangle = C \,\left[2P^{\{\mu} P^{\nu\}} A_{20} + 2\Delta^{\{\mu} \Delta^{\nu\}} B_{20} \right]$

 $\langle M(p') | \overline{q} \gamma^{\{\mu} D^{\nu} D^{\rho\}} q | M(p) \rangle = C \left[2i P^{\{\mu} P^{\nu} P^{\rho\}} A_{30} + 2i \Delta^{\{\mu} \Delta^{\nu} P^{\rho\}} B_{30} \right]$

 $\left\langle M(p') \left| \overline{q} \gamma^{\{\mu} D^{\nu} D^{\rho} D^{\sigma\}} q \left| M(p) \right\rangle = C \left[-2P^{\{\mu} P^{\nu} P^{\rho} P^{\sigma\}} A_{40} - 2\Delta^{\{\mu} \Delta^{\nu} P^{\rho} P^{\sigma\}} B_{40} - 2\Delta^{\{\mu} \Delta^{\nu} \Delta^{\rho} \Delta^{\sigma\}} C_{40} \right] \right\}$

Forward limit (avoiding mixing)

$$\langle M(p) | \overline{q} \gamma^{\{0} D^{0\}} q | M(p) \rangle = \frac{1}{4E_M(p)} \left(m_M^2 - 4E_M^2(p) \right) \langle x \rangle_M^q$$

$$\langle M(p) | \overline{q} \gamma^\mu D^\nu D^4 q | M(p) \rangle = -p_\mu p_\nu \langle x^2 \rangle_M^q \qquad \mu \neq \nu \neq \rho \neq \mu$$

$$\langle M(p) | \overline{q} \gamma^\mu D^\nu D^\rho D^4 q | M(p) \rangle = -i p^\mu p^\nu p^\rho \langle x^3 \rangle_M^q \qquad \mu, \nu, \rho : 1, 2, 3$$

Euclidean space:

 $\langle M(p') \,|\, \overline{q} \gamma^{\{\mu} D^{\nu\}} q \,|\, M(p) \rangle = C \,\left[2P^{\{\mu} P^{\nu\}} A_{20} + 2\Delta^{\{\mu} \Delta^{\nu\}} B_{20} \right]$

 $\langle M(p') | \overline{q} \gamma^{\{\mu} D^{\nu} D^{\rho\}} q | M(p) \rangle = C \left[2i P^{\{\mu} P^{\nu} P^{\rho\}} A_{30} + 2i \Delta^{\{\mu} \Delta^{\nu} P^{\rho\}} B_{30} \right]$

 $\left\langle M(p') \left| \overline{q} \gamma^{\{\mu} D^{\nu} D^{\rho} D^{\sigma\}} q \left| M(p) \right\rangle = C \left[-2P^{\{\mu} P^{\nu} P^{\rho} P^{\sigma\}} A_{40} - 2\Delta^{\{\mu} \Delta^{\nu} P^{\rho} P^{\sigma\}} B_{40} - 2\Delta^{\{\mu} \Delta^{\nu} \Delta^{\rho} \Delta^{\sigma\}} C_{40} \right] \right\}$

Forward limit (avoiding mixing)

$$\langle M(p) | \overline{q} \gamma^{\{0} D^{0\}} q | M(p) \rangle = \frac{1}{4E_{M}(p)} \left(m_{M}^{2} - 4E_{M}^{2}(p) \right) \langle x \rangle_{M}^{q}$$
Boosted
frame
$$\begin{cases} \langle M(p) | \overline{q} \gamma^{\mu} D^{\nu} D^{4} q | M(p) \rangle = -p_{\mu} p_{\nu} \langle x^{2} \rangle_{M}^{q} \qquad \mu \neq \nu \neq \rho \neq \mu \\ \langle M(p) | \overline{q} \gamma^{\mu} D^{\nu} D^{\rho} D^{4} q | M(p) \rangle = -i p^{\mu} p^{\nu} p^{\rho} \langle x^{3} \rangle_{M}^{q} \qquad \mu, \nu, \rho : 1, 2, 3 \end{cases}$$

Euclidean space:

 $\langle M(p') \,|\, \overline{q} \gamma^{\{\mu} D^{\nu\}} q \,|\, M(p) \rangle = C \,\left[2P^{\{\mu} P^{\nu\}} A_{20} + 2\Delta^{\{\mu} \Delta^{\nu\}} B_{20} \right]$

