A calibration using ${}^{35}Cl(n,\gamma)$ for measuring the excitation energy of the T=2 state in ${}^{32}S$ via ${}^{31}P(p,\gamma)$

REU Presentation August 19, 2003

Outline

- Background on isospin and the IMME (Isospin Mass Multiplet Equation)
- Description of the ${}^{31}P(p,\gamma)$ experiment
- Description of an experiment to check for Doppler shifts in a ³⁵Cl gamma ray source
- Monte Carlo simulation of gamma ray source
- Results of ³⁵Cl gamma ray source experiment

Isospin in protons and neutrons

- The strong interaction (almost) cannot distinguish between neutrons and protons
- Neutrons and protons are states of another particle, the nucleon
- Similar to spin up and down electrons
- Give proton $T_z=1/2$, neutron $T_z=-1/2$
- Q=e($\frac{1}{2}+T_{z}$)

Isospin in nuclei

- Isospin is angular momentum-type-thing so T_{z,tot}=T_{z,1}+T_{z,2}
 T_{z,tot} = 1/2(Z-N)
- IMME: It can be shown that the mass of nuclei within an isospin multiplet are related by $M(T,T_z)=a+bT_z+cT_z^2$

$$H = H_0 + \sum_{i < j} \hat{q}_i \hat{q}_j f(r_{ij})$$

where
$$\hat{q}_i = e \left(\frac{1}{2} + \hat{T}^i_{z,tot}\right)$$

Motivation

- Test the IMME
- Use the IMME to determine precisely the mass of ³²Ar and hence the endpoint energy in the T=2 Multiplet

 $M(T_3)=a+bT_3+cT_3^2$

- Improve limits on scalar contributions to the weak interaction.
- Check for isospin mixing corrections to explain the apparent non-unitarity of the CKM matrix

³¹P(p,γ)

Measure excitation energy since mass of ground state is well known

Resonance at:

- $E_{p} = 3.289 \text{ MeV}$
- Target: Implanted ³¹P on

a Ta backing with an incident dose ~55µAh and beam energy at 90 keV

Calibration using $^{27}AI(p, \gamma)$

Calibration: ${}^{27}AI(p, \gamma)$ at

E_p= 992 keV

- Peaks not at proper energy: Around 10 MeV instead of 8 MeV
- Overlapping peaks

Gammas from ${}^{35}Cl(n, \gamma)$

- Use a 10 MeV neutron source
- Moderate neutrons so that they will capture
- Capture cross section: $\sigma = \sigma_0 v_T / v$
- When neutrons capture on Cl, gammas of various energies are emitted
- Doppler shifts? $E_{\gamma} = E_{\gamma}(1+v/c \cos \theta)$

Monte Carlo for Doppler Shifts in ${}^{35}Cl(n, \gamma)$

- 1. Simulate events according to probability distributions
- 2. Start with a neutron moving in random direction
- 3. Calculate distance to next interaction according to probability distributions involving the mean free path of the neutron in material

Monte Carlo (cont.)

- 4. At each interaction point, decide whether the interaction was scattering or capture
- 5. If interaction was scattering, give neutron new direction and go to step 3
- 6. If the neutron captures on a nucleus, compute nuclear recoil and Doppler shift
- 7. Project shift onto axis of detector
- 8. $E_{\gamma'} = E_{\gamma}(1+v/c \cos \theta)$

Doppler Shifts at 7790 keV

Doppler Shifts on Various Peaks

Energy (keV)	0 degrees	90 degrees	Difference
7790.33	7791.11±.21	7790.31±.33	.80±.39
7413.97	7414.75±.20	7413.54±.25	1.21±.30
5715.24	5716.20±.42	5714.81±.57	1.39±.71

Conclusions

- ³⁵Cl(n,γ) works for calibrations
- Monte Carlo calculations agree with data but higher statistics needed
- ${}^{31}P(p,\gamma)$ data under analysis

Acknowledgements

- Thank you to the NSF for funding the REU program
- Advisor: Alejandro García
- Students: Smarajit Triambak, Anne Sallaska, Greg Hodges, Hideko Iwamoto, Matt Tilley