## Single Ba<sup>+</sup> Ion Trapping and Laser Modulation

Amelia Bloom

## Outline

- Ion Trap
- Measurements
- The Switch From <sup>138</sup>Ba<sup>+</sup> to <sup>137</sup>Ba<sup>+</sup>
  - Laser Modulation
- Conclusions





#### Measurements

- Zeeman Effect
  - due to magnetic fields
- Light Shift
  - due to off resonant circularly polarized light source
- Parity Nonconservation
  - what is parity?
  - it's been well measured in high energy systems
  - requires <sup>137</sup>Ba<sup>+</sup>



### Switching From <sup>138</sup>Ba<sup>+</sup> to <sup>137</sup>Ba<sup>+</sup>



#### Switching From <sup>138</sup>Ba<sup>+</sup> to <sup>137</sup>Ba<sup>+</sup> Red Laser

- We now now need four red frequencies instead of one but want to use a single laser to produce them.
- We would like to be able to turn the individual frequencies off and on independently.



# Possible Red Laser Modulation Schemes

- Double Pass Acousto-Optic Modulator (AOM)
- Resonate Electro-Optic Modulator (EOM) with Sideband Selector
- Frequency Cycling a Broadband EOM

Require:

- shifting the laser
  frequency to the center of
  the needed frequencies
- broadening the laser to a width of 140 MHz



### AOM

The inputted RF is converted into sound which travels through the crystal and creates a sinusoidally changing index of refraction. This causes the light to diffract and shifts the frequency by multiples of the applied RF.



#### Double Pass AOM



## EOM



- The capacitor creates a strong electric field through the crystal causing the index of refraction to change.
- If the light is polarized to align with the fast axis of the crystal, frequency modulation will occur at the applied RF.

## Resonate EOM With Sideband Selector



# Frequency Cycling a Broadband EOM

- The EOM would work for a wide range of input frequencies.
- The input frequency would be electronically controlled to cycle through all four needed lines.
- This is the only scheme in which the center lines could be independently controlled.
- This is also the only scheme in which the laser frequency doesn't have to be shifted initially.



### Conclusions

- Measurements of the power in the sidebands will be taken for the AOM scheme.
- Much more research needs to be done before it can be decided which laser modulation scheme will work best.

### Acknowledgements

#### NSF, INT, and the University of Washington Advisor: Norval Fortson Grad Students: Jeff Sherman and Timo Koerber