 $\langle M(p') | \overline{q} \gamma^{\{\mu} D^{\nu} D^{\rho\}} q | M(p) \rangle = C \left[2i P^{\{\mu} P^{\nu} P^{\rho\}} A_{30} + 2i \Delta^{\{\mu} \Delta^{\nu} P^{\rho\}} B_{30} \right]$

 $\left\langle M(p') \left| \overline{q} \gamma^{\{\mu} D^{\nu} D^{\rho} D^{\sigma\}} q \left| M(p) \right\rangle = C \left[-2P^{\{\mu} P^{\nu} P^{\rho} P^{\sigma\}} A_{40} - 2\Delta^{\{\mu} \Delta^{\nu} P^{\rho} P^{\sigma\}} B_{40} - 2\Delta^{\{\mu} \Delta^{\nu} \Delta^{\rho} \Delta^{\sigma\}} C_{40} \right] \right\}$

Forward limit (avoiding mixing)

$$\langle M(p) | \overline{q} \gamma^{\{0} D^{0\}} q | M(p) \rangle = \frac{1}{4E_M(p)} \left(m_M^2 - 4E_M^2(p) \right) \langle x \rangle_M^q$$

Boosted frame
$$\begin{cases} \langle M(p) | \overline{q} \gamma^\mu D^\nu D^4 q | M(p) \rangle = -p_\mu p_\nu \langle x^2 \rangle_M^q & \mu \neq \nu \neq \rho \neq \mu \\ \langle M(p) | \overline{q} \gamma^\mu D^\nu D^\rho D^4 q | M(p) \rangle = -i p^\mu p^\nu p^\rho \langle x^3 \rangle_M^q & \mu, \nu, \rho : 1, 2, 3 \end{cases}$$

★ Avoiding mixing increases the computational cost!

Technical Aspects

★ Nf=2+1+1 twisted mass fermions & clover term

Ensemble parameters:

'דנ'

Pion mass:	260 MeV
Kaon mass:	530 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

\star Kinematical setup:

$ec{p}$	$T_{ m sink}/a$	$N_{ m confs}$	$N_{ m src}$	Total statistics	
$(0,\!0,\!0)$	12,14,16,18,20,24	122	16	$1,\!952$	
$(\pm 1,\pm 1,\pm 1)$	12	122	16	$15,\!616$	
$(\pm 1,\pm 1,\pm 1)$	14, 16, 18	122	72	$70,\!272$	

★ Excited states: single-state & two-state fits

Technical Aspects

★ Nf=2+1+1 twisted mass fermions & clover term

Ensemble parameters:

T

Pion mass:	260 MeV
Kaon mass:	530 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

★ Kinematical setup:

$ec{p}$	$T_{ m sink}/a$	$N_{ m confs}$	$N_{ m src}$	Total statistics	
$(0,\!0,\!0)$	12, 14, 16, 18, 20, 24	122	16	$1,\!952$	
$(\pm 1,\pm 1,\pm 1)$	12	122	16	$15,\!616$	
$(\pm 1,\pm 1,\pm 1)$	14,16,18	122	72	$70,\!272$	

★ Excited states: single-state & two-state fits

Rest frame: signal constant with Tsink increase

[Lepage, "The Analysis of Algorithms for Lattice Field Theory" **(1989)]**

Boosted frame: signal decays with Tsink increase

Non-perturbative Renormalization

 $\bigstar \qquad \textbf{RI' scheme (democratic momenta)} \\ Z_q^{-1} Z_{\mathcal{O}} \frac{1}{12} \text{Tr} \left[\Gamma_{\mathcal{O}}^L(p) \left(\Gamma_{\mathcal{O}}^{\text{Born}}(p) \right)^{-1} \right] \Big|_{p^2 = \mu_0^2} = 1 \\ Z_q = \frac{1}{12} \text{Tr} \left[(S^L(p))^{-1} S^{\text{Born}}(p) \right] \Big|_{p^2 = \mu_0^2} \\ (ap) \equiv 2\pi \left(\frac{n_t}{L_t} + \frac{1}{2L_t}, \frac{n_x}{L_s}, \frac{n_x}{L_s}, \frac{n_x}{L_s} \right) \qquad \tilde{\sum}_i p_i^4 / (\sum_i p_i^2)^2 < 0.3 \end{cases}$

