Surface Modification of CaF₂

Maria Dahlberg Olmstead Laboratory

Outline

- Introduction
- Background
 - Molecular Beam Epitaxy
 - Apparatus
 - Analysis
- CaF₂
 - | Electron Irradiation
 - As Termination

Introduction

- What is Epitaxy/ Epitaxial Growth?
 - The growth of one Crystal on another
- GaSe, AlSe, GaAs, TiO₂, CaF₂ on Si
- Various factors:
 - Lattice Match
 - Interface Chemistry
 - Surface Energy

Molecular Beam Epitaxy

The Chamber

The Chamber

Growth Chamber

Crystal Monitor

Evaporation Cell

Analyzer

XPS/XPD

LEED

Main Chamber

XPS

- Incident photons transfer energy to e⁻ in the crystal
- Photo-electron energies are scanned
- $KE(e^{-}) = h\nu BE \phi_{inner}$

XPS

Why CaF₂?

- Ionic Crystal
- Insulator with a great lattice match to Si (0.6% mismatch)
- Quantum wells, Confinement

Surface of CaF₂

- Stable in UHV
- No surface reconstruction
- F⁻ termination is problematic
- Murphy's Law of Epitaxy
 - If A grows well on B, then B doesn't grow well on A"
 - σ (Si) > 300% σ (CaF₂)

e of at least ~40eV are "shot" at the sample

- e of at least ~40eV are "shot" at the sample
- A hole is created in the Ca 3p band

- e of at least ~40eV are "shot" at the sample
- A hole is created in the Ca 3p band
- An e- from the F 2p decays into the hole

- e of at least ~40eV are "shot" at the sample
- A hole is created in the Ca 3p band
- An e- from the F 2p decays into the hole
- An Auger e is ejected, leaving the F ion with a net 1+ charge

Post Irradiation

Surface of CaF₂ (post irradiation)

- Ca metal and CaF
- Very Reactive with residual gases in Chamber

Passivate Surface: As

The Question

- As works to passivate the surface
- Only sticks to Irradiated Surface
- Where is the As?
 - Surface, only 1/3 ML?
 - Diffused into Crystal?

Irradiation with As

"The Answer"

- Irradiated CaF₂ allows for 1 ML of As to be deposited
- Annealing induces diffusion into the Crystal
- When Annealed in As, ML remains

Summary

- MBE allows for controllable growth of Thin CaF₂ Films
- XPS is a relatively fast way to analyze the composition of Thin Films
- ESD, while increasing the Surface energy, creates a highly reactive surface
- As for the As?
 - ML on surface diffuses down with annealing

Acknowledgements

- University of Washington and INT
- Marjorie Olmstead
- Aaron Bostwick and Jonathan Adams
- Fumio Ohuchi

