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Figure 1: Schematic diagram of Deeply Virtual Compton Scattering
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1 Introduction

The structure of the proton has intrigued scientists since the discovery that
it was not a point-like Dirac particle by a SLAC-M.L.T team in the 1960s.[1]
Current studies on proton structure include developing models that give the
quark distribution within the nucleon. One method used to study quark
distribution is Deeply Virtual Compton Scattering (DVCS). In DVCS, a high
energy, high momentum electron emits a virtual photon which is absorbed
by a quark within the proton as depicted in figure 1. At some time later, the
quark emits a real photon and is absorbed back into the proton. This causes
the proton to scatter with a final energy equal to its initial energy plus the
energy gained by the quark.

The model of the proton that I have used in my studies of DVCS is the
MIT bag model. In the MIT bag model, the proton is assumed to consist of
three quarks where a binding pressure is introduced to constrain the quarks to
a specified radius. The introduction of a binding pressure provides stability
and conservation of energy and momentum.|2]

The MIT bag model provides a means of computing the quark distri-
bution. This is valuable because knowledge about the quark distribution
ultimately provides information about the structure of the proton. In the
calculations that follow, information shall be provided leading to the quark
distribution of various momentum and spin states. All calculations shall be
made in the Bjorken limit where Q? = —¢* — oo and z is fixed.[2]



2 MIT Bag Model

In this section, we will define quantities to be used in our calculations involv-
ing a MIT bag in its ground state. We begin by introducing the equation
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A Peierls-Yoccoz projection of the MIT bag ground state is given by|[3]
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In this form, the projected MIT bag is defined as
R = a) = bi(a)bh(a)bi(a)|[EB; R = a), (4)

where |EFB;R = a) is the empty bag centered at R = a and b;r)(a) is the
quark creation operator at a. The indices for quark flavor and color have
been suppressed on bg(a) to avoid confusion. A normalization constant X is

defined for the MIT bag such that
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This quantity serves as an invariant in momentum-space.
The field operator in Eq.(1) is given by[3]
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where the wavefunction is
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the quark creation operator is given by b, .(a), and the antiquark creation
operator is d! (a). Since we are only considering the ground state of the
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nucleon, we will simplify the variables used such that
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3 Calculations

In this section, we will use the definitions provided in Section 2 to calculate
quantities relating to the quark distribution in a proton. Given the definition
for m(x) in Eq. (1), consider the matrix element
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This quantity is related to the probability of finding a proton in an initial
state p = 0, spin = s and a final state p = p’, spin= s’

In the following calculations, choose s = s’ = —I—%. Expanding M using
the definitions above gives
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where the function A(a — b) comes from the anticommutation relation[3]
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It can be shown that
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The simplest case to consider is when p’ = 0. This reduces m(z) to the
quark distribution density
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where k_ = |Mx — ¢/ Ry|. Plugging in the wavefunctions given in Eq. (7)
yields
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where C' is a normalization constant and|[3]
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Assuming that the empty bag matrix elements are approximately constant
in the region of integration|[3] it is possible to numerically evaluate the quark

distribution density q(x).
Now consider the case when p’ # 0. Using the methods above we see that
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Let us redefine to(e, f) and t1(¢, 3) as
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Putting in the wavefunctions in Eq.(7) and using the definition for G/(3)
given in Eq.(17),
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Clearly, this reduces to Eq.(16) when p’ = 0.
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4  Discussion and Conclusion

The calculations given in Section 3 provide a starting point for calculating the
quark distribution within a proton. I have shown that the quark distribution
when the initial and final state of the proton are p = 0 can be extended to
the case when the initial state is p = 0 and the final state is p = p’. It has
yet to be determined whether this process can be extended to calculating
antiquark distribution within the proton. In the future, I plan to calculate
m(x) when s # s" and also compare my results to existing theory.
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