[M. Constantinou et al., JHEP 08, 068 (2010), arXiv:1004.1115]

★ Chiral extrapolation (negligible)

	$\beta = 1.726, \ a = 0.09$	3 fm
$a\mu$	am_{PS}	lattice size
0.0060	0.1680	$24^3 \times 48$
0.0080	0.1916	$24^3 \times 48$
0.0100	0.2129	$24^3 \times 48$
0.0115	0.2293	$24^3 \times 48$
0.0130	0.2432	$24^3 \times 48$

- **★** Subtraction of $\mathcal{O}(g^2 a^{\infty})$
 - [M. Constantinou et al., PRD 91, 014502 (2015), arXiv:1408.6047]
- ★ Conversion & evolution to $\overline{MS}(2 \text{ GeV})$

$$Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(a\mu_0) = Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2\,\mathrm{GeV}) + Z_{\mathcal{O}}^{(1)} \cdot (a\,\mu_0)^2$$

Recapitulation

★ Matrix elements of pion and kaon coupled with local operators

\star Isolation of ground state

★ Renormalization

★ Extraction of Mellin moments

Mellin Moments

Excited-states contamination

Rest frame

★ Signal does not decay with Tsink increase in rest frame

[G. P. Lepage, "The Analysis of Algorithms for Lattice Field Theory" (1989)]

- **★** Excited-states contamination sizable in $\langle x \rangle$
- ★ Convergence found for Tsink > 1.65 fm

Excited-states contamination

Rest frame

★ Signal does not decay with Tsink increase in rest frame

[G. P. Lepage, "The Analysis of Algorithms for Lattice Field Theory" (1989)]

★ Excited-states contamination sizable in $\langle x \rangle$

★ Convergence found for Tsink > 1.65 fm

t_s/a	$\langle x \rangle_{u^+}^{\pi}$	$\langle x \rangle_u^k$	$\langle x \rangle_s^k$
12	0.309(3)	0.278(2)	0.339(2)
14	0.287(3)	0.264(2)	0.330(2)
16	0.275(3)	0.257(2)	0.325(2)
18	0.267(3)	0.252(2)	0.322(2)
20	0.261(4)	0.248(2)	0.319(2)
24	0.255(4)	0.244(3)	0.316(2)
2-state (a)	0.261(3)	0.246(2)	0.317(2)
2-state (b)	0.262(4)	0.246(2)	0.317(2)

Excited-states contamination

Rest frame

★ Signal does not decay with Tsink increase in rest frame

[G. P. Lepage, "The Analysis of Algorithms for Lattice Field Theory" (1989)]

★ Excited-states contamination sizable in $\langle x \rangle$

★ Convergence found for Tsink > 1.65 fm

t_s/a	$\langle x \rangle_{u^+}^{\pi}$	$\langle x \rangle_u^k$	$\langle x \rangle_s^k$
12	0.309(3)	0.278(2)	0.339(2)
14	0.287(3)	0.264(2)	0.330(2)
16	0.275(3)	0.257(2)	0.325(2)
18	0.267(3)	0.252(2)	0.322(2)
20	0.261(4)	0.248(2)	0.319(2)
24	0.255(4)	0.244(3)	0.316(2)
2-state (a)	0.261(3)	0.246(2)	0.317(2)
2-state (b)	0.262(4)	0.246(2)	0.317(2)

Rest frame vs boosted frame

- Signal decays with Tsink increase
- Excited-states effects comparable to statistical uncertainties
- Results compatible between the two frames

Rest frame vs boosted frame

- Signal decays with Tsink increase
- Excited-states effects comparable to statistical uncertainties
- Results compatible between the two frames

Conclusions:

- **T**sink between 1.3 1.7 fm sufficient to capture excited-states effects
- **★** Momentum boost $\overrightarrow{p} = 2\pi/L(\pm 1, \pm 1, \pm 1)$ gives reasonable signal

Rest frame vs boosted frame

- Signal decays with Tsink increase
- Excited-states effects comparable to statistical uncertainties
- Results compatible between the two frames

Conclusions:

'זנ'

- **T**sink between 1.3 1.7 fm sufficient to capture excited-states effects
- **★** Momentum boost $\vec{p} = 2\pi/L(\pm 1, \pm 1, \pm 1)$ gives reasonable signal

Calculations of $\langle x^2 \rangle$ and $\langle x^3 \rangle$ can be combined without increase in computational cost

Pion			
t_s/a	$\langle x^2 \rangle^u_\pi$	$\langle x^3 \rangle^u_\pi$	
12	0.110(6)	0.026(17)	
14	0.114(5)	0.031(15)	
16	0.105(9)	0.025(23)	
18	0.099(15)	0.026(39)	
2-state	0.110(7)	0.024(18)	

Kaon

t_s/a	$\langle x^2 \rangle_K^u$	$\langle x^2 \rangle_K^s$	$\langle x^3 \rangle_K^u$	$\langle x^3 \rangle^s_K$
12	0.101(2)	0.146(2)	0.043(7)	00.079(6)
14	0.099(2)	0.142(2)	0.042(4)	0.077(3)
16	0.096(2)	0.139(2)	0.037(6)	0.077(5)
18	0.095(3)	0.138(3)	0.032(11)	0.075(8)
-state	0.096(2)	0.139(2)	0.033(6)	0.073(5)

★ Excited-states contamination not as prominent as for $\langle x \rangle$

★ Effect of excited states non negligible for PDF analysis

Т

- **★** Expected decay as Mellin moment increases
- ★ Up contribution to pion and kaon is similar
- **Strange contribution to kaon dominant**

- **★** Expected decay as Mellin moment increases
- ★ Up contribution to pion and kaon is similar
- **Strange contribution to kaon dominant**

What can we learn for PDFs from their moments

0.8

- **±** Expected decay as Mellin moment increases
- **W** Up contribution to pion and kaon is similar
- **Strange contribution to kaon dominant**

What can we learn for **PDFs from their moments**

諅

Ī

3

2

n

- **★** Expected decay as Mellin moment increases
- ★ Up contribution to pion and kaon is similar
- **Strange contribution to kaon dominant**

What can we learn for PDFs from their moments

 $\star \text{ Larger moments have support at higher x}$ $\cdot \langle x^2 \rangle_{\pi}^{u} \sim 20 - 40 \% \langle x \rangle_{\pi}^{u} \qquad \langle x^3 \rangle_{\pi}^{u} \sim 5 - 20 \% \langle x \rangle_{\pi}^{u}$ $\cdot \langle x^2 \rangle_{K}^{u} \sim 35 - 40 \% \langle x \rangle_{K}^{u} \qquad \langle x^3 \rangle_{K}^{u} \sim 10 - 15 \% \langle x \rangle_{K}^{u}$ $\cdot \langle x^2 \rangle_{K}^{s} \sim 40 - 45 \% \langle x \rangle_{K}^{s} \qquad \langle x^3 \rangle_{K}^{s} \sim 20 - 25 \% \langle x \rangle_{K}^{s}$ What can we learn forSU(3) flavor symmetry breaking

 $\pi^{\mathbf{u}}$

K^u K^s

1.0

0.8

×> 0.6 ∧ 0.4

0.2

0.0

1

SU(3) flavor symmetry breaking

- ★ Shape of up-quark pion and kaon PDFs expected to be similar
- **Strange-quark kaon expected to have support at higher-x than up-quark**

A Qualitative picture confirms expectations from quark mass effects

SU(3) flavor symmetry breaking

- ★ Shape of up-quark pion and kaon PDFs expected to be similar
- **Strange-quark kaon expected to have support at higher-x than up-quark**

A Qualitative picture confirms expectations from quark mass effects

Recapitulation

$$\langle x \rangle_{\pi^+}^u = 0.261(3)(6) \qquad \langle x^2 \rangle_{\pi^+}^u = 0.110(7)(12) \qquad \langle x^3 \rangle_{\pi^+}^u = 0.024(18)(2)$$

$$\langle x \rangle_{K^+}^u = 0.246(2)(2) \qquad \langle x^2 \rangle_{K^+}^u = 0.096(2)(2) \qquad \langle x^3 \rangle_{K^+}^u = 0.033(6)(1)$$

$$\langle x \rangle_{K^+}^s = 0.317(2)(1) \qquad \langle x^2 \rangle_{K^+}^s = 0.139(2)(1) \qquad \langle x^3 \rangle_{K^+}^s = 0.073(5)(2)$$

Recapitulation

PDF reconstruction

$$q_M^f(x) = N x^{\alpha} (1-x)^{\beta} (1+\rho\sqrt{x+\gamma x})$$

N = --

$$V = \frac{1}{B(\alpha + 1, \beta + 1) + \gamma B(2 + \alpha, \beta + 1)}$$

1

$$\langle x^n \rangle = \frac{\left(\prod_{i=1}^n (i+\alpha)\right) \left(n+2+\alpha+\beta+(i+1+\alpha)\gamma\right)}{\left(\prod_{i=1}^n (i+2+\alpha+\beta)\right) \left(2+\alpha+\beta+(1+\alpha)\gamma\right)}, \quad n > 0$$

$$q_{M}^{f}(x) = Nx^{\alpha}(1-x)^{\beta}(1+\rho\sqrt{x}+\gamma x)$$

$$N = \frac{1}{B(\alpha+1,\beta+1)+\gamma B(2+\alpha,\beta+1)}$$

$$\langle x^{n} \rangle = \frac{\left(\prod_{i=1}^{n}(i+\alpha)\right)\left(n+2+\alpha+\beta+(i+1+\alpha)\gamma\right)}{\left(\prod_{i=1}^{n}(i+2+\alpha+\beta)\right)\left(2+\alpha+\beta+(1+\alpha)\gamma\right)}, \quad n > 0$$
Lattice data

$$q_{M}^{f}(x) = Nx^{\alpha}(1-x)^{\beta}(1+\rho\sqrt{x}+\gamma x)$$

$$N = \frac{1}{B(\alpha+1,\beta+1)+\gamma B(2+\alpha,\beta+1)}$$

$$\langle x^{n} \rangle = \frac{\left(\prod_{i=1}^{n}(i+\alpha)\right)\left(n+2+\alpha+\beta+(i+1+\alpha)\gamma\right)}{\left(\prod_{i=1}^{n}(i+2+\alpha+\beta)\right)\left(2+\alpha+\beta+(1+\alpha)\gamma\right)}, \quad n > 0$$
Lattice data

$\overline{\text{MS}}(5.2\,\text{GeV})$

fit type	$lpha_\pi^u$	eta_π^u	γ^u_π
2-parameter 3-parameter	-0.04(20) -0.54(22)	2.23(65) 2.76(64)	0 22.17(17.87)
fit type	$lpha_K^u$	eta_K^u	γ^u_K
2-parameter 3-parameter	-0.05(7) -0.56(72)	2.42(24) 3.01(23)	0 25.11(5.23)
fit type	$lpha_K^s$	eta_K^s	γ^s_K
2-parameter 3-parameter	$0.21(8) \\ 0.18(95)$	2.13(20) 2.051(3.46)	$0 \\ 0.347(16.10)$

$$q_{M}^{f}(x) = Nx^{\alpha}(1-x)^{\beta}(1+\rho\sqrt{x}+\gamma x)$$

$$N = \frac{1}{B(\alpha+1,\beta+1)+\gamma B(2+\alpha,\beta+1)}$$

$$\langle x^{n} \rangle = \frac{\left(\prod_{i=1}^{n}(i+\alpha)\right)\left(n+2+\alpha+\beta+(i+1+\alpha)\gamma\right)}{\left(\prod_{i=1}^{n}(i+2+\alpha+\beta)\right)\left(2+\alpha+\beta+(1+\alpha)\gamma\right)}, \quad n > 0$$
Lattice data

$\overline{\text{MS}}(5.2\,\text{GeV})$

fit type	$lpha_\pi^u$	eta^u_π	γ^u_π
2-parameter	-0.04(20)	2.23(65)	0
3-parameter	-0.54(22)	2.76(64)	22.17(17.87)
fit type	$lpha_K^u$	eta_K^u	γ^u_K
2-parameter	-0.05(7)	2.42(24)	0
3-parameter	-0.56(72)	3.01(23)	25.11(5.23)
fit type	$lpha_K^s$	eta_K^s	γ^s_K
2-parameter	0.21(8)	2.13(20)	0
3-parameter	0.18(95)	2.051(3.46)	0.347(16.10)

- ★ 3-parameter fit not very stable
- $\star \beta$ governs large-*x* behavior
- **★** Lattice data favor $(1 x)^2$ decay

PDFs dependence on fits

PDFs dependence on fits

- **★** Estimating γ is competing with other parameters (information up to $\langle x^3 \rangle$)
- ★ PDFs shape compatible for both fits

T

★ 2-parameter fit has smaller uncertainties

Excited-states effects

\star Excited-states effect more prominent for $\langle x \rangle$

Excited-states effects

\star Excited-states effect more prominent for $\langle x \rangle$

Small-x region insensitive to excited-states effects

י<u>ד</u>י

- ★ Large-x region: 2-state fit higher than small Tsink values
- Peak: susceptible to excited-states effect
 (Elimination of excited states bring the peak to the expected value)

How much information do higher moments contain?

How much information do higher moments contain?

How much information do higher moments contain?

JAM PDF reconstructed correctly using the first 3 nontrivial moments

How much information do higher moments contain?

T

How much information do higher moments contain?

How much information do higher moments contain? \star

SU(3) flavor symmetry breaking

SU(3) flavor symmetry breaking

- ★ Up-quark seems to have a similar role in pion and kaon. $xq_{\pi}^{u}(x)$ compatible with $xq_{K}^{u}(x)$ (small difference in $x \in [0.45 - 0.55]$)
- **★** Up-quark contribution support at small and intermediate x. Peak of $xq_{\pi}^{u}(x)$ and $xq_{K}^{u}(x)$ around x = 0.3
- **★** Strange-quark contribution support at intermediate and large x. Peak of $xq_K^s(x)$ around x = 0.36

x-dependent PDFs from lattice QCD

★ Alternative approaches proposed, e.g.:

Hadronic tensor Auxiliary scalar quark Fictitious heavy quark Auxiliary scalar quark Higher moments Quasi-distributions (LaMET) Compton amplitude and OPE Pseudo-distributions Good lattice cross sections

- [K.F. Liu, S.J. Dong, PRL 72 (1994) 1790, K.F. Liu, PoS(LATTICE 2015) 115]
- [U. Aglietti et al., Phys. Lett. B441, 371 (1998), arXiv:hep-ph/9806277]
- [W. Detmold, C. J. D, Lin, Phys. Rev. D73, 014501 (2006)]
- [V. Braun & D. Mueller, Eur. Phys. J. C55, 349 (2008), arXiv:0709.1348]
- [Z. Davoudi, M. Savage, Phys. Rev. D86, 054505 (2012)]
- [X. Ji, PRL 110 (2013) 262002, arXiv:1305.1539; Sci. China PPMA. 57, 1407 (2014)]
- [A. Chambers et al. (QCDSF), PRL 118, 242001 (2017), arXiv:1703.01153]
- [A. Radyushkin, Phys. Rev. D 96, 034025 (2017), arXiv:1705.01488]
- [Y-Q Ma & J. Qiu, Phys. Rev. Lett. 120, 022003 (2018), arXiv:1709.03018]

x-dependent PDFs from lattice QCD

★ Alternative approaches proposed, e.g.:

Hadronic tensor Auxiliary scalar quark Fictitious heavy quark Auxiliary scalar quark Higher moments Quasi-distributions (LaMET) Compton amplitude and OPE Pseudo-distributions Good lattice cross sections

[K.F. Liu, S.J. Dong, PRL 72 (1994) 1790, K.F. Liu, PoS(LATTICE 2015) 115]

- [U. Aglietti et al., Phys. Lett. B441, 371 (1998), arXiv:hep-ph/9806277]
- [W. Detmold, C. J. D, Lin, Phys. Rev. D73, 014501 (2006)]

[V. Braun & D. Mueller, Eur. Phys. J. C55, 349 (2008), arXiv:0709.1348]

- [Z. Davoudi, M. Savage, Phys. Rev. D86, 054505 (2012)]
- [X. Ji, PRL 110 (2013) 262002, arXiv:1305.1539; Sci. China PPMA. 57, 1407 (2014)]
- [A. Chambers et al. (QCDSF), PRL 118, 242001 (2017), arXiv:1703.01153]
- [A. Radyushkin, Phys. Rev. D 96, 034025 (2017), arXiv:1705.01488]
- [Y-Q Ma & J. Qiu, Phys. Rev. Lett. 120, 022003 (2018), arXiv:1709.03018]

Eur. Phys. J. A (2021) 57:77 https://doi.org/10.1140/epja/s10050-021-00353-7 THE EUROPEAN PHYSICAL JOURNAL A

Review

The *x*-dependence of hadronic parton distributions: A review on the progress of lattice QCD

Martha Constantinou^a

Temple University, Philadelphia, USA

x-dependent PDFs from lattice QCD

★ Alternative approaches proposed, e.g.:

Hadronic tensor Auxiliary scalar quark Fictitious heavy quark Auxiliary scalar quark Higher moments Quasi-distributions (LaMET) Compton amplitude and OPE Pseudo-distributions Good lattice cross sections

[K.F. Liu, S.J. Dong, PRL 72 (1994) 1790, K.F. Liu, PoS(LATTICE 2015) 115]

- [U. Aglietti et al., Phys. Lett. B441, 371 (1998), arXiv:hep-ph/9806277]
- [W. Detmold, C. J. D, Lin, Phys. Rev. D73, 014501 (2006)]

[V. Braun & D. Mueller, Eur. Phys. J. C55, 349 (2008), arXiv:0709.1348]

- [Z. Davoudi, M. Savage, Phys. Rev. D86, 054505 (2012)]
- [X. Ji, PRL 110 (2013) 262002, arXiv:1305.1539; Sci. China PPMA. 57, 1407 (2014)]
- [A. Chambers et al. (QCDSF), PRL 118, 242001 (2017), arXiv:1703.01153]
- [A. Radyushkin, Phys. Rev. D 96, 034025 (2017), arXiv:1705.01488]
- [Y-Q Ma & J. Qiu, Phys. Rev. Lett. 120, 022003 (2018), arXiv:1709.03018]

Eur. Phys. J. A (2021) 57:77 https://doi.org/10.1140/epja/s10050-021-00353-7 THE EUROPEAN PHYSICAL JOURNAL A

Review

][

The *x*-dependence of hadronic parton distributions: A review on the progress of lattice QCD

Martha Constantinou^a

Temple University, Philadelphia, USA

Other Reviews:

[K. Cichy, M. Constantinou, Adv. in HEP, Volume 2019, 3036904, arXiv:1811.07248] [X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao (2020), 2004.03543]

Pion: Comparison with other studies

- ★ Lattice calculations of pseudo-PDFs and current-current correlators (LCS) use nonlocal operators
- ★ Very good agreement with PDF from LCS
- **Tension with E615 data in region** $x \in [0.2 0.55]$
- Large-x behavior compatible with rescaled ASV

Pion: Comparison with other studies

- ★ Lattice calculations of pseudo-PDFs and current-current correlators (LCS) use nonlocal operators
- ★ Very good agreement with PDF from LCS
- **Tension with E615 data in region** $x \in [0.2 0.55]$
- Large-x behavior compatible with rescaled ASV
- Peak of lattice data compatible with DSE 2016
- ★ Small- and large-x regions compatible with models

Pion: Comparison with other studies

- ★ Lattice calculations of pseudo-PDFs and current-current correlators (LCS) use nonlocal operators
- **★** Very good agreement with PDF from LCS
- **Tension with E615 data in region** $x \in [0.2 0.55]$
- Large-x behavior compatible with rescaled ASV
- Peak of lattice data compatible with DSE 2016
- ★ Small- and large-x regions compatible with models

Comparison qualitative!

Kaon: Comparison with other studies

★ Very limited studies

- ★ Peak of lattice data higher than models
- **Mellin moment** $\langle x^4 \rangle_K^{u,s}$ compatible with lattice data

$$\langle x^n \rangle = \int x^n f(x) \, dx$$

 $\langle x^n \rangle = \int x^n f(x) \, dx$

q_M^f	$\langle x angle$	$\langle x^2 \rangle$	$\langle x^3 \rangle$	$\langle x^4 \rangle$	$\langle x^5 angle$	$\langle x^6 angle$
q_{π}^{u}	0.230(3)(7)	0.087(5)(8)	0.041(5)(9)	0.023(5)(6)	0.014(4)(5)	0.009(3)(3)
q_K^u	0.217(2)(5)	0.079(2)(1)	0.036(2)(2)	0.019(1)(2)	0.011(1)(2)	0.007(1)(1)
q_K^s	0.279(1)(5)	0.115(2)(6)	0.058(2)(2)	0.033(2)(2)	0.021(1)(2)	0.014(1)(2)

$$\langle x^n \rangle = \int x^n f(x) \, dx$$

For comparison

JAM: $\langle x^4 \rangle^u_{\pi} = 0.027(2)$

BLFQ-NJL

 $\langle x^4 \rangle_K^u = 0.021(3)$ $\langle x^4 \rangle_K^s = 0.029(5)$

q_M^f	$\langle x angle$	$\langle x^2 \rangle$	$\langle x^3 \rangle$	$\langle x^4 \rangle$	$\langle x^5 \rangle$	$\langle x^6 \rangle$
q_{π}^{u}	0.230(3)(7)	0.087(5)(8)	0.041(5)(9)	0.023(5)(6)	0.014(4)(5)	0.009(3)(3)
q_K^u	0.217(2)(5)	0.079(2)(1)	0.036(2)(2)	0.019(1)(2)	0.011(1)(2)	0.007(1)(1)
q_K^s	0.279(1)(5)	0.115(2)(6)	0.058(2)(2)	0.033(2)(2)	0.021(1)(2)	0.014(1)(2)

$$\langle x^n \rangle = \int x^n f(x) \, dx$$

For comparison

JAM: $\langle x^4 \rangle^u_{\pi} = 0.027(2)$

BLFQ-NJL

 $\langle x^4 \rangle_K^u = 0.021(3)$ $\langle x^4 \rangle_K^s = 0.029(5)$

q_M^f	$\langle x angle$	$\langle x^2 \rangle$	$\langle x^3 \rangle$	$\langle x^4 \rangle$	$\langle x^5 angle$	$\langle x^6 angle$
q_{π}^{u}	0.230(3)(7)	0.087(5)(8)	0.041(5)(9)	0.023(5)(6)	0.014(4)(5)	0.009(3)(3)
q_K^u	0.217(2)(5)	0.079(2)(1)	0.036(2)(2)	0.019(1)(2)	0.011(1)(2)	0.007(1)(1)
q_K^s	0.279(1)(5)	0.115(2)(6)	0.058(2)(2)	0.033(2)(2)	0.021(1)(2)	0.014(1)(2)

What's next?

- ★ Pion and kaon form factors
- **SU(3)** flavor symmetry breaking
- Transverse spin
 (quark probability density in impact parameter space)

What's next?

- ★ Pion and kaon form factors
- **SU(3)** flavor symmetry breaking
- Transverse spin
 (quark probability density in impact parameter space)

What's next?

- ★ Pion and kaon form factors
- **SU(3)** flavor symmetry breaking
- Transverse spin
 (quark probability density in impact parameter space)

Concluding Remarks

Concluding Remarks

- **★** Accessing Mellin moments up to $\langle x^3 \rangle$ without mixing is feasible
- **SU(3)** flavor symmetry breaking non-negligible
- **★** Reconstruction of PDFs using up to $\langle x^3 \rangle$ is possible
- **\star** Our lattice data propose a $(1 x)^2$ decay for both pion and kaon PDFs

Concluding Remarks

- **★** Accessing Mellin moments up to $\langle x^3 \rangle$ without mixing is feasible
- **SU(3)** flavor symmetry breaking non-negligible
- **★** Reconstruction of PDFs using up to $\langle x^3 \rangle$ is possible
- **\star** Our lattice data propose a $(1 x)^2$ decay for both pion and kaon PDFs
- ★ A lot of work needed to quantify systematic uncertainties
- ★ Disconnected contributions to be evaluated
- ★ Future direction: form factors and generalized form factors

Concluding Remarks

- **★** Accessing Mellin moments up to $\langle x^3 \rangle$ without mixing is feasible
- **SU(3)** flavor symmetry breaking non-negligible
- **★** Reconstruction of PDFs using up to $\langle x^3 \rangle$ is possible
- **\star** Our lattice data propose a $(1 x)^2$ decay for both pion and kaon PDFs
- ★ A lot of work needed to quantify systematic uncertainties
- ★ Disconnected contributions to be evaluated
- ★ Future direction: form factors and generalized form factors

DOE Early Career Award (NP) Grant No. DE-SC0020405

Grant No. PHY-1714407

